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Abstract— This paper describes a new adaptive algo-
rithm that smoothly and dynamically adjusts the system
resources of link rates and transmitter powers to maximize
the performance of the system. Performance is explicitly
measured from the point of view of traffic carried by
the network. Transmitter powers are subsumed in the
feasible rate region for the wireless network, and are not
directly involved in evaluating the network. A new adaptive
algorithm, DSM, is presented. DSM seeks optimal system
performance by greedily searching the rate region surface
seeking link rates that best meet QoS and user demand
needs and then calculates transmitter powers to support
these rates. If system requirements such as the number
of users or their QoS change, the DSM adapts by again
exploring the now changed rate region. Changes in the
wireless environment are addressed by the algorithm in a
similar fashion.

Index Terms— Power control, rate control, utility func-
tions, optimization and control, adaptation

I. INTRODUCTION

This paper describes a new adaptive algorithm that
smoothly and dynamically adjusts the system resources
of link rates and transmitter powers to maximize the
performance of the system. The approach is new; it seeks
link rates that best meet QoS and user demand needs
and then calculates transmitter powers to support these
rates. As the array of wireless services grows, wireless
networks will need to automatically adjust for changing
conditions. The network will need to smoothly adjust to
changes in types of traffic carried by the network, the
number and types of users, and changes in the wireless
environment. The system will need to adjust the network
resources of link rates and transmitter powers in response
to these changes. Ideally a network or cell site must also
allocate system capacity in such a way so as to maximize
the the system performance.

This paper describes a new adaptive algorithm that
smoothly and dynamically adjusts the system resources
of link rates and transmitter powers to maximize the
performance of the system. The approach is new; it
seeks link rates that best meet QoS and user demand
needs and then calculates transmitter powers to support
these rates. The algorithm continuously searches over
the set of feasible rates to find the optimal rates and

consequently adapts to changes in network conditions
such as the number or types of users on the system,
changing QoS constraints, or link rate requirements. Dif-
ferent measures of performance can be chosen. Protocol
based performance metrics, user utility functions, and
others can be combined and used with this approach.
Constraints on minimum link/user rates can be addressed
and satisfied if feasible.

II. SYSTEM MODEL

The wireless network has L links and S sources. Each
link l ∈ L uses a CDMA transmission scheme and
shares a common bandwidth. Each link transmits at rate
Rl, termed the link rate; this is the maximum rate at
which traffic can be carried over the link. Each source
s ∈ S sends packets to its sink by injecting them into
the network at rate rs, termed the transfer rate. Packets
traverse the network by travelling over a single link or
hop. The approach is extended to a multi-hop wireless
network in [1].

The wireless link rate is a function of the links Signal
to Interference ratio, SIR,

ρl =
Gllpl∑
i�=l Glipi

. (1)

where Gll represents The effective gain between the
transmitter and receiver on link l and includes the
multiplicative spreading gain Ks, antenna gain, coding
gain, and other gain factors. Likewise Glj represents the
effective gain from the interfering transmitter on link
j to the receiver on link l. The gain matrix G with
elements Gij is assumed to be positive in what follows.
The transmitter power on the lth link is denoted by pl.

Because noise is neglected in this model, the set
of powers can be arbitrarily scaled without effecting
ρl; That is, SIR is homogeneous of order zero in the
transmitter powers. By choosing to scale the sum to one,
1T p = 1, the pl can be interpreted as representing the
relative powers of the transmitters or equivalently the
percent of total power transmitted by the system. In most
systems ρl � 1 since it represents the effective SIR after
spreading gain, antenna gain, and coding gain.
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The link rate model is a simplification of an empir-
ically based model [2]. The relationship between link
rates and SIR is given as

Rl = lg(ρl) (2)

for a fixed bit error rate, BER. The terms Gll ∀l are
scaled by a positive constant to reflect the chosen BER.

To be feasible the traffic carried over a link must be
less than its link rate ∑

s∈θ(l)

rs ≤ Rl. (3)

where θ(l) is the set of sources s using link l. Combining
equations 2 and 1 yields

r ≤ R ⇔ pl ≥ erl

Gll

∑
j �=l Gljpj

⇔ p ≥ D(r)G̃p
(4)

where D
∆= diag

(
erl

Gll

)
and

G̃ij =
{

Gij , i �= j
0, i = j.

(5)

III. RATE-REGION

The rate-region is the set of feasible transfer rates r ∈
Rn

+ for the system. A transfer rate r ∈ Rn
+ is feasible if it

is possible for the system to simultaneously transfer data
over the network at the specified rates for some power
vector p. By considering all power allocations the set
of feasible transfer rates can be found. Analytically the
rate-region can be described as

R = {r ∈ Rn
+|r ≤ R(p) for some p}, (6)

where r ≤ R for two vectors means component-wise
inequality, i.e. rl ≤ Rl for all l.

The rate-region R is convex [3]. This is shown by
first defining the set of feasible transfer rate and power
pairs (r, p), demonstrating its convexity, and projecting
it onto the rate transfer space. The set of feasible transfer
rate and power pairs, M, is the set of (r, p) such that
rl ≤ log(ρl) for all links l. Analytically,

M = {(r, p) ∈ R2n
+ |rl ≤ log(ρl),∀l}

=
⋂

l{(r, p) ∈ R2n
+ |rl ≤ log(ρl)}

=
⋂

l Ml.
(7)

The Ml = {(r, p) ∈ R2n
+ |rl ≤ log(ρl)} are convex. This

can be seen by the change of variables xl = log pl and
rewriting the set qualifier as follows:

rl ≤ log(ρl) ⇔ e−rl ≥ ρ−1
l

⇔ e−rl ≥ ∑
j �=l Glje

xj G−1
ll e−xl

⇔ 1 ≥ ∑
j �=l Glje

xj G−1
ll e−xlerl

⇔ 0 ≥ log(
∑

j �=l Glje
xj G−1

ll e−xlerl).
(8)

It is known [4] that the function log(
∑

αle
yl), for

αl ∈ R+ and yl ∈ R, is convex in y. Sub-level
sets of convex functions always define convex sets, so
equation 8 defines a convex set in the variables log pl

and rl. Since the intersection of convex sets is convex
M must also be convex.

The rate-region R is a projection of M onto the
transfer rate space. Since linear projection conserves
convexity, the rate-region R must also be convex.

IV. PERFORMANCE

In this paper network performance is measured from
the point of view of the network’s input/output ports.
This is the performance as seen by packets traversing
the network, end to end network protocols such as TCP,
or users through their individual utility functions [5],
[6], [7]. Transmitter power p is not viewed as a direct
measure of system performance, but rather effects system
performance indirectly through link and transfer rates.

System performance is modelled by a performance
metric or utility function U The Utility function is
assumed to be a function of the transfer rates r, U =
U(r). By assumption, a higher data rate is valued at
least as much as a lower data rate, so U is a non-
decreasing function of r. Also, by assumption, there is a
diminishing return to additional transfer data rate, so U
is a concave function of r. The performance metric can
be expanded to directly include measures of routing for
multi-hop networks or to include individual transmitter
powers, although this is not done in this paper due to
space limitations.

The measure of system performance can be any
increasing concave function, but for simplicity it is
assumed to be the weighted sum of each users’ utility
function,

∑
αiUi(ri).

Because U is nondecreasing it can be shown that the
system’s best performance occurs on the surface of the
rate region. This can be seen by first assuming that
the best set of transfer rates are in the interior of the
region, and then noting that by moving to the surface of
the region, an r can be found that has equal or better
performance. The surface of the region is denoted by P .

V. PROBLEM STATEMENT

Formally, the problem is to find the best set of rates,
r, and powers, p, such that the system performance is
maximized.

maximize
∑

αsUs(rs)
subject to p = DGp

p > 0.
(9)

The constraint is the surface of the feasible rate region
and can be rewritten using Perron Frobenius theory [8]
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as
λpf(D(r)G̃) = 1, (10)

where λpf(D(r)G̃) is the Perron Frobenius eigenvalue
for the matrix DG.

VI. OPTIMALITY CRITERION

By Lagrange’s Theorem [9], at optimality

∇rU(Br) = K∇rλpf(D(r)G̃) (11)

where K is a constant of proportionality. In words,
the gradient vectors ∇U and ∇λpf must be parallel
at the optimal rates. The gradient to the rate surface
∇rλpf(D(r)G̃) is

N(r) = ∇λpf(D(r)G̃) = [q1p1, q2p2, . . . , qnpn]T ,
(12)

where p, the transmitter powers, is found to be the
right Perron Frobenius eigenvector. The left eigenvector
q models interference. It scales each link’s transmitter
power and can be thought of as the marginal effect of
interference on transmitter power and link rate.

VII. DSM ALGORITHM

The DSM algorithm proposed in this paper is intuitive;
it moves along the surface of the feasible rate region
until an optimal point is reached. If the system changes,
for example users are added to the network or the gain
matrix G fades, the algorithm again moves to a new
point that is optimal for this new demand on the system.
The direction of movement is determined by comparing
the vector normal to the rate region to a second vector
normal to the objective function. Optimality is achieved
when the two vectors are parallel. At such a point the
trade-offs of moving in one direction verses another
are identical based on the system performance measure.
If the system subsequently changes in some way and
the current operating point is no longer optimal the
algorithm adapts by again seeking on optimal operating
point. The transmitter powers are calculated from the
vector r using p = D(Ar)G̃p. An alternative is the
method proposed by G. Foschini and Z. Miljanic [10].

A. Feasible ascent direction

The Direct Step Method is shown in Figure 1 Let
N(r)⊥ =

{
r′|(r − r′)T N(r) = 0

}
be the hyper-plane

that is tangent to the rate region surface at rc. Since the
rate-region R is convex, N(r)⊥ is a supporting hyper-
plane and lies outside of R, except at the point rc. The
supporting hyper-plane N(r)⊥ is a good approximation
of P for small changes in r. For this reason a direction
δr is defined to be feasible if it lies along N(r)⊥, or
equivalently δrT N(r) = 0.

A small change δr is defined as an ascent direction if
U(r + αδr) increases for small α > 0. Thus, δr is an
ascent direction if and only if ∇U(r)T δr > 0. A point
that is both feasible and an ascent direction is termed a
feasible ascent direction.

B. DSM

The DSM algorithm is a two phase feasible ascent
method. In the predictor phase a small feasible change or
step δr is calculated. In the corrector phase this point is
corrected to lie along P . The method can be described as
a simple two step algorithm. Given the current operating
point rc(t)

Algorithm 1: DSM

• Calculate a feasible ascent direction δr and predict
a new operating point rp(t + 1) = rc(t) + βδr.

• Correct this estimate by scaling it onto P , rc(t +
1) = αrp(t + 1). Repeat.

End Algorithm
1) DSM: Predictor: The algorithm constructs a δr

from a measure of the sub-optimality of the system. The
error estimate is defined as

e =
(

N(r)
1T N(r)

− ∇U

1T∇U

)
(13)

and compares the normal to the rate region to the normal
to the performance metric. At optimality e = 0 and the
operating point r remains fixed.

Because U is concave and λpf is convex, a rate
change δrs causes the performance metric normal and
rate region normal to respond in opposite ways; an
increase δrds,s > 0 causes the sth component of ∇U

1T ∇U
to decrease and the comparable component of ∇λpf

to increase. Consequently, the decision to increase the
sth component of δrds can be made by comparing the
two normals. If ∇U

1T ∇U
is greater than ∇λpf , then the

associated rate should be increased. Specifically, for
small rate adjustments δrds should have the same sign
as −e. The DSM uses this information to find a δrds

that is an ascent direction but which is also feasible by
construction. Specifically,

δrds = −diag( 1
qlpl

, . . .)e (14)

Substituting e yields

δrds,s = −
(

1
qsps

)
(

N(r)
1T N(r)

− ∇U
1T ∇U

)
s
.

(15)

That δrds lies on the supporting hyper-plane can be
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1T ∇U

Fig. 1. DSM predictor phase. The optimality error e is used to predict
a change rates δr that improves ad-hoc network performance.

seen from

N(r)T δrds =
∑

qipi

(
ei

qipi

)
=

∑
ei

= 1T e
= 1T N(r) − 1T∇U/1T∇U
= 0

(16)

where it can be shown that by construction 1T N(r) = 1.

A new rate is calculated as rp(t+1) = rc(t)+βδrds,
where β << 1. This rate lies along the supporting hyper-
plane M(r)⊥, but, unless this is the optimal operating
point, is not on P .

2) DSM: Corrector: The estimated rate r(t + 1) is
corrected to lie on P using a scaling method. The scaling
method scales each element in the estimated rate vector
by a constant αa.

The scaling method multiplies each element in the
rate vector rp by a fixed scalar rc = αprp, αp > 0
to find a rate vector rc ∈ P . Increasing α increases
all rates rc = αrp, and in turn increases the elements
of D(rc)G̃. By the monotone property for the Perron
Frobenius eigenvalue, λpf(D(αrp)G̃) also increases and
is monotonic in α.This leads to a bisection algorithm to
find αp.

The bisection algorithm increases α linearly until
λpf(D(αrp)G̃) ≥ 1, so αp lies between zero and α.
Next λpf(D( 1

2αrp)G̃) is computed and compared with
one; if it is greater than one then αp ∈ [0, α/2] while if
it is less than one then αp ∈ [α/2, α]. If αp ∈ [α/2, α],
then λpf(D( 3

4α)G̃) is computed and compared with one
to again reduce the range containing αp by half. The
segment that αp lies in is reduced through repeated
bisections until αp is known to the desired number of
decimal points.
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Fig. 2. Performance with rate constraints.
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Fig. 3. Performance with a new user.

VIII. SIMULATION

This section uses the DSM to find optimal link rates,
transmitter powers and system performance measures as
the system adapts to changes in its operating require-
ments. Similar behavior can be shown for changes in
the wireless transmission environment such as Rayleigh
fading or log-normal shadowing.

Two different simulations are presented. In the first
simulation, the network seeks optimal performance sub-
ject to a rate floor for a particular link. This link might be
thought off as a voice only link that requires a minimum
data rate irrespective of the impact this might have on
other links. The second simulation explores the adaption
of the DSM with the introduction of a new user to the
system.

The model is of a 5 link single hop network. The
performance metric corresponds to the sum of individual
user utility functions and is given by

U(r) =
5∑

s=1

as log(rs) + ∆ log(rs − rth,s), (17)

where the first term in the sum is the utility associated
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with a given rate rs and the second term acts as a
barrier limiting this rate to rs > rth,s. For the utility
function, the natural log is used. The as are scale con-
stants associated with different users, and the constant
∆ 	 as ∀s. The barrier portion of the individual utility
functions is negligible for rs > rth,s but dominates for
rs ∼ rth,s, preventing the link rate from dropping below
the threshold. The scale factor ∆ = 0.0001. The DSM
algorithm is used with parameter β = .0001.

For the simulation, the gain matrix is

G =




144.1 0.217 0.311 0.068 0.617
0.469 83.0 0.307 0.125 0.269
0.537 0.053 120.5 0.166 0.221
0.563 0.229 0.954 144.3 0.713
0.511 0.167 0.131 0.136 108.2


 .

(18)
The initial conditions are

a = [ 0.1 1 3 5 7 ]T

rth = [ 2 0 0 0 0 ]T

p = [ 1 0.01 0.01 0.01 0.01 ]T
(19)

where a are the performance measure weights, rth the
threshold values, and p the initial link transmitter powers.
The value of a1 = 0.1 might be thought of as a user
whose evaluation of the performance of the system is
relatively unimportant. This might happen for pricing or
priority reasons.

Figure 2 depicts the first simulation. The four panels
show, in clock wise order, link transmitter powers, the
associated link rates, the total utility of the system, and
the performance of the system as seen by each of the
five sources.

During the first 1000 time periods the network evolves
from the arbitrary initial conditions and seeks the best
set of link rates and transmitter powers to maximize
system performance but subject to the constraint that the
first link has a minimum rate of 2, that is rth,1 = 2.
The initial rate on link 1 is in excess of the rate that
is optimal for the network; by reducing this rate other
links can increase their rates, improving overall network
performance. Consequently the DSM is shown reducing
the transmitter power of this link and increasing the
others. When the link rate on link 1 reaches 2, this trade-
off ceases and the system remains in rate equilibrium.

At time period 1001 the rate floor is removed. The
DSM adapts by further reducing the rate on link 1 and
increasing it on the remaining links. Overall system
performance and utility improves as intuition would
suggest.

In the second simulation the number of users changes.
This is shown in Figure 3. At time 1 a data source
leaves the system only to return at time 1001. The
system evolves from initial conditions similar to those of

equation 19 , but with all rate floors set to zero. As can be
seen, the DSM adapts to the departure of user 1 at time 0
by decreasing the rate and power on link 1 and increasing
power on other links to increase their link and transfer
rates. The weighting of the performance measures prior-
itizes the allocation of additional power at each step of
DSM’s evolution of the system. Performance improves
monotonically with this reallocation of resources. At
time 1001 the user returns to the network. The DSM
adapts to this change by incrementally increasing the
rate on this link until a new optimum is obtained. As this
rate is increased the SIR of the other links worsens, and
the algorithm reallocates the powers among these links
to maximize system performance. As can be seen in the
lower two panels, overall system performance improves
monotonically, but the performance of links 2-5 actually
decreases as the performance of user 1 increases. Rate
floors can be added to this formulation, reflecting more
realistic constraints on reallocating bandwidth among
users.

IX. SUMMARY

This paper presents a new approach to adaptively
manage the resources of link rate and transmitter power
in a wireless network. The algorithm smoothly moves
along the feasible rate surface in order to find the best set
of rates to meet the changing demands on the system, but
consistent with and QoS established for each user. The
associated powers are then found from Perron Frobenius
or several other power calculating algorithms.
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