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Measuring Volterra Kernels 
STEPHEN BOYD, Y. S. TANG, AND LEON 0. CHUA, FELLOW, IEEE 

Abstract-Volterra series have been in the engineering literature for 
some time now, and yet there have been few attempts to measure Volterra 
kernels. This paper discusses techniques for measuring the Volterra kernels 
of weakly nonlinear systems. We introduce a new quick method for 
measuring the second Volterra kernel which is analogous to pseudo-noise 
testing of a linear device. To illustrate the discussion we present an 
experimental example, an electro-acoustic transducer. Throughout the 
paper we emphasize the practical aspects of kernel measurement. 

I. INTRODUCTION:PURPOSEAND POINTOFVIEW 

V OLTERRA SERIES have appeared in the engineering 
literature for 40 years now. There have been many 

articles devoted to theoretical issues such as existence of 
Volterra series (e.g., [ l]-[3]) computation of Volterra kernels 
of special systems (composition, feedback configurations, 
nonlinear circuits; see [8]-[13]), the formal framework for 
Volterra series [l], [4]-[6]; we can say that the topic has a 
firm foundation. However, relatively few attempts have 
been made, outside the biological areas, to actually mea- 
sure Volterra kernels. 

This paper discusses practical techniques for measuring 
the Volterra kernels of a weakly nonlinear system (device, 
plant, network). By a weakly nonlinear system we mean no 
more than a system which is well described by its first few 
Volterra kernels; in particular the higher order kernels 
must fall off rapidly. We assume that the nonlinearities 
may be subtle (i.e., distortion products 40 dB or more 
down) and that the measurement noise is low (or that the 
necessary signal averaging has been done). Examples of 
such systems are some high quality transformers, electro- 
mechanical and electroacoustic transducers, simple com- 
munications systems; not included are, e.g., devices with 
dead zone, hard saturation, or hysteretic nonlinearities 
(even when these nonlinearities are subtle). While the prob- 
lems of kernel measurement in biology are quite different, 
involving stronger nonlinearities and very poor S/N ratios, 
much of the following is still relevant. 

Related work includes that of Narayanan and Meyer 
et al. [22]-[25] who have studied IM distortion in transistor 
circuits; Weiner and Spina [26] and others have done 
similar work for simple communications systems. In these 
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studies a model of a transistor or modulator is assumed 
and expressions derived for the various kernels; then cer- 
tain distortions such as 2f, - f2 are measured at a few 
frequencies and input levels and checked against the 
model’s predictions. Certain recent work by Ewen and 
Weiner [ 171 assumes a specific (but important) form for the 
Volterra kernels and gives methods to solve the resulting 
parameter identification problem. In contrast to these stud- 
ies we make no assumption about the form of the kernels. 
These measurements are thus useful in systems of such 
complexity that no simple model is obvious, and for model 
validation when one is. 

We have chosen frequency-domain Volterra kernels over 
time-domain Volterra kernels and Wiener kernels for two 
reasons. The first is that it is easier to accurately measure 
frequency-domain kernels than time-domain Volterra 
kernels when the nonlinearities are subtle. Second and 
more important, we are usually interested in frequency- 
domain Volterra kernels precisely because they have an 
intuitive interpretation: for example, H2( j,,, - jwz) is a 
measure of the second-order difference intermodulation of 
w, and ox. While a similar interpretation exists for time- 
domain Volterra kernels, no such simple interpretation can 
be given to the Wiener kernels, whose apparent advantages 
are types of convergence (L2 as opposed to local Taylor 
series; irrelevant to us) and “ease” of measurement with 
white noise [15], [18]-[20]. Concerning this last “ad- 
vantage”, we feel that in many applications the advent of 
microcomputers, D/A’s, and A/D’s has outmoded the use 
of white noise/correlation techniques. With only a few 
inexpensive components it is now possible to generate very 
complicated multitone signals with all distortion products 
near the noise floor, often 70 dB or more down. Signal 
processing too has gone far beyond Lee’s Laguerre lattice 
filter [7, p. 911. These practical considerations allow us to 
make a more direct attack on the measurement problem 
than was possible 25 years ago. 

The organization of the paper is as follows: Section II 
contains the preliminaries, Section III covers the two basic 
methods used to resolve the output into its homogeneous 
components, Section IV discusses the basic multitone 
method of measuring the kernels, Section V introduces a 
new quick method of measuring the second kernel, and 
Section VI describes a simple experimental example. 

With the exception of Section V, much of the material in 
this paper is known, though perhaps not in the form 
appearing here. We have tried to keep the exposition 
practical as opposed to theoretical. Where a statement or 
method may be true for, or generalizable to, arbitrary n, we 
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give it for a specific and practical n, e.g., two or three: 
most of the following can be formalized. 

II. PRELIMINARIES 

Under very general conditions a nonlinear causal time 
invariant operator N has a Volterra series 

y(t) = Nu(t) = y,, + y, + y, + . . . 

x(t)=/...Jh,(r,,72,...,~~)u(t-7,) 

.U(t-+’ U(t-T”)dT,dT2~-d7, 

where h, is a symmetric distribution supported on (R+)’ 
and is called the nth Volterra kernel of N. We will be 
concerned with those systems for which the truncation 
y, + . . . + y, is very close to y for the signals of interest; n 
is some small integer, say five or six.’ We refer to y, as the 
n th degree or order component of the output y and assume 
for simplicity that y,, = 0. The map u + y, is homogeneous 
of degree n, that ,is, (YU + a”~,. Each h, also determines a 
symmetric multilinear operator 

N,(u,,u,,-A)= /...Jh,(7,,72,...,~~)u,(t-7,) 

‘U*(t-+* un( t - T,) do, do,- . . d7, 

so that y, = N,,(u, u; . ., u). These multilinear operators 
can also be specified in terms of their Laplace transforms 

H,b,,~2,~~xz) 

= 
/ / 

. . . h,(t,,t2;..,t,)exp 

which are called the frequency-domain Volterra kernels. 
If u is a multitone, i.e., 

u(t) =1(t) 2 aiexp(Sit) 
i=l 

then as t + cc, y(t) + y,(t), where 

Ys&> = IE f * . . f ai,ai,. . . lxi, 
i, = I i2 = 1 i, = 1 

It will be important later to note that the n th-order compo- 
nent of y, is a sum of exponentials whose frequencies are 
sums of n input frequencies, negative frequencies included. 

References [l]-[4], [8]-[16], [26], and [27] cover this 
material in more detail. 

III. THEPROBLEMOFKERNELSEPARATION 

In general the output y due to u has components of all 
degrees, though in the systems we consider their amp!- 
tudes fall off quickly. One step in measuring the kernels, m 
the time or frequency domain, is to estimate the compo- 
nents y,; . a, of y. What we need is a stable method of 

estimating 

While N(cuu)(t) is in general an analytic function of LY, for 
the systems we consider it is close to a low-order poly- 
nomial in (Y, with coefficients y,. Thus the problem of 
estimating the different-order components is in practice one 
of estimating the coefficients of a noisy polynomial. There 
are many ways to do this, e.g., see [31]-[33] and the 
references therein. We will first describe the simplest, which 
we call the interpolation method. Consider the fact that y, 
is homogeneous of degree n. Thus if our input is reduced 6 
dB, y, falls 6 dB, y, falls 12 dB and so on; if - u is applied, 
the odd-degree components change sign while the even 
ones do not. Suppose we assume that components of 
degree five and higher are negligible, i.e., buried in the 
measurement/quantization noise. Let us apply the signals 
qu(t) to the device and call the resulting responses ri(t), 
where (Y~, i = 1; . a, 4 are some wisely chosen nonzero dis- 
tinct constants. Then we have 

Yl 

Y2 + 
Y3 

Y4- 

e1 

e2 

e3 

e4 

where the ei contain measurement noise and terms of 
degree five and higher. The matrix A above is a Vander- 
monde matrix, and is invertible since the (Y~ are distinct and 
nonzero. Approximating e = 0 and solving this equation 
(for each time or frequency sample point) gives us an 
estimate of the components y, in terms of the measure- 
ments r;.,’ This is just a simple polynomial interpolation 
and is mentioned in Simpson and Power [20, p. 3181 and 
Halme [6, p. 291. 

In the frequency domain the (Y~ may be complex and 
vary with frequency.3 Thus the response of a device to a 
signal passed through various all-pass filters could be used 
to resolve the output into its homogeneous components. 
Sometimes we know a priori that only certain yi appear; the 
other y,‘s may then be dropped from the y vector and the 
corresponding columns from the A matrix. For example, if 
we know only even-order responses occur, the equations 
above can be replaced with a two-by-two system involving 
just y, and y4. This is of course equivalent to interpolating 
with an even polynomial. 

The (Y~ must be chosen carefully. Choosing the (Y~ > 1 has 
the advantage of keeping ]]A-‘]] small, so the error in our 
resulting estimates is small. The disadvantage is that to 
estimate the components at some reference level we apply a 
larger signal, perhaps overloading the device (that is, oper- 
ating the device where it is not weakly nonlinear in our 

‘We should point out that the inverse of this matrix can be explicitly 
found and that there are stable and fast ways to solve these equations: see, 
e.g., [29]. 

‘Some of Victor’s (biological) experiments can be interpreted as the 
interoolation method with comulex a.: see. e.g., 1281. ,, ,-. 

‘We are deliberately vague about what “close” and “signals of interest” 
mean exactly. 
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strict sense). The (Y~ should alternate in sign and not be too 
.close, to keep IJ A - ’ 11 small. 

But even with careful choice of the CX~, the interpolation 
method is in general sensitive to measurement error. TO see 
this, consider estimating y, and y2 with (Y, = 1, (Ye = - 1. We 
average r, and r2 to get y2, and since r, is very nearly - r, 
(y2 is generally much smaller than y,) we have committed 
the cardinal sin of subtracting nearly equal quantities. Of 
course this example is oversimplified, but it conveys the 
basic idea. A more formal explanation is that the absolute 
error in y is bounded by /IA-‘ell, but the magnitudes of 
Yz, Y3, . . . are generally much smaller than y, so the rela- 
tive error in these entries may be huge. Resealing the 
equations, perhaps using y,, lOy,, 100~~ . . . instead of 
Y,?Y,... simply makes A - ’ blow up. 

One improvement is to take additional measurements 
and use the least squares solution of the resulting overde- 
termined equations as our estimate of y. This is the method 
we used, and although it is an improvement over the 
simplest interpolation method, it still gives poor estimates 
of the higher order components: estimating the rapidly 
decreasing coefficients of a noisy polynomial is inherently 
difficult. What we can say is this: we can get a good 
estimate of the first coefficient appearing, a poorer esti- 
mate of the next, and a very poor estimate of the small 
high-order coefficients. The frequency separation technique 
we discuss below is based on this observation. It arranges 
for the component we need to estimate at some frequency 
to be the first component appearing at that frequency. 

For time-domain kernel measurement or when the input 
u is fixed, we may have no alternative. But in other cases, 
clever selection of the probing signal u can greatly improve 
our estimates. The frequency separation technique relies on 
the fact that the (steady-state) n th-order response to a 
multitone signal only occurs at specific frequencies, sums 
of n input frequencies. We assume that the input has the 
form 

u(t) = 2Re f b,exp(jwmt) 
m=l 

and that the steady-state output spectrum P(kw) is mea- 
sured; for notational convenience we will assume w = 1 and 
drop the qualifier “steady-state” in the following. The 
simplest and oldest use of frequency separation is as fol- 
lows: suppose the input frequencies are all odd (i.e., b, = 0 
for k even); then the odd- and even-order responses occur 
at odd- and even-order frequencies, respectively. To isolate 
a second-order response at some even frequency we need 
only remove the 4th-, 6th-, etc., order responses, that is, 
estimate the x2 coefficient of an even polynomial. We 
could use the interpolation method, modifying the matrix 
and y, but the estimate will be very accurate since the 
second-order response we seek is not swamped by a larger 
first-order response; it is the first large response occurring 
at that frequency. Moreover, by applying the signal at 
three levels we can approximately remove the effects of the 
components through degree six, as opposed to degree three 
for the general case. This trick is widely known, the re- 

quirement is simply that the input signal be odd, i.e., have 
the inverse repeat property as it is sometimes called. In the 
next section we’ll see very robust methods for measuring 
even high-order kernels using frequency separation. 

It should be mentioned that complete separation of the 
components of different order by frequency separation is 
impossible. For whenever w is an n th-order response 
frequency, it is also an n + 2, n +4, . . ’ order response 
frequency, at least. 

IV. THE MULTITONE METHOD (“HARMONIC 
PROBING”) 

In this section we discuss the actual measurement of the 
kernels. Suppose we apply a two-tone signal u(t) = 
cos(n,t)+cos(n,t), n, > n2 > 0. Then P(n, + n2) = 
H2( jn ,, -t- jn,)+ terms of order 4,6, . . . and for certain 
values of n , and n2, additional terms of order 3,5, * * . . 
Applying the signal at two or three levels and using the 
interpolation method to estimate the second-degree compo- 
nent of g(n, + n2) yields an accurate measurement of 
H2W,, jn2) and H2(h,, - jn,). At the same time we can 
measure H2( jn,, jn ,) and H2( jn,, jn,) but these are of 
less interest since they always lie on the line w, = w2. We 
simply repeat this procedure until a sufficient number of 
points have been measured. 

A variant of this method can be used to measure the 
third- and higher order kernels. Suppose a three-tone signal 
is applied. Third-degree responses occur at up to 22 differ- 
ent (positive) frequencies, three of which are the input 
frequencies n , , n 2, n 3. 4 If we choose integer triplets such 
that the full 22 frequencies appear (the “general” triplet 
has this property), estimation of y3 yields a good estimate 
of 19 points of H3. The four points H3(jn,, k jn2, f jn,) 
are of more importance than the remaining 15 which lie on 
planes where two frequencies are equal. Note that 12 
points of H2 can be measured from the same experiment. 

V. A NEW METHOD 

Unfortunately, measuring kernels by the multitone 
method can be quite slow. For example, to measure H2 at 
only 100 points (relatively few) requires at least 100 experi- 
ments, each experiment consisting of generation of a sig- 
nal, waiting for steady-state, sampling the output, and then 
computation (FFT, kernel separation). One may have to 
wait through half of these before deciding the input level is 
too low or high or that another frequency range might be 
more interesting. We’ve developed a method for, getting a 
quick estimate of the second kernel. We use this method to 
make decisions about input level, frequency range, etc., 
before using the slower but more robust multitone method. 

It is perhaps surprising that many points of H2( jw , , jo,) 
can be simultaneously measured since methods for simulta- 
neously measuring many points of H( jw) for a linear 

4They are: 
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device (pseudonoise, impulse testing) rely very heavily on 
linearity. The idea is simple: arrange the second-order IM 
tones to lie on distinct frequencies which do not include 
the input frequencies. 

We start with two relatively prime integers p and q, q 
odd. The probing signal will have two parts: one with 
frequencies p, 2p,. . . ,p( q - 1)/2 and the other with fre- 
quencies q, 2q,. . . , q( p - 1). We claim that the part 
one-part two intermodulation tones are distinct. These IM 
tones occur at frequencies np + mq, 0 -c In I < (q - 1)/2, 
0 -C m < p - 1; the input tones are precisely the n = 0 or 
m = 0 cases. Suppose that tip + i?iq = np + mq, where 0 d A, 
n < (q - 1)/2 and 0 G m, m G p - 1. Taking residues mod q, 
we have 3 = n[ q], and thus % = n considering the inequality 
in E, n above. Hence #? = m as well. This shows that the 
part one-part two IM tones are distinct and do not include 
any input frequencies. They also do not include any part 
one(two)-part one(two) intermodulation tones since these 
are all 0 modp (modq); here we use the inequality in 
E, m.5 The conclusion is that at the part one-part two IM 
frequencies, there is no first-order component and only one 
second-order contribution. Let us take p = 7, q = 5 as an 
example. We make a table as follows: 

14 19 24 29 34 39 44 
7 12 17 22 27 32 37 
0 5 10 15 20 25 30 

-7 2 3 8 13 18 23 
- 14 9 4 1 6 11 16 

The left column and center row (in bold) are input fre- 
quencies; the other entries are the part one-part two IM 
frequencies and it is easily checked that at these frequen- 
cies there is no first-order and just one second-order contri- 
bution. 

A quick estimate of H2 is now easy: we apply this 
multitone signal u at, say, six different levels and use a 
least squares interpolation to estimate g2. Almost every 
entry of g2 gives us a value of H2: in our example above 
q2(8) = H2( 15 j, - 7j)& where cx and /3 are the complex 
amplitudes at 15 and 7 in u. This should be compared to 
the multitone method where only two or four of the entries 
of jr2 are used and in fact the efficiency of using the FFT is 
questionable. 

The distribution of points at which we estimate H2 is 
interesting. We measure H2 at the points in the uniform 
grid as in the table above, but recall that H2 has two 
symmetries: it is symmetric and H,( jw,, jw,) = 
H2(- .k - jo,). The region ]w2] < w, is a “fundamental 
region” for H2, that is a minimal region which determines 
H2 everywhere, and in it the distribution is shown in Fig. 1 
forp=13,q=ll. 

Several comments are in order concerning this quick 
method. First, repeated quick-method tests with different 
p’s or q’s yield estimates of new points.. For example, one 

*We could add more tones to the second part and simply ignore every 
p th column, since these frequencies may have part one-part one contri- 
butions. 

+75 

Points Measured by 11-13 Quick Test 

. l l l i l 

l . l . l t 

- 75 \ 
8 -fl- 151 

Fig. 1. Distribution of points measured by the 13-11 quick test (de- 
scribed in Section V) in the region If2 ) < f, 

test may estimate at 200 points; the next test at 200 new 
points yielding 400 points altogether; there are no redun- 
dant estimates. The second comment concerns the choice 
of the complex amplitudes of the frequencies in the prob- 
ing signal. While it is tempting to make them all one, 
this is the worst choice possible. This results in 
sin(ON/2)/sin(0/2) type signals with very high crest 
factors; the signals spend most of their time down where 
the quantization step is significant. For a given peak level 
(to keep from clipping the device, perhaps) the amplitudes 
are small, and the second-order distortions we are trying to 
measure are extremely small (i.e., small squared). To avoid 
these problems we simply let an optimization routine ad- 
just the phases to minimize the peak (see [30]). The practi- 
cal result of this is to pack as much probing signal ( L2) as 
possible into a given peak.6 For signals with frequencies 
f,Zf,*. . ,Kf near optimal phases are S, = ( ,rrk2)/( K + 1); 
our optimization routine used these as starting points. For 
the quick tests we used (7 -C p, q < 19), we .were able to 
reduce the peak by more than 10 dB and thus realize a 
20-dB gain in measurement sensitivity. This is not far from 
the bound peak > JK/2 for a K tone unit amplitude 
signal. To illustrate this, Fig. 2 shows two 7-5 quick test 
signals: the first (darker) with optimized phases and a peak 
of about 4, the second with all phases zero and a peak of 8. 
In this case the peak has only been reduced about 6 dB 
(representing a 12-dB gain in second kernel measurement 
sensitivity), but in more realistic cases the improvement is 
greater. We have now arrived at probing signals which at 
first glance resemble the white noise we complained about 
in Section I, but we hope the reader will appreciate the 
difference. 

VI. AN EXAMPLE 

In this section we briefly describe our test setup and 
illustrate some of the above with an example. We used a 

61ncidently we first used the quick method with all the amplitudes one 
and it really was not that bad. 
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1: sig(x,thetal 
21 sig(zrro,thrtr) 

4 --..“._. 

theta 

-2.8 8.0 2.0 

Fig. 2. Two unit amplitude signals for the 7-5 quick test: the first 
(darker) is with nearly optimal phases, the second is with zero phases. 
The peak in the optimized signal has been reduced about 6 dB below 
that of the zero-phases signal, giving a second kernel measurement 
sensitivity gain of about 12 dB. For more realistic quick tests, e.g., 
13- 11, the improvement is more drastic. 

-2.3880+1 -, 
i 

-5 . eeew i 

Fig. 3. ) H2(f,, h)l for reference device # 1. The reference level is 1 
V- ‘. f, and fz are actually shifted slightly so that none of f,, f2, f, + 
f2, f, - fz is zero. 

small 8085 based microcomputer to generate the probing 
and trigger signals and do all computation except the FFT; 
an HP3582A spectrum analyzer collected and transformed 
the responses. We built several reference nonlinear devices 
with known kernels like 

H,, = 0, n>2 so = 2~350 IviA <1 v 

and used them to check the algorithms above. Note that 
the distortion is at most 1 percent, i.e., at least 40 dB under 
y,. The values of H2 measured by the multitone and quick 
methods were within 2 and 7 percent, respectively, of the 
predicted values. Fig. 3 shows the magnitude of H2 mea- 
sured by the multitone method; it is indistinguishable from 
the graphs based on either the quick test measurement or 
the expression above. 

The example we give is an electro-acoustic transducer, a 
JBL 2441 compression driver on a Northwest Sound 90 

degree radial horn, measured 0.5 m on axis. We chose this 
example because it has no simple model7 and as far as we 
know these measurements have never been made before. 
To illustrate frequency separation and the fact that N(U) 
is indeed close to a low-order (even) polynomial in (Y, Fig. 4 
shows the real part of the output at SOO-Hz versus the 
input amplitude of a 400-Hz signal. The interpolation 
method correctly estimates a large second-order, small 
fourth-order, and nearly zero first- and third-order compo- 
nents at 800 Hz. A plot-like Fig. 4 can warn us that a 
device is not well described by its first few Volterra kernels 
if it is not close to a low-order polynomial. 

Figs. 5 and 6 show typical input and output spectra for 
this transducer during a 13-11 quick test. In Fig. 6 one can 
see clearly the large first-order responses at the input 
frequencies and the smaller higher order responses. The 

‘An accurate model would involve at least: nonlinear flux-coil linkage, 
nonlinear support compliance, and thermodynamic nonlinearity (called 
throat distortion, distributed!). 
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-8.0 0.8 

-68 

Fig. 4. Real output at 800 Hz versus amplitude of 400-Hz input signal 
for example of Section VI, JBL 2441 compression driver on Northwest 
Sound radial horn, 0.5 m on axis. 

u(f) (dbV1 

Fig. 5. Typical input spectrum for 13- 1 I quick test. 

e 
‘f(f) (db r. 2BPal 

( ( 
! / ( I 

! ( 
L 
i- 

! , ! 

Fig. 6. Typical output spectrum for 13-l 1 quick test, JBL 2441 driver 
on Northwest Sound horn, 0.5 m on axis. 

;H2(tt,a):(db) 

-3.790.+1 
-4 .eee**i 

-5 .eeee+i 

-I .aee.*3 
fl II421 

C2CHz) 

Fig. 7. IHz(f,,h)l for transducer example in Section VI, JBL 2441 
compresston driver on Northwest Sound radial horn, 0.5 m on axis. The 
reference level is 2OPa V-*. fa = 0 values are not measured by the 
quick test and are interpolated. The “trough” along f, + fi = 0 repre- 
sents a linear high-pass filter following a nonlinear operator. 
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responses on the right which are about 8 dB higher are 
mostly second-order part II-part II intermodulation. Mea- 
surements of the second kernel of the transducer by the 
quick method and the two-tone method agreed within 5 
percent. Fig. 7 shows the magnitude of the second kernel 
measured by the quick method. The peak distortion here is 
only 2 percent. Some features are recognizable, for exam- 
ple, the “ trough” along the line f, + f2 = 0 suggests a linear 
high-pass filter (horn cutoff) following a nonlinear opera- 
tor. 
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