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Generalized Access Control Strategies for
Integrated Services Token Passing Systems
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Abstract—The demand for integrated services local area net-
works is increasing at a rapid pace with the advent of many
new and exciting applications: office and factory automation, dis-
tributed computing, and multimedia communications. To support
these new applications, it is imperative to integrate traffic with
diverse statistical characteristics and differing delay requirements
on the same network. An attractive approach for integrating
traffic has been adopted in two token passing local area network
standards, the IEEE 802.4 token bus standard [1] and FDDI [2].
The idea is to control the transmissions of each station based
on a distributed timing algorithm, so as to achieve the following
goals: (i) to limit the token cycles so that time-critical traffic can
be accommodated, and (ii) to allocate pre-specified bandwidths
to different stations when the network is overloaded. We have
investigated the analysis and design of this protocol in [3]. In
this paper, we generalize the transmission control algorithm
used in [1]-[2]. The major advantages of the generalization
over the original protocol are: (i) it provides a much expanded
design space, (ii) it guarantees convergent behavior, and (iii) it
gives meaningful insights into the dynamics of the basic control
algorithm.

I. INTRODUCTION

With many new emerging network applications, it becomes
increasingly important to support diverse traffic types (e.g.,
traffic with time constraints and/or bandwidth constraints) on
the same network. Recently, two major token passing local
area network standards, the IEEE 802.4 token bus standard [1]
and FDDI [2], have adopted the same approach to integrate
different traffic types. This approach is based on a dynamic,
distributed transmission control algorithm using timers. In the
following paragraphs, a generic description of the algorithm
is given.

Under normal operations of a token network with no inser-
tion or deletion of stations, NV stations (indexed from 1 to N)
access the channel in a cyclic order (1,2,...,N,1,2,...). The
activity on the channel can be depicted in Fig. 1. Tl-(k), known
as the service time, denotes the transmission time of station 4
at the kP token reception of that station. Ci(k), known as the
token cycle, denotes the period between the k*® and (k + 1)t
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Fig. 1. Time diagram of a token passing channel.

receptions of the token at station z. Wi(k), known as the walk
time, denotes the token passing overhead from station ¢ to
station i+1 (mod N if i+1 > N) in the k*" token cycle. Thus,
by definition, C{" = S (T + w®) 4 ST 4

(k+1)
W;

index exceeds the upper index. We further define ng) to be
the transmission quota computed by station 7 when the token
arrives at that station in the &*" cycle. The transmission quota
is honored by ensuring the service time in that cycle does not
exceed the computed quota, i.e., Ti(k) < ng).

The control algorithm used in [1]-[2] can be generically
described by specifying how the quota ng) is computed.
Stations are classified as either type I or type II. Station 1,
if it is of type I is assigned a parameter denoted by THT;
(Token Hold Time), else is assigned a parameter denoted by
TRT; (Target Token Rotation Time). The quota is computed by

Q¥ = f,(c* V)
_ [THT;,
max(TRT; — ¢*7V 0),

). All summations are defined as zero if the lower

if station ¢ is of type I,
if station ¢ is of type II.
(1.1

The functions f;(-) are called quota functions. The above
control mechanism can be thought as imposing a quota that
is either a constant or a ramp function of the previous token
cycle, as illustrated in Fig. 2. In fact, the control algorithm
is a distributed back off algorithm to limit the token cycle
length. If a station experiences a long cycle, it will refrain
from using the channel in the next cycle. Of course, stations
back off according to the station type and the assigned control
parameters. Type I stations do not back off at all, while type
IT stations back off according to their TRT’s.

The rationale behind the above integrated access protocol
is (i) to limit the token cycles so as to support stations with
time-critical traffic (e.g., voice, real-time control data), (ii) to
allow other stations to access the channel efficiently while
keeping the token cycles below a certain bound, and (iii)
to allocate pre-specified bandwidths to the stations when the
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THT;

Q¥ =
: max(TRT; - C*P,0)

THT;

TRT;
Quota function for the standard protocol.
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Fig. 2.

system is overloaded. In [3], we have studied the properties of
the above protocol regarding the bandwidth allocation under
overloading conditions. It was shown that, under overloading
conditions, (i) the station transmission times will oscillate in
one of many periodic patterns, (ii) the bandwidths allocated
to the stations can be computed by the solution of a set of
nonlinear equations, independent of the oscillatory pattern. A
procedure for determining the bandwidth allocated to each
station, as a function of the assigned parameters, was also
given in [3].

By viewing the control algorithm as no more than spec-
ifying the quota functions f;, such as that in (1.1), it is
natural to inquire whether there are other quota functions that
yield desirable behavior and feasible implementation. Without
considering implementation complexity, we have explored
different generalizations of the quota functions. The earliest
studies were focused on simple modifications of (1.1) which
resulted in functions like those in Fig. 3. It has become
apparent later that the magnitude of the slope of the quota
function must be kept below unity to ensure convergent
behavior under heavy load. This observation has led to the
conclusion that the slope is analogous to the feedback gain
of the classical feedback control system. Equipped with this
understanding, we were then able to generalize the quota
functions further by allowing more general dependence on
the past station transmission times rather than the token
cycle while retaining the desirable convergent behavior. With
further work, we discovered techniques and analytic results
for computing token cycle bounds for the new class of quota
functions. This paper is the result of many iterations of
educated guess work followed by modeling and analysis.

The class of generalized quota functions presented in this
paper is indeed very large. They all yield the same favorable
properties of convergent behavior and tightly bounded cycles.
However, not all generalized quota functions are easy to
implement nor are all of them simple to engineer. The main
goal of this paper is not to furnish complete implementation
and engineering details of a new class of quota functions but
to provide insights and understanding of the quota control
mechanism with useful general analytic results. Discovery of
different subclasses with different properties, say, hardware
implementable or particularly fast convergence, represents

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 8, AUGUST 19%4

future work beyond the scope of this paper. The very important
issue of implementation of any specific types of generalized
quota functions is also left for future studies. It is worth
mentioning that although implementation feasibility is not
explicitly considered in this paper, we do provide illustrations
through some simple, practical and interesting examples of the
generalized quota functions that are feasible for implementa-
tion.

In the next section, we shall introduce the generalization.
In Section III, we investigate the stability properties of the
generalization under overloading conditions. In Section IV,
we provide an upper bound on the token cycles, together
with a design example illustrating the optimization between
delay constraint and efficiency. In section 5, we present an
approximation for station throughputs under general load.
Finally, we conclude the paper with a summary.

II. THE GENERALIZED ACCESS CONTROL STRATEGIES

Under the generalized access control strategy, the quota
functions are given by

QW = f(r® 7w, TP T, T e

where f; is non-negative and there exists 1 > é > 0 such that
for all vectors Z, 7/, there exists a dependency vector @ where
1-8>a; >ag >--->an > 0 such that

fi@ - fi() = -a- (T -9

The dependency vector @, which may not be unique, depends
on i, Z and ¥ but we have omitted the dependence in our
notations for simplicity. From (2.2), we can infer that f; is
continuous. Furthermore, the differential dependence of f; on
the first component is stronger than that on the second and
in turn stronger than that on the third and so on. This means
that the dependence of ng) on the previous N service times
is stronger if the service time is more recent. Notice that the
standard control protocol using (1.1) with at least one type II
queue does not belong to the class of quota schemes described
by (2.2).

Let us consider two examples where the first is a special
case of the second.

ng) =Y max(Ml - 01'(k_1)70)7

(2.2)

1>7;>0, (2:3)
QM = v, min(U;, max(M; - ¢*7, 0)),
1> %> 0,M, Ui >0 (2.4)

(2.4) is depicted in Fig. 3. It is a simple matter to show
that the above quota functions satisfy (2.2). Let us compare
the above examples with the quota functions in (1.1). If
v; = 1 (which is not allowed here), either M; = oc or
U, > M; would reduce (2.4) to (1.1). U; is analogous to
THT; and M; to TRT;. Thus, (2.4) is essentially the same as
the standard protocol except for the multiplicative constant ;.
This factor controls the slope of the ramp function and in turn
dictates the convergence behavior of the system (see section
3.4). The factor also controls the ratio of the bandwidths
allocated to the stations under heavy load (see section 4.2),
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QE’”) = v; min(U;, max(M; — C}k_l),O))
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Fig. 3. An example of the generalized quota function.

which is a feature not provided by the standard protocol.
Furthermore, it turns out that the ceiling +;U; yields a more
favorable upper bound on token cycles but lowers the system
efficiency (see section 4.2). In any case, both (2.3) and (2.4)
are rather simple modifications of the standard protocol and
hence require little computation overhead. Throughout this
paper, illustrations of analytic results will be made with
reference to examples (2.3) and (2.4). We have chosen these
examples to be functions of the previous cycle rather than the
individual station transmission times for practical reasons. In
practice, it is easier to measure the cycle than the individual
station transmission times. Furthermore, it turns out that the
bandwidths allocated to the stations under heavy load are
not sensitive to station re-ordering if the quota functions are
dependent only on the previous token cycle. Both properties
render quotas that are dependent only on the previous cycle
desirable in practical design.

We conclude this section by presenting two more examples

where the quota are dependent not only on the previous
cycle but on individual service times. A more general case
of (2.3) and (2. 4) is Q) = ~; min(U;, max(M; — p; 1 T*) —
Pi 2T,( )2 T(k Y ,0))where 1 > p; 1 > pio > -+ >
pin >0,1> 'yl 2 0 and U; > 0. A more interesting example
is Ql %) v; min(U;, max(M; — azcz-(k D ﬂ,C,l-(k D 0))
where 1 > a; > 3; > 0,1 > «; > 0 and U; > 0. The quota
functions are actually functions of two previous cycles. These
are valid quota functions if we consider a new system of 2N
stations formed by replicating once the original system of N
stations. Each station in the original system is visited twice in
a cycle of the new system. With the same idea, one can extend
the dependence of the quota to arbitrarily old service times.
This type of quota functions constitutes a very interesting class
of the generalized quota functions. However, due to space
limitations, we shall not discuss specific properties of this class
of quota functions in this paper.

III. STABILITY UNDER OVERLOADING CONDITIONS

In this section, we investigate the stability properties of the
generalized access control strategies under the same assump-
tions adopted in [3]: (i) heavy load (i.e., every station always
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has data buffered for transmission), (ii) constant token passing
overheads (i.e., Wi(k is independent of k), and (iii) negligible
overflow transmissions (i.e., we ignore any transmissions
beyond the computed quota). With these assumptions, we can
write

N i-1
(k) _ (k) (k+1)
G =w+> TP+ T @.1)
j=i i=1
T = f (D e p® r®y 32)
where W = Zf\;l VVi(k) denotes the total token passing

overhead in a cycle. Summations are defined as zero if the
lower index exceeds the upper index. Equations (3.1) and
(3.2) describe a dynamic system with system state T® =
(Tl(k),T;k),...,T](vk)). Our objective in this section is to
explore the stability of this dynamic system. We shall first
discuss the convergence of the token cycles. Next, we show
that T'(®) converges as k£ — oo for all initial conditions. Then

we show that there is a unique equilibrium state for T'*).

A. Convergence of Token Cycles

From (3.1), we have Cl(f_)l - Ci(k) = T(kH) T(k)
From (3.2) and the property of f;, we have T(k“)
k) k+1) k N 3
T( = _Z] 1 ] ( + - 711(—3) - Zj:i aJ(T](Vli—]

Tl(vk +11_]) Thus, we have C’fi)l

i k)
= i bCf_4 L+
N+1 (k—1) - j=17J i+
Z —z+1b CN+1—3+1 where b, =

1—0.1, b]' = aj_l —aj

for 3 =2,3,...,N and byy1 = apn. Thus, the sequence
Cfl,Cél, .,CI(\}),C’?),C?),... is a moving average

sequence with time-varying weights. Even with time-varying
weights, the moving average sequence converges when the
leading weight is always bounded away from zero. The proof is
given in [7]. Furthermore, the proof shows that the difference
between the sequence of cycles and its limiting value is
bounded by a geometric sequence with parameter (1 — §V)~.

The sequence of cycles does not converge for the quota
functions given by (1.1), because it is possible that by 11 =1
while all other weights are zero. In this case, the sequence
oscillates with a period of N + 1, unless there are imbedded
repetitive patterns, in which case the period will be a divisor
of N + 1. It is now clear why there can be multiple periodic
patterns for the protocol used in [1]-[2]; see section 3.4 for
an illustration.

B. Convergence of Service Times

With geometric convergence in the cycles, the vector T®
also converges geometrically with the same parameter. This
is because T — T® = Z;_:i(C’i(i)l -cYy for 1 >
k. Since the sequence of cycles converges with a geomet-
ric bound, Tl-(l) - T,i(k) must also be bounded by a geo-
metric sequence with the same parameter. Thus, T®) is a
Cauchy sequence and hence converges as & — oc for all
initial conditions. Furthermore, the convergence is geometric
with parameter (1 — V)%, If T® converges, then there
must exist at least one equilibrium state, that is, there must
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be at least one solution to the set of nonlinear equations
Ti(eqm) f (T(eqm . Tl(eqm)’T](\;?‘lm)’ . 7,1-;:(eqm)) fori =
1,2,...,N.

C. Uniqueness of Equilibrium State

Let 1% = (T513,...,T%) be
rium state and let us consider the
tween the sequence of consecutive service times

1(1) T(l) 1(\,1),T1(2),T2(2),... and the equilibrium
sequence Tl( qm),Téeqm), o, T qleam) pleam) | ey
AT ~N+i be a column vector containing N consecutive
difference terms described above starting at the service of
queue % in the kth cycle. Using an _argument similar to that
in the last sub-section, we have AT,H = AIAT 1 where the
matrix A; is given by

an equilib-
difference be-

—arj1  —ar2 -4 N-1 ~—QN
1 0 0 0
A=1 0 1 : :
: - 0 0
0 0 1 0

withl1—6 > a1 > a2 > -+ 2 a;n > 0. Again, the a; ;’s
depend on AT; but we omit the dependence in our notation.
We define the max-contiguous sum of a vector & by N(%) =

MaXi<m<n<N |Z;’:m 'U/j‘. In [7], we show that N(-) is a

vector norm and that N(AT}) — 0. Hence Aﬂ —0as!l —
oo. Similar to the token cycles, the convergence is geometric
with parameter (1 — &V ). This result clearly shows the
uniqueness of the equilibrium state, for if there were another
equilibrium state 7**, then we would have N(T™* —T**) = 0,
implying T = T*.

D. Discussion

Through an example, we would like to illustrate the
desirable properties of the generalized quota functions.
Consider a system with quota functions given by (2.3)
where W = 0, N =3, M| =10, M, = 7, M3 = 5
and y7 = 72 = 73 = ~. We shall investigate the
cases where v = 0.5,1.0,1.5 for the two different initial
states (Tl(l),T5§1> T(l)) = (0,0,0),(4,1,0). Starting from
these initial states, we generate two sets of trajectories for
(Tl(k),Tz(k) T(k)) for v = 0.5,1.0, 1.5. These trajectories are
displayed graphicalty in Figs. 4 to 6 with the corresponding
token cycle lengths.

It can be shown that there is a unique equilibrium state
for each of the three cases v = 0.5, 1.0, 1.5, and they are
(2.8000, 1.3000, 0.3000), (4.3333, 1.3333, 0.0000), (5.4375,
0.9375, 0.0000) respectively. For v = 0.5, both trajectories
converge to the equilibrium state. For v = 1.0, the trajectories
exhibit different periodic patterns, but the bandwidth allocation
for these patterns are the same as that of the equilibrium
state. For v+ = 1.5, we find a “limit cycle” in the first
trajectory but there is no readily identifiable pattern in the
other trajectory; moreover, the bandwidth allocations for both
trajectories are different from that of the equilibrium state.
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Fig. 4. Service times and cycle lengths for quota functions

0.5max(M; — C¥ 0y with My = 10, My = 7, Ms = 5, and

initial service vectors (a) (0, 0, 0), (b) (4, 1, 0).

The above comparison illustrates the undesirable properties
of non-convergent systems. Indeed, the generalized access
control strategies have been specially designed to avoid the
unpredictable behavior of non-convergent systems observed at
high load.

The monotone property of the dependency vector (i.e.,
1—-6>0a; >ay >---> ap) is crucial for the convergence
behavior of the first system. As a result of this property,
the token cycles constitute a moving average sequence with
non-negative time-varying weights summing to unity. The
convergence of this moving average sequence is clearly gov-
emed by those weights. The condition 6 > 0 forces the
leading weight to be non-zero and this is sufficient to ensure
convergence Fig. 4 shows that the convergence rate is much
faster than the geometric bound with parameter (1 — MY V&
derived in this paper until near equilibrium. This is generally
true because when there is a large variation in the token cycles,
the true value of the leading weight in the moving average
is much larger than §, resulting in fast convergence in the
token cycles. If § = 0, as in the second system, then the
leading weight may be zero and the cycles may not converge.
Nevertheless, the cycles oscillate within a “band” such that the
slope of each quota function is either —1 or 0. One can check
that both periodic patterns in Fig. 5 have token cycles oscillate
between My and Ms. If § < 0, as in the third system, then
the weights can be negative; in this case, the token cycles and
station transmission times can exhibit very strange behavior.
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Fig. 5. Service times and cycle lengths for quota functions Fig 6. Service times and cycle lengths for quota functions
Lomax(M; — C{M,0) with My = 10, My = 7, Mz = 5 and 15max(M; — CP,0) with My = 10, My = 7, My = 5, and

initial service vectors (a) (0, 0, 0), (b) (4, 1, 0).

In particular, we can see from Fig. 6 that the trajectories are
strongly dependent on the initial conditions and all stations
experience large fluctuations in their cycles and transmission
times.

Under overloading conditions, the generalized control strate-
gies provide TDM-like services with bandwidth allocation
uniquely determined by the quota functions. Thus, we can
specify the overload bandwidth allocation by appropriate as-
signment of the quota functions. Unfortunately, there are no
known analytic techniques for solving the equilibrium state,
except for special quota functions such as those given by (2.3)
or (2.4). Nevertheless, it is worthwhile to explore a general
property of the generalized control strategies.

Let Cleam) — W 4 z;\/':l Tj(eqm) be the equilibrium cycle.
The throughput of station ¢ under heavy load is given by
pi = Tl-(eqm)/ C(*9m)_ and the total system throughput under
heavy load is given by p = Z,N=1 pi =1~ W/Clam) 1t s
noted that p; is the minimum throughput of station 7 regardless
of the load at other stations provided station i is heavily loaded.
Furthermore, p is the maximum possible throughput of the
system and it is often known as the efficiency of the system. A
general result, which is very interesting and intuitive, is that the
efficiency of a system increases as the quota functions increase,
see [7] for the proof. This means that, from the efficiency
point of view, the best system is the one with infinite quota
functions (i.e., exhaustive service). However, the token cycles
will increase without bound as the load increases.

initial service vectors (a) (0, 0, 0), (b) (4, 1, 0).

IV. UrPER BOUNDS ON TOKEN
CYCLES UNDER ARBITRARY LOAD

Stability is certainly not the only important issue. After
all, the main purpose of access control is to avoid long
token cycles that disrupt time-critical applications. One of the
earliest approach to design token passing systems consistent
with a constraint on the token cycle length was to enforce
a fixed quota at each station such that the longest possible
cycle is less than a specified maximum delay requirement.
It was soon realized that this is far from being the best
solution because (i) the delay constraint severely limits the
total number of stations, and (ii) the system is under-utilized
when few stations are active. A much better solution was
adopted in [8] by dynamically limiting data transmissions that
are not time-critical to relax the limitations on the number of
stations imposed by the delay requirement. The idea behind
the generalized control strategies is similar to that in [8] but
with notable improvements. The objective of this section is
to derive analytic results that facilitate practical design of
time-constrained systems, that is, to select the parameters
associated with the quota functions so as to guarantee all
token cycles to be below a specified limit. To tackle the design
problem, we first consider the problem of determining upper
bounds on token cycles under arbitrary loading conditions,
given the quota functions. We do retain the assumptions of
constant token passing overheads and negligible overflow
transmissions.
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Before we embark on a detailed discussion, let us point
out that a trivial upper bound on all token cycles is
W+ Ej-v:l £i(0,0,...,0) since T}k) is bounded above by
£(0,0,...,0) for j = 1,2,..., N and for all k. As we can
see, this bound grows linearly in N, the total number of
stations. If we were to use this bound as the design criterion,
that is, to ensure that this bound is below the maximum delay
requirement for real-time traffic, then we have to limit the
total number of stations accordingly. It turns out that this is
a very severe constraint on the total number of stations. It
is true that for constant quota functions, this trivial bound is
the tightest upper bound; but for many other quota functions,
high correlations exist among the components of T(®) and
as a result, a much tighter bound, typically insensitive to the
total number of stations, can be obtained.

Without loss of generality, we consider the problem of
finding an upper bound for the token cycles experienced by
station 1. Our approach is to consider first an upper bound on
token cycles conditioned on the station transmission times in
the previous cycle, and then the unconditional upper bound.

A. Conditional and Unconditional Upper Bounds

We first define, for an arbitrary vector z = (21,22, ...,2N),
P(2) = ZJ 1% to be the 4th partial sum. leen
the k't service vector T, define the overload vector
%+ and an inflated overload vector V(*+1) by their
respective components, (Ul(k+1),U(k+l) U(kH)) and
(Vl(kﬂ),VQ(k“),...,Vls,k"'l)), determined successwely as

follows:
k+1) fJ(U;Ii—{l)’. U(k+1) T:’(Vk)v'-':Tj(k))a
i=1,2,...,N “4.1)
k+1 k+1 k+1 k
‘/]( )ij(‘/J(_i" ),,1/1(+),T1(V),.,T](k))
j=1,2,....N 4.2)

The components of the vector Uk+1) represent the transmis-
sion times in the (k + 1)t cycle given that all stations use
up their quotas. The components of the vector V(*+1) are
obtained in a similar way except the stations are successively
allowed to overrun their quotas in any arbitrary fashion.

In [7], we show that Py(T*+D) < P(0¢*+D) <
P;(V®+D) for ¢ = 1,2,...,N. In particular, we have
O = Py(T0+)) < Py(0*+D) < Py(V00),
Furthermore, P;(U/**1)) is a decreasing function of each
component of T®)_ This intriguing result states that, (i) a
sudden overload of the system will yield the largest possible
next cycle, (ii) sudden overloading of the empty system will
yield the largest possible next cycle regardless of the service
times in the current cycle, and (iii) a larger cycle would result
if stations are allowed to overrun their quotas. The above
results provide a straightforward technique for determining
the tightest upper bound on token cycles as well as looser,
but analytically simpler, bounds.
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B. Discussion

To illustrate the use of the results in previous sub-sections,
let us consider a system with quota functions given in (2.4)
with N =3 W =2, 7 =7 =v = 08 M =
My, = My = 22, Uy = 15 and Uy = Us = 10. Starting
from an empty system, we calculate the overload vector
with respect to queue 1 and get (12, 6.4, 1.28). Summing
the components of the overload vector and the total walk
time, we find that the longest possible cycle experienced by
queue 1 is 21.68. Similarly, the longest possible cycles for
queues 2 and 3 are 21.2 and 21.52, respectively. Notice that
the longest possible cycle experienced by different queues
are not the same. By using the inflated overload vector
(max; <;<3{M;} — W,0,0) = (20,0,0), we show that 22 is a
bound on all cycles experienced by all stations.

Using similar inflated overload vectors as above, it is not
difficult to show that max(W, max; M;) is a bound on all
cycles, independent of the number of stations in the system.
This is clearly a major advantage over the classical scheme
using fixed quotas since the delay constraint does not pose
any limit on the total number of stations. Of course, stations
with time-critical data should not be delayed due to insufficient
quota and hence they must have very large M;’s, possibly
infinity. If M; = oo for some 4, then the maximum is
clearly not a very good bound. By using a different inflated
vector, it is possible to derive an alternative bound (see [7])
max(W, maxjer, M;) + 2 cp, v;U; where Ry, Ry is an
arbitrary partition of the set of stations. One possible choice of
(Ry1, Ro) is Ry = {i | M; = oc}. In analogous to the standard
protocol, R; is like the set of type I stations where the quota is
fixed and R, is like the set of type II stations where the quota
is subject to the token rotation time. Other choices may also be
favorable, for example, including queues with small -; U; and
large M; in R.. In general, we see that the delay constraint
will primarily limit the number of time-critical stations rather
than the total number of stations.

We have concentrated on the worst case cycle bound. In
particular, we found that the worst situation occurs when
an empty system is suddenly overloaded. It is unlikely that
all stations will be overloaded at the same time. It is likely
that, for bursty computer traffic, one or few stations become
suddenly overloaded. To take advantage of this type of traffic
characteristics, it may be reasonable to assume that at most a
few of the stations can simultaneously become overloaded,
and thus produce a smaller upper bound. In this kind of
situations, the quota function given by (2.4) is more favorable
over that given by (2.3) because if only one station, say 4,
becomes overloaded when the system is empty, then (2.4)
yields W + ~;U; for the next cycle but (2.3) yields the larger
value of v;(M; — W) provided M; > W. However, (2.3) does
yield better efficiency.

In general, to satisfy a constraint on token cycle lengths
and to maximize system efficiency are conflicting goals. We
present a simple design example to illustrate this point. Con-
sider a 10 Mbps token passing system with W = 50 us.
There are four groups of stations in the system, 51 to Sy, each
consisting of L stations, yielding a total of 4L stations. Stations
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in 7 are 64kbps voice stations, generating voice packets of
6.4 us long, while all other stations are data stations. Voice
packets have a maximum delay constraint of 1ms. Among data
stations, we would like to allocate bandwidths under overload
in the ratio of 4:2:1 to stations in S,, S3, S, respectively,
with a minimum of 100kbps to each station in Ss. The design
problem is to maximize the total number of stations.

We shall use the basic time unit of 1 s and omit all units
from here on. As before, we consider quota functions given
in example 2.2. For ¢ € S;, we let M; = oo and +,U; = 6.4.
For data stations, we let U; = M, and ~; = 4l,2I,1 for
1 € 83,83,84, respectively. It is clear that the bandwidth
constraints among data stations are satisfied by the chosen ratio
in the ~y;’s; of course, we must have ! < 0.25 to ensure that the
monotone property (2.2) is satisfied. The constraint on delay
and bandwidth are M + 6.4L < 1000, M) 5 10-3
where C(¢9™) — W = (6.4 + 7/(M — C(=9m))) L. Maximizing
L subject to the above constraints, we have L(maX) — 36,
M = 769.6 us and [ is quite arbitrary as long as 7/L(max) > 1.

V. AN APPROXIMATION FOR STATION THROUGHPUTS

The central issues of this section are stability and station
throughput under general load. Stability, in this section, refers
to the situation where no stations have unbounded queues in
the long run. We have derived useful overload throughput
results. However, they are applicable only under restricted con-
ditions. As an additional evaluation tool, we present a simple
and yet very accurate approximation for station throughputs
under general load. The approximation is based on the as-
sumption that the variances of the station transmission times
are small. We shall first develop the approximation and then
explain its accuracy. Then we discuss an important application
of the approximation. Finally, we present some simulation
results for validating the approximation.

A. The Approximation

Consider a token system using the generalized quota func-
tions, with infinite buffer at each station. Let 7; be the long
run average input rate of work, defined as the product of the
average packet arrival rate and the average packet transmission
time, at station i. Let C; £ limz o0 + S5, C*) be the long
run average cycle of station 7, provided the limit exists. W;, T;
and Q; are defined analogously for the average token passing
overhead, average station transmission time and average quota,
respectively, for station i. Since C; is independent of i, we
use C for the average cycle of any station. The throughput of
station 4 is defined by p; £ % and the system throughput is
defined by p 2 "N p;. If we further let W 2 SN W
then it can be shown easily that C' = {2,

We make the assumption that a station in our system has
either a finite or an infinite queue length. If a station has finite
queue length, then p; = r;, else the station will use up its quota
in each cycle and thus p; = % Hence, p; = min (n—, %) If

the variances of the station service times are small, then @,, the
average of a quota function, can be accurately approximated by
filTi1,...,T1,TN, ..., T;), the function of the averages.
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Indeed, if the variances of the station service times are zero,
the approximation becomes exact. Using this approximation
and the relations given in the last paragraph, we have

(0 C e 4T PN T T
pi:mm (Ti, fl(pl—l ) s P1 7PN ’ 7/)1 ) ,

—/

C

t=1,2,...,N (GR))]
ol W ’ N " It

where C' = T and p’ = Y is. pi- The quantities pf, p’ and
T’ denote the approximations for p;, p and C, respectively.
Given {r;} and W, (5.1) yields a unique solution for {p}} and
C'. The proof can be found in [7], together with a numerical
solution method. Furthermore, p’ is a non-decreasing function
of the input rates {r;}, which shows that the approximation
is consistent with the conflict-free nature of the token passing
protocol.

The approximation is exact when the input rates are
sufficiently large since the variances of the station transmission
times are zero. In fact, the approximation is also exact
for the cases where each r; is either zero or very large.
When all 7;’s are small, the variances of the station
transmission times are also small, and thus the approximation
is very good. A more important observation is that when
the iIlplllt rate r; i,s smjll, compared with the quantity
£A0rC oA Gt € eatlC) e right hand side of (5.1) will
give the correct value, relatively independent of the error in
estimating @; by fi(Ti—1,...,T1,Tn,...,Ts). This explains
why the approximation is still very accurate under many
intermediate loads where the variances of service times may
not be small. There is a further reason for the high accuracy
of our approximation. Recall that the quota functions are
decreasing with partial derivatives bounded between zero and
minus one. Qualitatively, these quota functions tend to have
slowly-varying derivatives, thus yielding a high accuracy in
our approximation.

In passing, we note that the approximation is also applicable
to the protocol used in [1]-[2]. When applied to the protocol
used in [1]-[2], our approximation yields results equivalent
to a recently proposed approximation [13]. However, the
approximation in [13] is not applicable for the generalized
access control strategies.

B. Applications of the Approximation

By solving (5.1) and comparing {r;} with {p}}, we can
determine approximately whether a station is saturated, and if
not, its throughput. If no stations are saturated, then there is
a very useful quantity for measuring how close the system
is to saturation. Let 7/ .. be the largest value of ~ such
that {~r;} yields a non-saturated system, determined by the
approximation (5.1). Clearly, v/ ., > 1 and the closer it is to
unity, the closer is the system to saturation.

For a special class of generalized quota functions, there
are additional implications of the approximation (5.1). A
generalized quota function f(z1,z2,...,zx) is convex if for
any joint random variable (X7, Xs,...,Xy) with positive
components, Ef(X;,X,,...,Xy) is greater than or equal
to f(EX1,EX»,...,EXy) where the E operator refers to
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Fig. 7. (a)Cycle length versus offered load (M/D/1/4). (b) Station throughput

versus offered load (M/D/1/4).

taking expectation. Two results, shown in [7], state that if the
quota functions f; are convex for all 7, then (i) the approximate
system throughput p’ will never overestimate the true system
throughput p, and (ii) a sufficient condition for stability is that

1!

< fi(’l'i__léﬂ, ey 1‘16”,7‘1\76”, e ,r,-_O_ )
1 —_t y
C
i=1,2,...,N (5.2)
where € = 1?’7' and r = 3 ;. Thus, given the input

rates, we can directly verify the stability of a system using
convex quota functions, and also provide an upper bound on
its maximum throughput.

C. Discussion

To validate our approximation, we present simulation results
for two systems, A and B. Both systems have W = 1 and
fi = v min(U;, max(M; — Ci(k_l),O)).

System A has four stations with ; = 0.9, M; = 10 and
U; = 5 for i = 1,2,3,4. The mean packet size is 1 and the
mean packet arrival rates to the stations are in the ratio of
1:2:1:3 in their respective order. We simulate the system by
varying the total arrival rates from zero to overload. To check
the insensitivity of our approximation to high order moments
of the input traffic, the simulations are performed for three
cases:

(1) exponential inter-arrival times and fixed packet length,

(2) exponential inter-arrival times and exponential packet
length,
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Fig. 8. (a) Cycle length versus offered load (M/M/1/4). (b) Station through-
put versus offered load (M/M/1/4).

(3) hyper-exponential (Hy) inter-arrival times and expo-
nential packet length.

We obtain, from simulation, estimates for the mean and the
standard deviation of the token cycles, and also for the station
throughputs. We plot the mean, the mean plus one standard
deviation, and the mean minus one standard deviation of the
token cycles versus the total offered load in Figs. 7(a), 8(a),
and 9(a) for cases (1), (2), and (3) respectively. On the same
figures, the mean token cycles obtained from our approx-
imation are also plotted. Similarly, the station throughputs
from simulation are also plotted along with the approximation
in Figs. 7(b), 8(b), and 9(b). From these plots, we can see
that the station throughputs are indeed quite insensitive to
the high order moments of the input traffic. Furthermore, the
approximate results are virtually indistinguishable from the
simulation results for a wide range of input load.

System B has eight stations with ; = 0.9 for all i, M; = 10
and U; = 5 for i = 1,2,3,4, and M; = U; = 8 for ¢ =
5,6, 7,8. The ratio of the packet arrival rates is 1:1:1:1:2:2:2:2
in their respective order. Packets have fixed length of 1 and the
inter-arrival times are exponential. Simulations are run for total
arrival rates from zero to overload. As before, the simulation
results are plotted against the approximation in Fig. 10(a) and
(b). From Fig. 10(a), we see that the approximation for average
token cycle agrees very closely to the simulation results. When
the total offered load is below 0.75, no stations are saturated,
and the approximation for the individual station throughputs
agree with simulation exactly. As the load increases beyond
0.75, stations 5 to 8 become saturated and the plots show
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some discrepancies between the approximation and simulation.
The approximation becomes exact again as the load further
increases. The simulation reveals certain unfairness among
stations 5 to 8. An intuitive reason is that station 5 has the
earliest chance for picking up the “slack” offered by the first 4
unsaturated stations while station 8 has the least opportunity.
Such spatial dependence of the station throughputs is not
captured by the approximation. Nevertheless, the approxi-
mation still provides reasonably accurate results and more
importantly, gives the correct trend at which the throughputs
of the saturated stations decrease.

VI. SUMMARY

In this paper, we have proposed and investigated a gen-
eralization of the integrated protocol adopted in [1]-[2]. The
generalization is based on a distributed, dynamic control of
the token cycles using generalized quota functions dependent
on past station transmission times. We have identified the
dynamics inherent in the control scheme as an important issue
and shown, under overloading conditions that the proposed
strategies have stable dynamics. We have given a compar-
ison of several systems to illustrate the desirable stability
properties of the generalization. By establishing results on
the upper bounds, we have demonstrated the ability of the
proposed strategies to control the token cycles. Examples have
been given to illustrate the bounding techniques. The trade-
off between efficiency and delay constraint has also been
demonstrated by an example. As an additional evaluation tool,
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we have proposed a simple and yet very good approximation
for calculating station throughputs under arbitrary loading
conditions. Simulations have been conducted to assess the
accuracy of the approximation. The approximation allows us
to explore the feasible region (i.e., set of input traffic rates
for which no stations are saturated), as well as the bandwidth
allocation properties, for various control strategies.

In conclusion, the key advantages of the generalization are
(i) to enrich the design space of access control strategies for
token passing systems over those provided in the standards
[1]-[2], so that we can design more efficient systems under
more general constraints, (ii) to guarantee convergent behavior
so that an accurate prediction of the station throughputs under
overload can be made, and perhaps most importantly (iii) to
provide an insightful understanding of the dynamic behavior
inherent in the control scheme.

REFERENCES

[1

The Institute of Electrical and Electronic Engineers, * Token-passing
bus access method and physical layer specifications,” American National
Standard ANSI/IEEE std. 802.4-1985.

FDDI Token Ring Media Access Control, draft proposed—ANSI Stan-

dard X3T9.5/83-16, rev. 10, Feb. 28, 1986.

[3] J. Pang and F. A. Tobagi, “Throughput analysis of a timer-controlled
token-passing protocol under heavy load,” IEEE Trans. Commun., vol.
COM-37, July 1989.

[4] J. Pang, F. A. Tobagi, and S. Boyd, “Generalized access control
strategies for token passing systems,” Comput. Syst. Lab., Stanford
Univ,, Stanford, CA, Tech. Rep. CSL-TR-88-371, Nov. 1988.

[5] J. Pang and F. A. Tobagi, “Generalized access control strategies for

token passing systems,” [EEE INFOCOM’89, Ottawa, Ont., Canada,

Apr. 1989.

[2



2570

[6

J. Pang and F. A. Tobagi, “Throughput approximation for the generalized
timer based protocol for token passing systems,” Comput. Syst. Lab.,
Stanford Univ., Stanford CA, Tech. Rep. CSL-TR-89-375, Jan. 1989.
[7] J. Pang, “Access control strategies for token passing integrated services
networks,” Ph.D. dissertation, Dep. Elec. Eng., Stanford Univ., Stanford
CA, 94305, Apr. 1989.

F. A. Tobagi, F. Borgonovo, and L. Fratta, “EXPRESS-NET: A High
Performance Integrated-Services Local Area Network,” IEEE J. Select.
Areas Commun., vol. SAC-1, pp. 898-913, Nov. 1983.

9] J. M. Ulm, “A timed token ring local area network and its perfor-
mance characteristics,” in IEEE 7th Conf. Local Comput. Networks,
Minneapolis MN, Feb. 1982, pp. 229-236.

K. Sevcik and M. J. Johnson, “Cycle time properties of the fddi token
ring protocol,” IEEE Trans. Software Eng., vol. SE-13, pp. 376-385,
Mar. 1987.

M. J. Johnson, “Proof that timing requirements of the FDDI token
ring protocol are satisfied,” IEEE Trans. Commun., vol. COM-35, pp.
620-625, June 1987.

M. J. Johnson, “Fairness of channel access for non-time-criticial traffic
using the FDDI token ring protocol,” Res. Inst. for Advanced Comput.
Sci., NASA Ames Res. Center, CA, Mar. 1986.

D. Dykeman and W. Bux, “Analysis and tuning of the FDDI media
access control protocol,” IEEE J. Select. Areas Commun., vol. SAC-6,
pp. 997-1010, July 1988.

A. P. Jayasumana, “Performance analysis of a token bus priority
scheme,” in IEEE INFOCOM ’87, San Francisco CA, Mar. 1987.

D. Janetzky and K. S. Watson, “Performance evaluation of the MAP
token bus in real time applications,” in Advances in Local Area Net-
works, K. Kummerle, J. O. Limb and F. A. Tobagi, Eds. New York:
IEEE Press, 1987.

C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. New York: Academic, 1975.

[8

—_—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

Joseph W. M. Pang received the B.A.Sc. and
M.A.Sc. degrees from the University of British Co-
lumbia, Vancouver, B.C., Canada, in 1983 and 1985,
respectively, and the Ph.D. degree from Stanford
University, Stanford, CA, in 1989, all in electrical
engineering.

From 1989 to 1992, he was with the Broadband
Network Services group at Pacific Bell, San Ramon,
CA. At Pacific Bell, he worked on advanced broad-
band network services, ATM, customer network
management and metropolitan area networks. In
1992, he joined Starlight Networks, Mountain View, CA, doing research and
development work on multimedia networking. His current research interests
include system and protocol design for multimedia networking, LAN/WAN
teleconferencing, high speed integrated services networks, hierarchical storage
for digital video, and distance learning.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 8, AUGUST 1994

Fouad A. Tobagi (M’77-SM’83-F’85) received the
engineering degree from Ecole Centrale des Arts et
Manufactures, Paris, France, in 1970, and the M.S.
and Ph.D. degrees in computer science from the
University of California, Los Angeles, in 1971 and
1974, respectively.

From 1974 to 1978, he was a Research Staff
Project Manager with the DARPA project at the
Computer Science Department, University of Cali-
fornia, Los Angeles, and engagedin modeling, anal-
ysis, and measurements of packet radio systems. In
June 1978, he joined the faculty of the School of Engineering at Stanford
University, Stanford, CA, where he is currently Professor of Electrical
Engineering and Computer Science. He is also co-founder of Starlight
Networks, a new venture concerned with multimedia networking, where he is
serving as the Chief Technical Officer. His research interests include packet
switching in ground radio and satellite networks, high-speed fiber optics local
area networks, fast-packet switching, broadband integrated services digital
networks, ATM, multimedia communications, modeling and performance
eveluation, and VLSI implementation of network components.

Dr. Tobagi is the winner of the 1981 Leonard G. Abraham Prize Paper
Award in the field of Communications Systems for his paper “Multiaccess
Prtocols in Packet Communications Networks,” and co-winner of the IEEE
Communications Society 1984 Magazine Prize Paper Award for the paper
“Packet Radio and Satellite Networks.” He has served as Associate Editor for
Computer Communications in the IEEE TRANSACTIONS ON COMMUNICATIONS
for the period 1984-1986, Editor for Packet Radio and Satellite Networks in
the Journal of Telecommunications Networks for the period 1981-1985, Co-
Editor of the special issue on Local Area Networks of the IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS (November 1983), Co—Editor of the
Special Issue on Packet Radio Networks of the PROCEEDINGS OF THE IEEE
(January 1987), and Co-Editor of the Special Issue on Large Scale ATM
Switching Systems for B-ISDN of the IEEE JOURNAL ON SELECTED AREAS IN
CoMMUNICATIONS (October 1991). He is also Co-Editor of Advances in Local
Area Networks, a book in the series Frontiers in Communications (New York:
IEEE Press). He is a member of the Association for Computing Machinery
and has served as an ACM National Lecturer for the period 1982-1983.

Stephen Boyd received the A. B. degree in mathe-
matics, summa cum laude, from Harvard University
in 1980, and the Ph.D. degree in EECS from the
University of California, Berkeley, in 1985.

In 1985 he joined the Electrical Engineering
Department at Stanford University, where he is now
Associate Professor. In 1993 he became Director
of the Information Systems Laboratory. His current
research interests include numerical methods for
convex optimization, especially interior-point meth-
ods; interactive engineering design; and computer-
aided control system analysis and design.




