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Abstract

We study the problem of optimal execution of a trading order under Volume
Weighted Average Price (VWAP) benchmark, from the point of view of a risk-averse
broker. The problem consists in minimizing mean-variance of the slippage, with
quadratic transaction costs. We devise multiple ways to solve it, in particular we study
how to incorporate the information coming from the market during the schedule. Most
related works in the literature eschew the issue of imperfect knowledge of the total
market volume. We instead incorporate it in our model. We validate our method with
extensive simulation of order execution on real NYSE market data. Our proposed so-
lution, using a simple model for market volumes, reduces by 10% the VWAP deviation
RMSE of the standard “static” solution (and can simultaneously reduce transaction
costs).

1 Introduction

Most literature on optimal execution focuses on the Implementation Shortfall (IS) objective,
minimizing the execution price with respect to the market price at the moment the order
is submitted. The seminal papers [BL98], [AC01] and [OW05] derive the optimal schedule
for various risk preferences and market impact models. However most volume on the stock
markets is traded with Volume Weighted Average Price (VWAP) orders, benchmarked to the
average market price during the execution horizon [Mad02]. Using this benchmark makes
the problem much more compelling from a stochastic control standpoint and prompts the
development of a richer model for the market dynamics. The problem of optimal trade
scheduling for VWAP execution has been studied originally [Kon02] in a static optimization
setting (the schedule is fixed at the start of the day). This is intuitively suboptimal, since it
ignores the new information coming as the schedule progresses. Some recent papers [HJ11]
[MK12] [FW13] extend the model and incorporate the new information coming to the market
but rely on the crucial assumption that the total market volume is known beforehand. Other
works [BDLF08] take a different route and focus on the empirical modeling of the market
volumes. A recent paper [GR13] studies the stochastic control problem including a market
impact term, while the work by Li [Li13] takes a different approach and studies the optimal
placement of market and limit orders for a VWAP objective. Our approach matches in
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complexity the most recent works in the literature ([FW13], [GR13]) with a key addition:
we don’t assume that the total market volume is known and instead treat it as a random
variable. We also provide extensive empirical results to validate our work.

We define the problem and all relevant variables in §2. In §3 we derive a “static” optimal
trading solution. In §4 we develop a “dynamic” solution which uses the information coming
from the market during the schedule in the best possible way: as our estimate of the total
market volume improves we optimize our trading activity accordingly. In §5 we detail the
simulations of trading we performed, on real NYSE market data, using our VWAP solution
algorithms. We conclude in §6.

2 Problem formulation

We consider, from the point of view of a broker, the problem of executing a trading order
issued by a client. The client decides to trade C ∈ Z+ shares of stock k over the course
of a market day. By assuming C > 0 we restrict our analysis to “buy” orders. If we were
instead interested in “sell” orders we would only need to change the appropriate signs. We
don’t explore the reasons for the client’s order (it could be for rebalancing her portfolio,
making new investments, etc.). The broker accepts the order and performs all the trades in
the market to fulfill it. The broker has freedom in implementing the order (can decide when
to buy and in what amount) but is constrained to cumulatively trade the amount C over
the course of the day. When the order is submitted client and broker agree on an execution
benchmark price which regulates the compensation of the broker and the sharing of risk.
The broker is payed by the client an amount equal to the number of shares traded times the
execution benchmark, plus fees (which we neglect). In turn, the broker pays for his trading
activity in the market. Some choices of benchmark prices are:

• stock price at the start of the trading schedule. This gives rise to implementation short-
fall execution ([BL98], [AC01]), in which the client takes no risk (since the benchmark
price is fixed);

• stock price at day close. This type of execution can misalign the broker and client
objectives. The broker may try to profit from his executions by pushing the closing
price up or down, using the market impact of his trades;

• Volume Weighted Average Price (VWAP), the average stock price throughout the day
weighted by market volumes. This is the most common benchmark price. It encourages
the broker to spread the execution evenly across the market day, minimizing market
impact and detectability of the order. It assigns most risk associated with market
price movements to the client, so that the broker can focus exclusively on optimizing
execution.

In this paper we derive algorithms for optimal execution under the VWAP benchmark.
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2.1 Definitions

We work for simplicity in discrete time. We consider a market day for a given stock, split
in T intervals of the same length. In the following T is fixed to 390, so each interval is one
minute long.

Volume We use the word volume to denote an integer number of traded shares (either by
the market as a whole or by a single agent). We define mt ∈ R+ for t = 1, . . . , T , the number
of shares of the stock traded by the whole market in interval t, which is non-negative. We
note that in reality the market volumes mt are integer, not real numbers. This approximation
is acceptable since the typical number of shares traded is much greater than 1 (if the interval
length is 1 minute or more) so the integer rounding error is negligible. These market volumes
are distributed according to a joint probability distribution

fm1:T
(m1, . . . ,mT ).

In §5.2 we propose a model for this joint distribution. We also define the total daily volume

V =
T∑
t=1

mt

We call ut ∈ R+ the number of shares of the stock that our broker trades in interval t, for
t = 1, . . . , T . (Again we assume that the volumes are large enough so the rounding error is
negligible.) By regulations these must be non-negative, so that all trades performed by the
broker as part of the order have the same sign.

Price Let pt ∈ R++ for t = 1, . . . , T be the average market price for the stock in interval
t. This is defined as the VWAP of all trades over interval t. (If during interval t there are
Nt > 0 trades in the market, each one with volume ωi ∈ Z++ and price πi ∈ R++, then
pt =

∑Nt
i=1 ωiπi/

∑Nt
i=1 ωi.) If there are no trades during interval t then pt is undefined and in

practice we set it equal to the last available period price. We model this price process as a
geometric random walk with zero drift. The initial price p0 is a known constant. Then the
price increments ηt ≡ pt−pt−1

pt−1
for t = 1, . . . , T are independent and distributed as

ηt ∼ N (0, σt),

where N is the Gaussian distribution. The period volatilities σt ∈ R+ for t = 1, . . . , T are
constants known from the start of the market day. We define the market VWAP price as

pVWAP =

∑T
t=1mtpt
V

. (1)
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Transaction costs We model the transaction costs by introducing the effective price p̂t,
defined so that the whole cost of the trade at interval t is utp̂t. Our model captures in-
stantaneous transaction costs, in particular the cost of the bid-ask spread, not the cost of
long-term market impact. (For a detailed literature review on transaction costs and market
impact see [BFL09].) Let st ∈ R++ be the average fractional (as ratio of the stock price)
bid-ask spread in period t. We assume the broker trades the volume ut using an optimized
trading algorithm that mixes optimally market and limit orders. The cost or proceeding per
share of a buy market order is on average pt(1 + st/2) while for a limit order it is on average
pt(1 − st/2). Let uLO and uMO be the portions of ut executed via limit orders and market
orders, respectively, so that uLO + uMO = ut. We require that the algorithm uses trades of
the same sign, so uLO, uMO, and ut are all non-negative (consistently with the constraint we
introduce in §2.3). We assume that the fraction of market orders over the traded volume is
proportional to the participation rate, defined as ut/mt. So

uMO

ut
=
α

2

ut
mt

where the proportionality factor α ∈ R+ depends on the specifics of the trading algorithm
used. This is a reasonable assumption, especially in the limit of small participation rate.
The whole cost or proceedings of the trade is

utp̂t = pt

(
uLO

(
1− st

2

)
+ uMO

(
1 +

st
2

))
which implies

p̂t = pt

(
1− st

2
+ α

st
2

ut
mt

)
. (2)

We thus have a simple model for the effective price p̂t, linear in ut. This gives rise to quadratic
transaction costs, a reasonable approximation for the stock markets ([BFL09], [LFM03]).

2.2 Problem objective

Consider the cash flow for the broker, equal to the payment he receives from the client minus
the cost of trading

CpVWAP −
T∑
t=1

utp̂t.

In practice there would also be fees but we neglect them. The trading industry usually
defines the slippage as the negative of this cash flow. It represents the amount by which the
order execution price misses the benchmark. (The choice of sign is conventional so that the
optimization problem consists in minimizing it). We instead define the slippage as

S ≡
∑T

t=1 utp̂t − CpVWAP

CpVWAP

, (3)
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normalizing by the value of the order. We need this in order to compare the slippage between
different orders. By substituting the expressions defined above we get

S =

(
T∑
t=1

[
utpt

(
1− st

2
+ α

st
2

ut
mt

)]
− C

∑T
t=1mtpt
V

)/
CpVWAP =

T∑
t=1

[
pt

pVWAP

(ut
C
− mt

V

)]
+

T∑
t=1

ptst
2pVWAP

(
α
u2t
Cmt

− ut
C

)
'

T−1∑
t=1

[
ηt+1

(∑t
τ=1mτ

V
−
∑t

τ=1 uτ
C

)]
+

T∑
t=1

st
2

(
α
u2t
Cmt

− ut
C

)
(4)

where we used the two approximations (both first order, reasonable on a trading horizon of
one day)

pt − pt−1
pVWAP

' pt − pt−1
pt−1

= ηt (5)

ptst
pVWAP

' st. (6)

We model the broker as a standard risk-averse agent, so that the objective function is to
minimize

ES + λvar(S)

for a given risk-aversion parameter λ ≥ 0. These expectation and variance operators apply
to all sources of randomness in the system, i.e., the market volumes m and market prices p,
which are independent under our model. The expected value of the slippage is

E
m,p

S = E
m

E
p
S = E

m

[
T∑
t=1

st
2

(
α
u2t
Cmt

− ut
C

)]
(7)

since the price increments have zero mean. Note that we leave expressed the expectation
over market volumes. The variance of the slippage is

var
m,p

S = E
m,p

[(
S − E

m,p
S

)2
]

= E
m,p

S2 −
(

E
m,p

S

)2

=

E
m

E
p
S2 −

(
E
m

E
p
S

)2

− E
m

(E
p
S)2 + E

m
(E
p
S)2 = E

m
var
p

(S) + var
m

(E
p
S). (8)

The first term is

E
m

var
p

(S) = E
m

E
p

(T−1∑
t=1

ηt+1

(∑t
τ=1mt

V
−
∑t

τ=1 ut
C

))2
 =

E
m

[
T−1∑
t=1

σ2
t+1

(∑t
τ=1mt

V
−
∑t

τ=1 ut
C

)2
]

(9)
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which follows from independence of the price increment. The second term is

var
m

(E
p
S) = var

m

(
T∑
t=1

st
2

(
α
u2t
Cmt

− ut
C

))
. (10)

We drop the second term and only keep the first one, so that the resulting optimization
problem is tractable. We motivate this by assuming, as in [FW13], that the second term
of the variance is negligible when compared to the first. This is validated ex-post1 by our
empirical studies in §5. We thus get

E
m,p

S + λvar
m,p

(S) '
T∑
t=1

E
m

st
2

(
α
u2t
Cmt

− ut
C

)
+ λσ2

t

(∑t−1
τ=1mt

V
−
∑t−1

τ=1 ut
C

)2
 . (11)

We note that the objective function separates in a sum of terms per each time step, a key
feature we will use to apply the dynamic programming optimization techniques in §4.

2.3 Constraints

We consider the constraints that apply to the optimization problem. The optimization
variables are ut for t = 1, . . . , T . We require that the executed volumes sum to the total
order size C

T∑
t=1

ut = C. (12)

We then impose that all trades have positive sign (buys)

ut ≥ 0, t = 1, . . . , T. (13)

(If we were executing a sell order, C < 0, we would have all ut ≤ 0.) This is a regulatory
requirement for institutional brokers in most markets, essentially as a precaution against
market manipulation. It is a standard constraint in the literature about VWAP execution.

2.4 Optimization paradigm

The price increments ηt and market volumes mt are stochastic. The volumes ut instead
are chosen as the solution of an optimization problem. This problem can be cast in several
different ways. We define the information set It available at time t

It ≡ {(p1,m1, u1), . . . , (pt−1,mt−1, ut−1)}. (14)

1 In the rest of the paper we derive multiple ways to solve the optimization problem of minimizing the
objective (11). For these different solution methods, the empirical value of (10) is between 1% and 5% of
the value of (9), so our approximation is valid. The results are detailed in §5.6.
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By causality, we know that when we choose the value of ut we can use, at most, the informa-
tion contained in It. In §3 we formulate the optimization problem and provide an optimal
solution for the variables ut in the case we do not access anything from the information set
It when choosing ut. The ut are chosen using only information available before the trading
starts. We call this a static solution (or open loop in the language of control). In §4 in-
stead we develop an optimal policy which can be seen as a sequence of functions ψt of the
information set available at time t

ut = ψt(It).

We develop it in the framework on dynamic programming and we call it dynamic solution
(or closed loop).

3 Static solution

We consider a procedure to solve the problem described in §2 without accessing the infor-
mation sets It. We call this solution static since it is fixed at the start of the trading period.
(It is computed using only information available before the trading starts.) This is the same
assumption of [Kon02] and corresponds to the approach used by many practitioners. Our
model is however more flexible than [Kon02], it incorporates variable bid-ask spread and a
sophisticated transaction cost model. Still, it has an extremely simple numericaly solution
that leverages convex optimization [BV09] theory and software.

We start by the optimization problem with objective function (11) and the two constraints
(12) and (13)

minimizeu Em,p S + λvarm,p(S)

s.t.
∑T

t=1 ut = C
ut ≥ 0, t = 1, . . . , T.

We remove a constant term from the objective and write the problem in the equivalent form

minimizeu
∑T

t=1

[
st
2C

(αu2tκt − ut) + λσ2
t

((∑t−1
τ=1 ut
C

)2
− 2Mt

∑t−1
τ=1 ut
C

)]
s.t.

∑T
t=1 ut = C

ut ≥ 0, t = 1, . . . , T

(15)

where Mt and κt are the constants

Mt = E
m

[∑t−1
τ=1mt

V

]
, κt = E

m

[
1

mt

]
for t = 1, . . . , T . In this form, the problem is a standard quadratic program [BV09] and can
be solved efficiently by open-source solvers such as ECOS [DCB13] using a symbolic convex
optimization suite like CVX [GB14] or CVXPY [DCB14].
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3.1 Constant spread

We consider the special case of constant spread, s1 = · · · = sT , which leads to a great
simplification of the solution. The convex problem (15) has the form

minimizeu
∑T

t=1
st
2C

(αu2tκt − ut) + λ
(∑T

t=1 σ
2
t (U2

t − 2MtUt/C)
)
≡ φ(u) + λψ(u)

s.t. u ∈ C

where Ut =
∑t−1

τ=1 ut/C for each t = 1, . . . , T , and C is the convex feasible set. We separate
the problem into two subproblems considering each of the two terms of the objective. The
first one is

minimizeu φ(u)
s.t. u ∈ C

which is equivalent to (since the spread is constant and α > 0)

minimizeu
∑T

t=1 u
2
tκt

s.t. u ∈ C

The optimal solution is ([BV09], Lagrange duality)

u?t = C
1/κt∑T
t=1 1/κt

, t = 1, . . . , T.

We approximate κt = Em [1/mt] ' 1/Em[mt] and thus

u?t ' C
Em[mt]∑T
t=1 Em[mt]

' C E
m

[mt

V

]
, t = 1, . . . , T.

The second problem is

minimizeu ψ(u) ≡
∑T

t=1 σ
2
t (U2

t − 2MtUt/C)
u ∈ C

we choose the Ut such that σ2
t (Ut −Mt) = 0 so Ut = Mt for t = 1, . . . , T . The values of

u1, . . . , uT−1 are thus fixed, and we choose the final volume uT so that uT = C − CUT . The
first order condition of the objective function is satisfied, and these values of u1, . . . , uT are
feasible (since Mt is non-decreasing in t and MT ≤ 1). It follows that this is an optimal
solution, it has values u?t = C Em [mt/V ] for t = 1, . . . , T .

Consider now the original problem. Its objective is a convex combination (apart from a
constant factor) of the objectives of two convex problem above and all three have the same
constraints set. Since the two subproblems share an optimal solution u?, it follows that u?

is also an optimal solution for the combined problem. Thus, an the optimal solution of (15)
in the case of constant spread is

u?t = C E
m

[mt

V

]
t = 1, . . . , T. (16)
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This is equivalent to the solution derived in [Kon02] and is the standard in the brokerage
industry. In our model this solution arises as the special case of constant spread, in gen-
eral we could derive more sophisticated static solutions. We also note that we introduced
the approximation κt = Em [1/mt] ' 1/Em[mt]. (In practice, estimating Em [1/mt] would
require a more sophisticated model of market volumes than Em [mt/V ]). We thus expect to
lose some efficiency in the optimization of the trading costs. However, with respect to the
minimization of the variance of S (if λ → ∞ or s = 0), this solution is indeed optimal. In
the following we compare the performances of (16) and of the dynamic solution developed
in §4.

4 Dynamic solution

We develop a solution of the problem that uses all the information available at the time
each decision is made, i.e., a sequence of functions ψt(It) where It is the information set
available at time t (as defined in (14)). We work in the framework of Dynamic Programming
(DP) [Ber95], summarized in §4.1. In particular we fit our problem in the special case of
linear dynamics and quadratic costs, described in §4.2. However we can’t apply standard
DP because the random shocks affecting the system at different times are not conditionally
independent (the market volumes have a joint distribution). We instead use the approximate
procedure of [SBZ10], summarized in §4.3. In §4.4 we finally write our optimization problem,
defining the state, action and costs, and in §4.5 we derive its solution.

4.1 Dynamic programming

We summarize here the standard formalism of dynamic programming, following [Ber95].
Suppose we have a state variable xt ∈ X defined for t = 1, ..., T + 1 with x1 known. Our
decision variables are ut ∈ U for t = 1, ..., T and each ut is chosen as a function of the current
state, ut = µt(xt). (We use the same symbol as the volumes traded at time t since in the
following they coincide.) The randomness of the system is modeled by a series of IID random
variables wt ∈ W , for t = 1, ..., T . The dynamics is described by a series of functions

xt+1 = ft(xt, ut, wt),

at every stage we incur the cost
gt(xt, ut, wt),

and at the end of the decision process we have a final cost

gT+1(xT+1).

Our objective is to minimize

J = E

[
T∑
t=1

gt(xt, ut, wt) + gT+1(xT+1)

]
.
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We solve the problem by backward induction, defining the cost-to-go function vt at each time
step t

vt(x) = min
u

E[gt(x, u, wt) + vt+1(ft(x, u, wt))], t = 1, . . . , T. (17)

This recursion is known as Bellman equation. The final condition is fixed by

vT+1(·) = gT+1(·).

It follows that the optimal action at time t is given by the solution

ut = argmin
u

E[gt(xt, u, wt) + vt+1(ft(xt, u, wt))]. (18)

In general, these equations are not solvable since the iteration that defines the functions vt
requires an amount of computation exponential in the dimension of the state space, action
space, and number of time steps (curse of dimensionality). However some special forms of
this problem have closed form solutions. We see one in the following section.

4.2 Linear-quadratic stochastic control

Whenever the dynamics functions ft are stochastic affine and the cost functions are stochas-
tic quadratic, the problem of §4.1 has an analytic solution [BLR12]. We call this Linear-
Quadratic Stochastic Control (LQSC). We define the state space X = Rn, the action space
U = Rm for some n,m > 0. The disturbances are independent with known distributions
and belong to a general set W . For t = 1, . . . , T the system dynamics is described by

xt+1 = ft(xt, ut, wt) = At(wt)xt +Bt(wt)ut + ct(wt), t = 1, ..., T

with matrix functions At(·) : W → Rn×n, Bt(·) : W → Rn×m, and ct(·) : W → Rn. The
stage costs are

gt(xt, ut, wt) = xTt Qt(wt)xt + qt(wt)
Txt + uTt Rt(wt)ut + rt(wt)

Tut

with matrix functions Qt(·) : W → Rn×n, qt(·) : W → Rn, Rt(·) : W → Rm×m, and
rt(·) :W → Rm. The final cost is a quadratic function of the final state

gT+1(xT+1) = xTT+1QT+1xT+1 + qTT+1xT+1.

The main result of the theory on linear-quadratic problems [Ber95] is that the optimal policy
µt(xt) is a simple affine function of the problem parameters and can be obtained analytically

µt(xt) = Ktxt + lt, t = 0, ..., T − 1, (19)

where Kt ∈ Rm×n and lt ∈ Rm depend on the problem parameters. In addition, the cost-
to-go function is a quadratic function of the state

vt(xt) = xTt Dtxt + dTt xt + bt (20)

where Dt ∈ Rn×n, dt ∈ Rn, and bt ∈ R for t = 1, . . . , T . We derive these results solving
the Bellman equations (17) by backward induction. These are known as Riccati equations,
reported in Appendix A.1.
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4.3 Conditionally dependent disturbances

We now consider the case in which the disturbances are not independent, and we can’t
apply the Bellman iteration of §4.1. Specifically, we assume that the disturbances have a
joint distribution described by a density function

fw(·) :W × · · · ×W → [0, 1].

One approach to solve this problem is to augment the state xt, by including the disturbances
observed up to time t. This causes the computational complexity of the solution to grow
exponentially with the increased dimensionality (curse of dimensionality). Some approxi-
mate dynamic programming techniques can be used to solve the augmented problem [Ber95]
[Pow07]. We take instead the approximate approach developed in [SBZ10], called shrinking-
horizon dynamic programming (SHDP), which performs reasonably well in practice and leads
to a tractable solution. (It can be seen as an extension of model predictive control, known to
perform well in a variety of scenarios [Bem06] [KH06] [MWB11] [BMOW13]).

We now summarize the approach. Assume we know the density of the future disturbances
wt, . . . , wT conditioned on the observed ones

fw|t(wt, . . . , wT ) :W × · · · ×W → [0, 1].

(If t = 1 this is the unconditional density.) We derive the marginal density of each future
disturbance, by integrating over all others,

f̂wt|t(wt), . . . , f̂wT |t(wT ).

We use the product of these marginals to approximate the density of the future disturbances,
so they all are independent. We then compute the cost-to-go functions with backwards
induction using the Bellman equations (17) and (18), where the expectations over each
disturbance wτ are taken on the conditional marginal density f̂wτ |t. The equations (17) for
the cost-to-go function become (note the subscript ·|t)

vτ |t(x) = min
u

E
f̂wτ |t

[gτ (x, u, wτ ) + vτ+1|t(fτ (x, u, wτ ))], (21)

for all times τ = t, . . . , T , with the usual final condition. Similarly, the equations (18) for
the optimal action become

ut = argmin
u

E
f̂wt|t

[gt(xt, u, wt) + vt+1|t(ft(xt, u, wt))] (22)

for all times τ = t, . . . , T . We only use the solution ut at time t. In fact when we pro-
ceed to the next time step t + 1 we rebuild the whole sequence of cost-to-go functions
vt+1|t+1(x), . . . , vT |t+1(x) using the updated marginal conditional densities and then solve
(22) to get ut+1. With this framework we can solve the VWAP problem we developed in §2.
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4.4 VWAP problem as LQSC

We now formulate the problem described in §2 in the framework of §4.2. For t = 1, . . . , T +1
we define the state as:

xt =

( ∑t−1
τ=1 uτ∑t−1
τ=1mτ

)
, (23)

so that x1 = (0, 0). The action is ut, the volume we trade during interval t, as defined in §2.
The disturbance is

wt =

(
mt

V

)
(24)

where the second element is the total market volume V =
∑T

t=1mt. With this definition the
disturbances are not conditionally independent. In §4.5 we study their joint and marginal
distributions. We note that V , the second element of each wt, is not observed after time t.
(The theory we developed so far does not require the disturbances wt to be observed, the
Bellman equations only need expected values of functions of wt.) For t = 1, ..., T the state
transition consists in

xt+1 = xt +

(
ut
mt

)
.

So that the dynamics matrices are

At(wt) =

(
1 0
0 1

)
≡ I,

Bt(wt) =

(
1
0

)
≡ e1,

ct(wt) =

(
0
mt

)
.

The objective funtion (11) can be written as Em

∑T
t=1 gt(xt, ut, wt) where each stage cost is

given by

gt(xt, ut, wt) =
st
2

(
α
u2t
Cmt

− ut
C

)
+ λσ2

t x
T
t

(
1
C2 − 1

CV

− 1
CV

1
V 2

)
xt.

The quadratic cost function terms are thus

Qt(wt) = λσ2
t

(
1
C2 −1/CV

−1/CV 1/V 2

)
qt(wt) = 0

Rt(wt) =
αst

2Cmt

rt(wt) = − st
2C

for t = 1, . . . , T . The constraint that the total executed volume is equal to C imposes the
last action

uT = µT (xT ) = C −
T−1∑
t=1

ut,≡ KTxt + lt

12



with

KT = −eT1
lT = C.

This in turn fixes the value function at time T

vT (xT ) = E gT (xT , KTxt + lt, wt), (25)

so we can treat xT as our final state and only consider the problem of choosing actions up to
uT−1. We are left with the constraint ut ≥ 0 for t = 1, . . . , T . Unfortunately this can not be
enforced in the LQSC formalism. We instead take the approximate dynamic programming
approach of [KB14]. We allow ut to get negative sign and then project it on the set of feasible
solutions. For every t = 1, . . . , T we compute

max(ut, 0)

and use it, instead of ut, for our trading schedule. This completes the formulation of our
optimization problem into the linear-quadratic stochastic control framework. We now focus
on its solution, using the approximate approach of §4.3.

4.5 Solution in SHDP

We provide an approximate solution of the problem defined in §4.4 using the framework
of shinking-horizon dynamic programming (summarized in §4.3). Consider a fixed time
t = 1, . . . , T − 1. We note that (unlike the assumption of [SBZ10]) we do not observe the
sequence of disturbances w1, . . . , wt−1, because the total volume V is not known until the
end of the day. We only observe the sequence of market volumes m1, . . . ,mt−1.

If fm(m1, . . . ,mT ) is the joint distribution of the market volumes, then the joint distri-
bution of the disturbances is

fw(w1, . . . , wt) = fm(eT1w1, . . . , e
T
1wT )× 1{eT2 w1=V } × · · · × 1{eT2 wT=V } × 1{V=

∑T
τ=1 e

T
1 wτ}

where e1 = (1, 0), e2 = (0, 1), and the function 1{·} has value 1 when the condition is true
and 0 otherwise. We assume that our market volumes model also provides the conditional
density fm|t(mt, . . . ,mT ) of mt, . . . ,mT given m1, . . . ,mt−1. The conditional distribution of
V given m1, . . . ,mt−1 is

fV |t(V ) =

∫
· · ·
∫
fm|t(mt, . . . ,mT )1{V=

∑T
τ=1mτ}

dmt · · · dmT

(where the first t−1 market volumes are constants and the others are integration variables).
Let the marginal densities be

f̂mt|t(mt), . . . , f̂mT |t(mT ).
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The marginal conditional densities of the disturbances are thus

f̂wτ |t(·) = f̂mτ |t(·)× fV |t(·) (26)

for τ = t, . . . , T .
We use these to apply the machinery of §4.3, solve the Bellman equations and obtain the

suboptimal SHDP policy at time t. We compute the whole sequence of cost-to-go functions
and policies at times τ = t, . . . , T . The cost-to-go functions are

vτ |t(xτ ) = xTτDτ |txτ + dτ |txτ + bτ |t (27)

for τ = t, . . . , T−1. The only difference with equation (20) is the condition |t in the subscript,
because expected values are taken over the marginal conditional densities f̂wτ |t(·). Similarly,
the policies are

µτ |t(xτ ) = Kτ |txτ + lτ |t (28)

for τ = t, . . . , T − 1. We report the equations for this recursion in Appendix A.2. At every
time step t we compute the whole sequence of cost-to-go and policies, in order to get the
optimal action

u?t = µt|t(xt) = Kτ |txτ + lτ |t. (29)

We then move to the next time step and repeat the whole process. If we are not interested in
computing the cost-to-go vt|t(xt) the equations simplify somewhat (we disregard large part
of the recursion and only compute what we need). We develop these simplified formulas in
Appendix A.3.

5 Empirical results

We study the performance of the static solution of §3 versus the dynamic solution of §4
by simulating execution or stock orders, using real NYSE market price and volume data.
We describe in §5.1 the dataset and how we process it. The dynamic solution requires a
model for the joint distribution of market volumes, here we use a simple model, explained
in §5.2. (We expect that a more sophisticated model for market volumes would improve the
solution performance significantly.) In §5.3 we describe the “rolling testing” framework in
which we operate. Our procedure is made up of two parts: the historical estimation of model
parameters, explained in §5.4, and the actual simulation of order execution, in §5.5. Finally
in §5.6 we show our aggregate results.

5.1 Data

We simulate execution on data from the NYSE stock market. Specifically, we use the K = 30
different stocks which make up the Dow Jones Industrial Average (DJIA), on N = 60 market
days corresponding to the last quarter of 2012, from September 24 to December 20 (we do
not consider the last days of December because the market was either closed or had reduced
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trading hours). The 30 symbols in that quarter are: MMM, AXP, T, BA, CAT, CVX, CSCO,
KO, DD, XOM, GE, HD, INTC, IBM, JNJ, JPM, MCD, MRK, MSFT, PFE, PG, TRV,
UNH, UTX, VZ, WMT, DIS, AA, BAC, HPQ. We use raw Trade and Quotes (TAQ) data
from Wharton Research Data Services (WRDS) [TAQ]. We processe the raw data to obtain
daily series of market volumes mt ∈ Z+ and average period price p ∈ R++, for t = 1, . . . , T
where T = 390, so that each interval is one minute long. We clean the raw data by filtering
out trades meeting any of the following conditions:

• correction code greater than 1, trade data incorrect;

• sales condition “4”, “@4”, “C4”, “N4”, “R4”, derivatively priced, i.e., the trade was
executed over-the-counter (or in an external facility like a Dark Pool);

• sales condition “T” or “U”, extended hours trades (before or after the official market
hours);

• sales condition “V”, stock option trades (which are also executed over-the-counter);

• sales condition “Q”, “O”, “M”, “6”, opening trades and closing trades (the opening
and closing auctions).

In other words we focus exclusively on the continuous trading activity without considering
market opening and closing nor any over-the-counter trade. In Figure 1 we plot an example
of market volumes and prices.

5.2 Market volumes model

We have so far assumed that the distribution of market volumes

fm(m1, . . . ,mT )

is known from the start of the day. In reality a broker has a parametric family of distributions
and each day (or less often) selects the parameters for the distribution with some statistical
procedure. For simplicity, we assume such procedure is based on historical data. We found
few works in the literature concerned with intraday market volumes modeling ([BDLF08]).
We thus develop our own market volume model. This is composed of a parametric family
of market volume distributions and an ad hoc procedure to choose the parameters with
historical data.

For each stock we model the vector of market volumes as a multivariate log-normal. If
the superscript (k) refers to the stock k (i.e., m

(k)
t is the market volume for stock k in interval

t), we have

fm(k)(m
(k)
1 , . . . ,m

(k)
T ) ∼ lnN (µ+ 1b(k),Σ) (30)

where b(k) ∈ R is a constant that depends on the stock k (each stock has a different typical
daily volume), µ ∈ RT is an average “volume profile” (normalized so that 1Tµ = 0) and
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Stock CVX on day 2012-10-09

Figure 1: Example of a trading day. The blue bars are the market volumes traded
every minute (in number of shares) and the red line is the period price pt.

Σ ∈ ST++ is a covariance matrix. The volume process thus separates into a per-stock de-
terministic component, modeled by the constant b(k), and a stochastic component with the
same distribution for all stocks, modeled as a multivariate log-normal. We report in Ap-
pendix B the ad hoc procedure we use to estimate the parameters of this volume model on
historical data and the formulas for the conditional expectations Et [1/V ], Et[mτ ], Et [1/mτ ]
for τ = t, . . . , T (which we need for the solution (29)). The procedure for estimating the
volume model on past data requires us to provide a parameter, which we estimate with
cross-validation on the initial section of the data. The details are explained in Appendix B.

5.3 Rolling testing

We organize our simulations according to a “rolling testing” or “moving window” procedure:
for every day used to simulate order execution we estimate the various parameters on data
from a “window” covering the preceding W > 0 days. (It is commonly assumed that the most
recent historical data are most relevant for model calibration since the systems underlying
the observed phenomena change over time). We thus simulate execution on each day i =
W + 1, . . . , N using data from the days i−W, . . . , i− 1 for historical estimation.

In this way every time we test a VWAP solution algorithm, we use model parameters
calibrated on historical data exclusively. In other words the performance of our models are
estimated out-of-sample. In addition since all the order simulations use the same amount of
historical data for calibration it is fair to compare them.
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We fix the window lenght of the historical estimation to W = 20, corresponding roughly
to one month. We set aside the first WCV = 10 simulation days for cross-validating a feature
of the volume model, as explained in Appendix B.2. In Figure 2 we describe the procedure.
In the next two sections we explain how we perform the estimation of model parameters and
simulation of orders execution.

order simul. (cross. val.)

W = 20 days
order simul. (cross. val.)

W = 20 days

..

.

WCV = 10 days

order simul.W = 20 days

order simul.W = 20 days

..

.

Figure 2: Description of the rolling testing procedure. We iterate over the dataset,
simulating execution on any day i = W + 1, . . . , N and estimating the model pa-
rameters on the preceding W = 20 days. The first WCV = 10 days used to simulate
orders are reserved for cross validation (as explained in Appendix B.2). The aggre-
gate results from the remaining W + WCV + 1, . . . , N days (30 days in total) are
presented in §5.6.

5.4 Models estimation

We describe the estimation, on historical data, of the parameters of all relevant models for
our solution algorithms. We append the superscript (i, k) to any quantity that refers to
market day i and stock k. We start by the market volumes per interval as a fraction of the
total daily volume (which we need for (16)). We use the sample average

E
[mt

V

]
'
∑i−1

j=i−W
∑K

k=1m
(j,k)
t /V (j,k)

WK

for every t = 1, . . . , T . An example of this estimation (on the first W = 20 days of the
dataset) is shown in Figure 3. The dynamic solution (29) requires an estimate of the
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Figure 3: Estimated values of E
[
mt
V

]
using the first W = 20 days of our dataset,

shown in percentage points.

volatilites σt, we use the sample average of the squared price changes

σ2
t '

∑i−1
j=i−W

∑K
k=1

(
(p

(j,k)
t+1 − p

(j,k)
t )/p

(j,k)
t

)2
WK

for every t = 1, . . . , T . In Figure 4 we show an example of this estimation (on the first W
days of the dataset). We then choose the volume distribution fm(m1, . . . ,mT ) among the
parametric family defined in §5.2 (using the ad hoc procedure described in Appendix B.1).
We estimate the expected daily volume for each stock as the sample average

E[V (i,k)] '
∑i−1

j=i−W V (j,k)

W

for every k = 1, . . . , K. We use this to choose the size of the simulated orders.
Finally, we consider the parameters s1, . . . , sT , and α of the transaction cost model (2).

We do not estimate them empirically since we would need additional data, market quotes for
the spread and proprietary data of executed orders for α (confidential for fiduciary reasons).
We instead set them to exogenous values, kept constant across all stocks and days (to
simplify comparison of execution costs). We assume for simplicity that the fractional spread
is constant in time and equal to 2 basis points, s1 = · · · = sT = 2 b.p. (one basis point is
0.0001). That is reasonable for liquid stocks such as the ones from the DJIA. We choose the
parameter α following a rule-of-thumb of transaction costs: trading one day’s volume costs
approximately on day’s volatility [KGM03]. We estimate empirically over the first 20 days

18



10:00 11:00 12:00 13:00 14:00 15:00

Time

2

4

6

8

10

12

14

16

b
.p

.

Historical values of σ̃t  (in basis points)

Figure 4: Estimated values of the period volatilities, σ̂t using the first W = 20
days of our dataset. For each period of one minute these are the estimated standard
deviation of the price increments, shown in basis points (one basis point is 0.0001).

of the dataset the open-to-close volatility for our stocks, equal to approximately 90 basis
points, and thus from equation (2) we set α = 90.

5.5 Simulation of execution with VWAP solution algorithms

For each day i = W + 1, . . . , N and each stock k = 1, . . . , K we simulate the execution of a
trading order. We fix the size of the order equal to 1% of the expected daily volume for the
given stock on the given day

C(i,k) = E[V (i,k)]/100.

Such orders are small enough to have negligible impact on the price of the stock [BFL09],
as we need for (2) to hold.

We repeat the simulation with different solution methods: the static solution (16) and
the dynamic solution (29) with risk-aversion parameters λ = 0, 1, 10, 100, 1000,∞. We use
the symbol a to index the solution methods. For each simulation we solve the appropriate
set of equations, setting all historically estimated parameters to the values obtained with
the procedures of §5.4. For each solution method we obtain a simulated trading schedule

u
(i,k,a)
t , t = 1, . . . , T

where the superscript a indexes the solution methods. We then compute the slippage incurred
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by the schedule using (4)

S(i,k,a) =

∑T
t=1 p

(i,k)
t u

(i,k,a)
t − C(i,k)p

(i,k)
VWAP

C(i,k)p
(i,k)
VWAP

+
T∑
t=1

st
2

(
α

(u
(i,k,a)
t )

2

C(i,k)m
(i,k)
t

− u
(i,k,a)
t

C(i,k)

)
. (31)

Note that we are simulating the transaction costs. Measuring them directly would re-
quire to actually execute u

(i,k,a)
t . This test of transaction costs optimization has value as a

comparison between the static solution (16) and the dynamic solution (29). Our transaction
costs model (2) is similar to the ones of other works in the literature (e.g., [FW13]) but in-
volves the market volumes mt. The static solution only uses the market volumes distribution
known before the market opens, while the dynamic solution uses the SHDP procedure to
incorporate real time information and improve modeling of market volumes. In the following
we show that the dynamic solution achieves lower transaction costs than the static solution,
such gains are due to the better handlng of information on market volumes.

In practice a broker would use a different model of transaction costs, perhaps more
complicated than ours. We think that a good model should incorporate the market volumes
mt as a key variable [BFL09]. Our test thus suggests that also in that setting the dynamic
solution would perform better than the static solution.

We show in Figure 5 the result of the simulation on a sample market day, using the static
solution (16) and the dynamic solution (29) for λ = 0 and ∞. We also plot the market

volumes m
(i,k)
t .

5.6 Aggregate results

We report the aggregate results from the simulation of VWAP execution on all the days
reserved for orders simulation (minus the ones used for cross-validation). For any day i =
W +WCV + 1, . . . , N , stock k = 1, . . . , K, and solution method a (either the static solution
(16) or the dynamic solution (29) for various values of λ) we obtain the simulated slippage
S(i,k,a) using (31). Then, for each solution method a we define the empirical expected value
of S as

E[S(a)] =

∑N
i=W+WCV +1

∑K
k=1 S

(i,k,a)

(N −W −WCV )K

and the empirical variance

var(S(a)) =

∑N
i=W+WCV +1

∑K
k=1 (S(i,k,a))

2 − E[S(a)]2

(N −W −WCV )K − 1
.

In Figure 6 we show the values of these on a risk-reward plot. (We show the square root of
the variance for simplicity, so that both axes are expressed in basis points). We observe that
the dynamic solution improves over the static solution on both VWAP tracking (variance
of S) and transaction costs (expected value of S), and we can select between the different
behaviors by choosing different values of λ.
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Dynamic solution, λ=∞
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Market volumes

Figure 5: Simulation of order execution on a sample market day. We report all
volume processes as cumulative fraction of their total. At every time τ we plot∑τ

t=1
mt
V for the market volumes mt and

∑τ
t=1

ut
C for the various solutions ut. We

only show the dynamic solution for λ = 0 and λ =∞ since for all other values of λ
the solution falls in between.

We introduced in §2.2 the approximation that the value of (10) is negligible when com-
pared to (9). The empirical results validate this. For the static solution the empirical average
value of (9) is 4.45e− 07 while (10) is 6.34e− 09, about 1%. For the dynamic solution with
λ = ∞ the average value of (10) is 3.60e − 07 and (9) is 1.92e − 08, about 5%. For the
dynamic solution with λ = 0 instead the average value of (10) is 4.76e − 07 and (9) is
5.50e − 09, about 1%. The dynamic solutions for other values of λ sit in between. Thus
the approximation is generally valid, becoming less tight for high values of λ. In fact in
Figure 6 we see that the empirical variance of S for the dynamic solution with λ = ∞ is
somewhat larger than the one with λ = 10000, probably because of the contribution of (9).
(We can interpret this as a bias-variance tradeoff since by going from λ = ∞ to λ = 10000
we effectively introduce a regularization of the solution.)

6 Conclusions

We studied the problem of optimal execution under VWAP benchmark and developed two
broad families of solutions.

The static solution of §3, although derived with similar assumptions to the classic [Kon02],
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Figure 6: Risk-reward plot of the aggregate results of our simulations on real mar-
ket data. Each dot represents one solution method, either the static solution (16) or
the dynamic solution (29) with risk-aversion parameters λ = 0, 1, 10, 100, 1000,∞.
We show the sample average of the simulated slippages, which represents the exe-
cution costs, and the sample standard deviation, i.e., the root mean square error
(RMSE) of tracking the VWAP. The orders have size equal to 1% of the expected
daily volume. The dynamic solution improves over the static solution in both dimen-
sions, we can choose the preferred behaviour by fixing the risk-aversion parameter
λ.

is more flexible and can accommodate more sophisticated models (of bid-ask spread and
volume) than the comparable static solutions in the literature. By formulating the problem
as a quadratic program it is easy to add other convex constraints (see [MS12] for a good list)
with a guaranteed straightforward fast solution [BV09].

The dynamic solution of §4 is the biggest contribution of this work. One one side, we
manipulate the problem to fit it into the standard formalism of linear-quadratic stochastic
control. On the other, we model the uncertainty on the total market volume (which is
eschewed in all similar works we found in the literature) in a principled way, building on a
recent result in optimal control [SBZ10].

The empirical tests of §5 are based on simulations with real data designed with good
statistical practices (the rolling testing of §5.3 ensures that all results are obtained out-
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of-sample). We compare the performance of the static solution, standard in the trading
industry, to our dynamic solution. The dynamic solution is built around a model for the
joint distribution of market volumes, we provide a simple one in §5.2 (along with ad hoc
procedures to use it). This is supposed to be a proof-of-concept since in practice a broker
would have a more sophisticated market volume model, which would further improve per-
formance of the dynamic solution. Even with our model for market volumes our dynamic
solution improves the performance of the static solution significantly. The result validates
all the approximations involved in the derivation of the dynamic solution and thus shows its
value.

Our simulations quantify the improvements of our dynamic solution over the standard
static solution. On one side we can reduce the RMSE of VWAP tracking by 10%. This is
highly significant and could improve with a more sophisticated market volume model. On
the other we can lower the execution costs by around 25%. In our test this corresponds to
∼ 50$ of savings for an order of a million dollars (the VWAP executions are worth billions
of dollars each day).
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Appendices

A Dynamic programming equations

A.1 Riccati equations for LQSC

We derive the recursive formulas for (19) and (20). We know the final condition

vT+1(xT+1) = gT+1(xT+1),

so DT+1 = QT+1, dT+1 = dT+1, and bT+1 = 0. Now for the inductive step, assume vt+1(xt+1)
is in the form of (20) with known Dt+1, dt+1, and bt+1. Then the optimal action at time t is,
according to (18),

ut = argmin
u

E[gt(xt, u, wt) + vt+1(At(wt)xt +Bt(wt)u+ ct(wt))] = Ktxt + lt,

with

Kt = − E[Bt(wt)
TDt+1At(wt)]

(ERt(wt) + E[Bt(wt)TDt+1Bt(wt)]

lt = −
E rt + 2 E[Bt(wt)

TDt+1c(wt)] + dTt+1 EBt(wt)

2(ERt(wt) + E[Bt(wt)TDt+1Bt(wt)]
.

It follows that the value function at time t is also in the form of (20), and it has value

vt(xt) = E [gt(xt, Ktxt + lt, wt) + vt+1(At(wt)xt +Bt(wt)(Ktxt + lt) + ct(wt))] =

xTt Dtxt + dTt xt + bt

with

Dt = EQt(wt) +KT
t E

[
Rt(wt) +Bt(wt)

TDt+1Bt(wt)
]
Kt +

E[At(wt)
TDt+1At(wt)] +KT

t E[Bt(wt)
TDt+1At(wt)] +

E[At(wt)
TDt+1Bt(wt)]Kt

dt = E qt(wt) +KT
t E rt(wt) + 2 EKT

t Rt(wt)lt +

E[At(wt) +Bt(wt)Kt)
T (dt+1 + 2Dt+1(Bt(wt)lt + E c(wt))]

bt = bt+1 + ERt(wt)l
2
t + E rt(wt)lt +

E[(Bt(wt)lt + c(wt))
TDt+1 + dTt+1)(Bt(wt)lt + c(wt))].

We thus completed the induction step, and so the value function is quadratic and the policy
affine at every time step t = 1, . . . , T . The recursion can be solved as long as we know the
functional form of the problem parameters and the distribution of the disturbances wt.
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A.2 SHDP Solution

We derive the recursive formulas for (27) and (28). These are equivalent to the Riccati
equations we derived in Appendix A.1, but the expected values are taken over the marginal
conditional densities f̂wτ |t(·). We write Et to denote such expectation. In addition, these
equations are somewhat simpler since our problem has At(wt) = I, Bt(wt) = e1, qt = 0, and
rt(wt) = rt for t = 1, . . . , T . The final conditions are fixed by (25)

DT |t = E
t
QT (wT ) + e1 E

t
RT (wT )eT1

dT |t = −rT eT1 − 2C E
t
RT (wT )eT1 ,

bT |t = rTC.

And the recursive equations are

Kτ |t = −
eT1Dτ+1|t

EtRτ (wτ ) + eT1Dτ+1e1

lτ |t = −
rτ + dTτ+1|te1 + 2eT1Dτ+1|t Et c(wτ )

2(EtRτ (wτ ) + eT1Dτ+1|te1)

Dτ |t = E
t
Qτ (wτ ) +KT

τ |t

(
E
t
[Rτ (wτ )] + eT1Dτ+1|te1

)
Kτ |t +

Dτ+1|t +KT
τ |te

T
1Dτ+1|t +Dτ+1|te1Kτ |t =

E
t
Qτ (wτ ) +Dτ+1|t +KT

τ |te
T
1Dτ+1|t

dτ |t = KT
τ |trτ + 2KT

τ |t E
t
Rτ (wτ )lτ |t +

(I + e1Kτ |t)
T (dτ+1|t + 2Dτ+1|t(e1lτ |t + E

t
c(wτ ))) =

dτ+1|t + 2Dτ+1|t(e1lτ |t + E
t
c(wτ ))

bτ |t = bτ+1|t + rτ lτ |t + E
t
Rτ (wτ )l

2
τ |t + E

t
[c(wτ )Dτ+1|tc(wτ )] +

dTτ+1|t(e1lτ |t + E
t
c(wτ )) + lτ |te

T
1Dτ+1|t(e1lτ |t + 2 E

t
c(wτ )) =

bτ+1|t + E
t
[c(wτ )Dτ+1|tc(wτ )] + dTτ+1|t E

t
c(wτ )

for τ = t, . . . , T − 1.

A.3 SHDP simplied solution (without value function)

Parts of the equations derived in Appendix A.2 are superfluous in case we are not interested
in the cost-to-go functions vτ |t(xt) for τ = t, . . . , T−1. (In fact, we only want to compute the
optimal action (29).) We disregard the constant term bτ |t, and we only compute the three
scalar elements that we need from Dτ |t and dτ |t. For any t = 1, . . . , T and τ = t, . . . , T − 1
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we define

et1Dτ |te1 ≡ βτ |t

et1Dτ |te2 = et2Dτ |te1 ≡ γτ |t

et1dτ |t ≡ δτ |t

where e1 = (1, 0) and e2 = (0, 1) are the unit vectors. The final values are

βT |t = λ
σ2
T

C2
+
αsT
2C

E
t
[1/mT ]

γT |t = −λσ
2
T

C
E
t
[1/V ]

δT |t =
sT
2C
− αsT E

t
[1/mT ].

The policy

Kτ |t = −
(βτ+1|t, γτ+1|t)

(αsτ/2C) Et[1/mτ ] + βτ+1|t

lτ |t = −
−sτ/(2C) + δτ+1|t + 2γτ+1|t Etmτ

2((αsτ/2C) Et[1/mτ ] + βτ+1|t)
.

We restrict the Riccati equations to these three scalars. They are independent from the rest
of the recursion and we obtain

βτ |t = λ
σ2
τ

C2
−

β2
τ+1|t

(αsτ/2C) Et[1/mτ ] + βτ+1|t
+ βτ+1|t =

λ
σ2
τ

C2
+

(αsτ/2C) Et[1/mτ ]βτ+1|t

(αsτ/2C) Et[1/mτ ] + βτ+1|t

γτ |t = −λσ
2
τ

C
E
t

[1/V ]−
βτ+1|tγτ+1|t

(αsτ/2C) Et[1/mτ ] + βτ+1|t
+ γτ+1|t =

−λσ
2
τ

C
E
t

[1/V ] +
(αsτ/2C) Et[1/mτ ]γτ+1|t

(αsτ/2C) Et[1/mτ ] + βτ+1|t

δτ |t = δτ+1|t + 2βτ+1|tlτ |t + 2γτ+1|t E
t
mt.

A.3.1 Negligible spread

We study the case where st = 0 for all t = 1, . . . , T , equivalent to the limit λ → ∞. From
the equations above we get that for all t = 1, . . . , T and τ = t, . . . , T

βτ |t = λ
σ2
τ

C2

γτ |t = −λσ
2
τ

C
E
t
[1/V ]

δτ |t = 0.
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So for every t = 1, . . . , T

µt|t(xt) = Kt|txt + lt =
−(βτ+1|t, γτ+1|t)xt − Etmtγτ+1|t

βt+1|t
=

C E
t

[1/V ]

(
t−1∑
τ=1

mτ + E
t
mt

)
−

t−1∑
τ=1

uτ .

In other words, at every point in time we look at the difference between the fraction of order
volume we have executed and the fraction of daily volume the market has traded (using our
most recent estimate of the total volume). We trade the expected fraction for next period
C Et [1/V ] Etmt, plus this difference.

B Volume model

We explain here the details of the volume model (30), which we use for the dynamic VWAP
solution. In §B.1 we describe the ad hoc procedure we use to estimate the parameters of the
model on historical data. Then in §B.2 we detail the cross-validation of a particular feature
of the model. Finally in §B.3 we derive formulas for the expected values of some functions
of the volume, which we need for the solution (29).

B.1 Estimation on historical data

We consider estimation of the volume model parameters b(k), µ and Σ using data from days
i−W, . . . , i− 1 (we are solving the problem at day i). We append the superscript (i, k) to
any quantity that refers to market day i and stock k.

Estimation of bk We first estimate the value of b(k) for each stock k, as:

b̂(k) =

∑i−1
j=i−W

∑T
t=1 logm

(j,k)
t

TW

We show in Table 1 the values of b̂(k) obtained on the first W days of our dataset.

Estimation of µ Since each observation logm(j,k)− 1b(j,k) is distributed as a multivariate
Gaussian we use this empirical mean as estimator of µ:

µ̂t =

∑i−1
j=i−W

∑K
k=1 logm

(j,k)
t − b̂(k)

WK
.

We plot in Figure (7) the value of µ̂ obtained on the first W days of our dataset.
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Stock b̂(k) Stock b̂(k)

AA 4.338 JPM 4.599
AXP 3.910 KO 4.312

BA 3.845 MCD 4.017
BAC 5.309 MMM 3.701
CAT 4.118 MRK 4.176

CSCO 4.693 MSFT 4.848
CVX 3.986 PFE 4.586

DD 3.990 PG 4.088
DIS 4.055 T 4.566
GE 4.784 TRV 3.546
HD 4.139 UNH 3.902

HPQ 4.577 UTX 3.782
IBM 3.788 VZ 4.225

INTC 4.860 WMT 3.992
JNJ 4.244 XOM 4.260

Table 1: Empirical estimate b̂(k) of the per-stock component of the volume model,
using data from the first W = 20 days.

Estimation of Σ We finally turn to the estimation of the covariance matrix Σ ∈ ST++, us-
ing historical data. In general, empirical estimation of covariance matrices is a complicated
problem. Typically one has not access to enough data to avoid overfitting (a covariance
matrix has O(N2) degrees of freedom, where N is the dimension of a sample). Many ap-
proximate approaches have been developed in the econometrics and statistics literature. We
designed an ad hoc procedure, inspired by works such as [FLM11]. We look for a matrix of
the form

Σ = ffT + S,

where f ∈ RT and S ∈ ST++ is sparse. We first build the empirical covariance matrix. Let

X ∈ RT×(WK) be the matrix whose columns are vectors of the form:

logm(j,k) − 1b̂(k) − µ̂

for each day j = i −W, . . . , i − 1 and stock k = 1, . . . , K. Then the empirical covariance
matrix is

Σ̂ =
1

WK − 1
XXT .

We perform the singular value decomposition of X

X = U · diag(s1, s2, . . . , sT ) · V T ,
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Figure 7: Empirical estimate µ̂ of the cross-time component of the volume model,
using data from the first W = 20 days.

where s ∈ RT , s1 ≥ s2 ≥ ... ≥ sT ≥ 0, U ∈ RT×T , and V ∈ R(WK)×T (because in practice
we have WK > T , since W = 20, K = 30, and T = 390). We have

Σ̂ =
1

WK − 1
U · diag(s21, s

2
2, . . . , s

2
T ) · UT .

We show in Figure 8 the first singular values s1, s2, . . . , s20 computed on data from the first
W days. It is clear that the first singular value is much larger than all the others. We
thus build the rank 1 approximation of the empirical covariance matrix by keeping the first
singular value and first (left) singular vector

f =
s1U:,1√
WK − 1

,

so that ffT is the best (in Frobenius norm) rank-1 approximation of Σ̂. We now need to
provide an approximation for the sparse part S of the covariance matrix. We assume that
S is a banded matrix of bandwidth b > 0, which is non-zero only on the main diagonal and
on b− 1 diagonals above and below it (in total it has 2b− 1 non-zero diagonals). The value
of b is chosen by cross-validation, as explained in §B.2. The assumption that S is banded is
inspired by the intuition that elements of logm(j,k) − 1b(k) − µ are correlated (in time) for
short delays. We find S by simply copying the diagonal elements of the empirical covariance
matrix:

·Si,j =

{
(Σ̂− ffT )i,j if |j − i| ≤ b

0 otherwise.
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Figure 8: First 20 singular values of the matrix X of observations logm(j,k) −
1b̂(k) − µ̂.

We thus have built a matrix of the form Σ = ffT + S. Note that this procedure does not
guarantee that Σ is positive definite. However in our empirical tests we always got positive
definite Σ for any b = 1, 2, . . ..

B.2 Cross validation

As explained in §B.1, we need to choose the value of the parameter b ∈ N (used for empirical
estimation of the covariance matrix Σ). We choose it by cross-validation, reserving the first
WCV = 10 testing days of the dataset. We show in Figure 2 the way we partition the data (so
that the empirical testing is performed out-of-sample with respect to the cross-validation).
We simulate trading according to the solution (29) with λ = ∞ (i.e., the special case of
Appendix A.3.1), for various values of b. We then compute the empirical variance of S,
and choose the value of b which minimizes it. (We are mostly interested in optimizing the
variance of S, rather than the transaction costs.) In Figure 9 we show the result of this
procedure (we show the standard deviations instead of variances, for simplicity), along with
the result using the static solution (16), for comparison. Since the difference in performance
between b = 3 and b = 5 is small (and we want to avoid overfitting), we choose b = 3.
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Figure 9: To cross validate the volume model parameter b, we compute the em-
pirical standard deviation of S for the dynamic solution (29) with λ =∞, changing
the value of b in the volume model. We also show the static solution (16), which
does not use the volume model, for comparison. From this result we choose b = 3
(to avoid overfitting).

B.3 Expected values of interest

We consider the problem at any fixed time t = 1, . . . , T−1, for a given stock k and day i. (We
have observed market volumes m1, . . . ,mt−1.) We obtain the conditional distribution of the

unobserved volumes mt, . . . ,mT and derive expressions for Etmτ , Et

[
1
mτ

]
, and Et

[
1
V

]
for

any τ = t, . . . , T . We need these for the numerical solution (29), as developed in Appendix
A.3.1.

Conditional distribution We divide the covariance matrix in blocks:

Σ =

(
Σ1:(t−1),1:(t−1) Σ1:(t−1),t:T

Σt:T,1:(t−1) Σt:T,t:T

)
.

Then we get the marginal distribution

mt:T ∼ logN (ν|t,Σ|t)

by taking the Schur complement (e.g., [BV09]) of the covariance matrix

ν|t ≡ µt:T + b(k) + ΣT
1:(t−1),t:TΣ−11:(t−1),1:(t−1)(logm1:(t−1) − µ1:(t−1) − b(k))

Σ|t ≡ Σt:T,t:T − ΣT
1:(t−1),t:TΣ−11:(t−1),1:(t−1)Σ1:(t−1),t:T .

Note that ν|1 = µ + b(k) and Σ|1 = Σ, i.e., the unconditional distribution of the market
volumes. We now develop the conditional expectation expressions.
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Volumes The expected value of the remaining volumes mτ

E
t
mτ = exp

(
(ν|t)τ−t+1 +

(Σ|t)τ−t+1,τ−t+1

2

)
, τ = t, . . . , T.

(Because the (τ − t+ 1)-th element of ν|t corresponds to the τ -th volume.)

Inverse volumes The expected value of the inverse of the remaining volumes mτ

E
t

[
1

mτ

]
= exp

(
−(ν|t)τ−t+1 +

(Σ|t)τ−t+1,τ−t+1

2

)
, τ = t, . . . , T.

Total volume We have, since we already observed m1, . . . ,mt−1

E
t
V =

t−1∑
τ=1

mτ +
T∑
τ=t

E
t
mτ .

We also express its variance, which we need later

var
t

(V ) = var
t

T∑
τ=t

mτ =
T∑
τ=t

T∑
τ ′=t

cov(mτ ,mτ ′) =

T∑
τ=t

T∑
τ ′=t

E
t
mτ E

t
mτ ′ (exp((Σ|t)τ−t+1,τ ′−t+1)− 1) .

Inverse total volume We use the following approximation, derived from the Taylor ex-
pansion formula. Consider a random variable z and a smooth function φ(·), then

Eφ(z) ' φ(E z) +
φ′′(E z)

2
var z.

So the inverse total volume

E
t

[
1

V

]
' 1

Et V
+

vart(V )

Et[V ]3
.
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