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Abstract

Background: High-throughput omics technologies have enabled the comprehensive reconstructions
of genome-scale metabolic networks for many organisms. However, only a subset of reactions is active
in each cell which differs from tissue to tissue or from patient to patient. Reconstructing a subnetwork
of the generic metabolic network from a provided set of context-specific active reactions is a demanding
computational task.

Results: We propose SWIFTCC and SWIFTCORE as effective methods for flux consistency checking and
the context-specific reconstruction of genome-scale metabolic networks which consistently outperform the
previous approaches.

Conclusions: We have derived an approximate greedy algorithm which efficiently scales to increas-
ingly large metabolic networks. SWIFTCORE is freely available for non-commercial use in the GitHub
repository at https://mtefagh.github.io/swiftcore/.

Keywords: systems biology; metabolic network analysis; metabolic network reconstruction, context-
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Background

Constraint-based reconstruction and analysis (COBRA) is the current state-of-the-art in the genome-scale
metabolic network modelling [OMP15]. COBRA methods systematize biochemical constraints into a math-
ematical framework which synthetic biologists can utilize to quantitatively simulate metabolic pathways
in order to answer the relevant biological questions. There is a critical mass of studies that combine
these curated high-dimensional models and in silico analysis for drug discovery or many other applications
[BMKP14, SOA™T16, [FJF"11al.

Context-specific metabolic networks are extensively studied because of their higher explanatory and pre-
dictive power [JSRIO, [FJFT11b, BMNT12, [FM17]. To date, a wide variety of computational methods have
been developed to extract context-specific metabolic networks from the available comprehensive genome-scale
reconstructions. Gene inactivity moderated by metabolism and expression (GIMME) [BPOg| uses quantita-
tive gene expression data and presupposed cellular functions to predict the subset of reactions that a cell
uses under particular conditions. Integrative metabolic analysis tool (IMAT) [SCHT08, [ZRS10] integrates
tissue-specific gene- and protein-expression data to produce context-specific metabolic networks. Integra-
tive network inference for tissues (INIT) [ABM™12l IALST13| IAMA™14] uses cell type specific proteomic
data from the human proteome atlas (HPA) to reconstruct tissue-specific metabolic networks. Metapro-
teomic and taxonomic data have been exploited for a context-specific reconstruction procedure applied to a
naphthalene-degrading bacterial community [TBPT15]. RegrEx [ENT5, [RENTT] is based on regularized least
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squares optimization using publicly available RNAseq expression profiles. Context-specificity assessed by de-
terministic reaction evaluation (nCADRE) [WEP12] is also based on gene expression data but evaluates the
functional capabilities during model building too. Another approach is to infer the metabolic functionalities
of a cell or tissue from transcriptomic data, and then protect these functions during the implementation
of context-specific reconstruction [RCKL19]. Cost optimization reaction dependency assessment (CORDA)
[SQ16] relies solely on fluz balance analysis (FBA), rendering it more computationally efficient.

One approach to this problem is to curate a list of active reactions and develop a framework to find
the sparsest subnetwork containing the specified reactions. Although this subnetwork is assumed to be as
sparse as possible, we should avoid flux inconsistencies such as when one of the desired reactions is included
in the subnetwork, yet it is blocked and cannot carry non-zero flux at the steady-state condition. In this
regard, context-specific reconstructions seek to generate minimal consistent subnetworks including a given
set of core reactions.

It is known that identifying a consistent subnetwork with the minimum possible size such that it contains
some core reactions is an NP-hard problem |[ACLT09]. To address this issue, approximate greedy algorithms
have been developed which either prune the original network [JSR10] or increment the core set [VPS14]
recursively to arrive at a consistent subnetwork in between them. Among these competing approaches,
FASTCORE [VPS14] exhibits superior performance both in terms of the sparseness of the subnetwork and the
computational efficiency.

Let M = {M;}, denote m specific metabolites in an organism, and R = {R;}?_; be the set of n
reactions involving at least one of these metabolites. Under average physiological conditions, the irreversible
reactions Z C R are thermodynamically constrained to proceed in the forward direction only, in contrast to
the reversible reactions which may proceed in the reverse direction as well.

We call a vector v of length n a flux distribution if the absolute values of its entries are the rates of the
corresponding reactions in R, and the signs of its entries indicate the forward and reverse directions. Unless
stated otherwise, all flux distributions are assumed to respect the irreversibility conditions in the sense that
v; > 0 for all R; € 1T.

We represent the relative quantities of metabolites in each reaction by an associated vector of length
m and distinguish reactants from products by negative signs. Afterward, we construct the stoichiometric
matrix by stacking these vectors for all the reactions in R as the columns of an m x n matrix S. The mass
balance constraint asserts that the concentration of each metabolite is constant throughout the time-scale
of interest which is equivalent to say that Sv = 0 in our notation.

We refer to any solution of Sv = 0 such that v; > 0 for all R; € 7 as a steady-state flux distribution. We
call R; € R a blocked reaction if v; = 0 for all the steady-state flux distributions, and unblocked otherwise.
We call a metabolic network with no blocked reactions a flux consistent metabolic network [SH94].

In this paper, we present an algorithm that given a flux consistent metabolic network and the subset
C C R of core reactions as input, computes a flux consistent subnetwork A" C R such that C C A as output.
Ideally, we are interested to find a sparse subnetwork, and accordingly, we search to minimize the size of N.

Related works

A closely related problem to the context-specific reconstruction is to check the flux consistency of a given
metabolic network by detecting the blocked reactions. FASTCC [VPS14] which is based on the same ideas as
used for FASTCORE, is currently the fastest algorithm dedicated to this task.
As a simple observation, all the irreversible reactions in Z are unblocked if and only if we can find a flux

distribution v such that

Sv=20

1

vz > 0, ( )
where vz > 0 is the shorthand of v; > 0 for all R; € Z. Assuming that such a flux distribution v exists, an
arbitrary (possibly reversible) R; € R is unblocked if and only if there exists u such that

Su =20
Uj 7é 0, (2)



since if ¢ > 0 is large enough, then u; 4 cv; # 0 and v+ cv would be a steady-state flux distribution in which
R; is active.

Quantitative flux coupling analysis (QFCA) [TB19] uses this observation to develop a consistency checking
technique which we call SWIFTCC in this paper. However, this is presented as only a preprocessing step in
the original paper instead of a separate algorithm. For the sake of completeness, we have also compared
SWIFTCC as implemented in the QFCA against FASTCC. Additionally, we have benchmarked FASTCC++ and
SWIFTCC++ which are the original algorithms plus the preprocessing step explained in the Appendix. Later
on, we extend the ideas of SWIFTCC to develop an analogous method for the context-specific reconstruction
problem with the same order of speed-up which SWIFTCC offers.

Methods

By similar arguments to the previous section, we concluded that a subnetwork N is flux consistent if and
only if

I. there exists v in analogy to such that

Sv=0
vzaN > 0
UVR\N = 07

II. and there exists a set {u*}X | in analogy to (2 such that

SuF =0

holds for all 1 < k < K. Furthermore, for any R; € N'\ Z, uf # 0 holds for at least one 1 < k < K.

We start by finding a v which is sparse in R \ C by minimizing the /; norm [Don06]

minimize H’UR\C H 1

subject to Sv =20
vzne > 0
v\e 2 0,

and setting the initial A/ to be the non-zero indices of v. Consequently, the optimal v satisfies [I] for this A.
This homogeneous problem is equivalent to the following linear program (LP)

minimize 17w
subject to Sv =20
vzne = 1
4
vp\e =20 @
w > VR\C
W 2 —UR\C,

by scaling v if necessary, so that the nonzero entries of vz~c are greater than or equal to one.

We define the set B =N\ T to be the reactions in A/ which have not been verified to be unblocked yet.
Whenever we find a u; which satisfies the conditions of , we update B by removing the reactions R; for
which uf # 0, and we also update A/ by adding the same reactions to it if they are not already included.

Let Sy denote the matrix consisting of the columns of S which correspond to /. We initialize {u*}X |
to be a basis for the set of vectors satisfying . Note that, this can be obtained by the singular value
decomposition (SVD) of Sy since it is a basis for the null space of Sy padded by zeros for the indices
corresponding to R \ A/. This step is not required and can be skipped to decrease the runtime.



In order to generate the next u*, we consider the solution of

minimize zTup + HUR\NH1
subject to Su =0
fusll <1,

where z is a random vector generated from the zero-mean normal distribution with variance ¢2. This problem
tries to find a w which is sparse in R \ N by minimizing the /; norm, and which is dense in B by the /o, norm
constraint [BV04]. The choice of the variance o2 manages the trade-off between these two objectives and is
set by a simple rule which doubles o whenever ug is not dense enough, for instance whenever the size of B is
not reduced by more than half. In addition, we have tried several other heuristics, however, SWIFTCORE is
robust across a wide range of o.

Finally, this problem is equivalent to the following LP

minimize  z7ug + 217w
subject to Su =0
up <1
g <1 (5)
up\wW S w
—UR\N < w,

where x is sampled from the standard normal distribution. More generally, %1 can be substituted by any
positive weight vector w to customize the loss corresponding to each reaction. In the current work, we have
only experimented with w = %1 for different values of 0. However, the accompanying package supports any
positive weight vector w.

Subsequently, we keep iterating over k until no reaction remains in B. Therefore, we will eventually
arrive at a set {u*}X_ | which satisfies [l| for the final AV, thus together with the prior v, they imply that A/
is a flux consistent subnetwork. Note that, we can also impose lower and upper bound constraints on the
feasible flux distributions by adding the corresponding inequalities to and for the general case.

Altogether, this algorithm is based on linear programming, and hence, SWIFTCORE is ultra-fast in compar-
ison to nonlinear methods such as the modelbuilding algorithm (MBA) [JSR10] which are orders of magnitude
slower. Focusing on computational efficiency, the only real contender is the FASTCORE algorithm which is
again based on linear programming but is still several times slower, mainly due to flipping the signs of
the columns of the stoichiometric matrix that correspond to the reversible reactions. We refer the inter-
ested reader to the associated paper [VPSI4] for more details on this technique which we have avoided in
SWIFTCORE in the way explained below.

Whether it is a binary variable in a mized-integer linear program (MILP) corresponding to the direction of
a reversible reaction or two separate iterations over the forward and reverse directions like in the FASTCORE,
a common way of dealing with reversible reactions is to iterate over instances of the metabolic network with
a predetermined direction for that reversible reactions. Instead of determining a direction for the reversible
reactions, signs of the different entries of & merely encourage one of the two possible directions in a “soft”
manner instead of a “hard” constraint. The objective function of is minimized when most of the entries
of up have the opposite sign to the corresponding entries of z. However, it may not be the case for some
entries of the solution, especially entries with small absolute values. In this sense, even though the sampled
x assigns random preferences to the direction of every reversible reaction in B, the optimal «w might have
different signs in a few entries. As a result, the search for a sparse u is conducted over a much larger feasible
set, and B vanishes in fewer iterations.

As a side note, SWIFTCORE also preprocesses the original metabolic network by merging the pairs of
reactions which are fully coupled to each other by a metabolite with no other adjacent reaction (cf., Figure 1
in [LDSB12]). However, this optional subroutine can be skipped safely and only affects the runtime. Besides,
we can repeat the whole algorithm with the same core reactions C but replace the original metabolic network
by N to further shrink the subnetwork until its size is no longer reduced.



Implementation

We have implemented both SWIFTCC and SWIFTCORE in an open-source package freely available for academic
use on |GitHubl It is written in MATLAB® with zero dependencies, though it supports Gurobi™ or
CPLEX™ optimizer for improved performance. Additionally, if any other LP solver has been set up for the
COBRA toolbox v3.0 [HAPF17], it can use that as well by calling the LP solve function of COBRA.

The partitioning preprocessing step described in the Appendix is also included in this package. Despite
the fact that in our simulations it does not improve the performance directly, we suggest exploiting its
potential to develop parallel consistency checking methods as the partitioned subnetworks can be analyzed
independently. We did not investigate how much this might improve the efficiency of either SWIFTCC or
FASTCC none of which can readily be parallelized in an obvious way and this direction is left for future
research.

Last but not least, the benchmark codes to reproduce all the figures in this article are also publicly
available in the same |GitHub| repository.

Results and discussion

To assess the performance of SWIFTCORE, we have benchmarked both SWIFTCORE and FASTCORE on the
flux consistent part of the Recon3D model with randomly selected core sets of varying sizes over
the range of 1 to the number of reactions n = 10600. All simulations were performed on a desktop PC
with AMD Ryzen™7 1800X eight-core processor and 16 GB of memory, and the CPLEX™ optimizer
was employed as the LP solver. Furthermore, in the published benchmark code we double check if the
reconstructed subnetwork is flux consistent and contains the core reactions and SWIFTCORE always passes
these sanity checks.

In Figure |1} the difference between the two versions of the algorithm is that in the SWIFTCORE with
reduction version we have included the SVD and full coupling reduction techniques described before in
contrast to the other vanilla version which excludes them. In spite of the fact that the vanilla version solves
more LP problems, it is actually more efficient nonetheless (see Figure .
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Figure 1: SWIFTCORE requires to solve at most 22 LPs on Recon3D with n = 10600
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Figure 2: SWIFTCORE is 6x faster than FASTCORE on average over these 105 iterations of varying sizes

Figure [3] shows that the sparsity of the outputs of all three algorithms is nearly identical. Moreover, the
intersection of the three solution subnetworks usually accounts for about 95% of the reactions which means
the subnetworks are almost the same.

12000 T T T T T

10000
=
g BOOO
ik}
c
O
@
P 8000
=
-
G
[ub]
MNO4000 1
@
4 O FASTCORE
2000 1 ¢ #  SWIFTCORE wio reduction |

SWIFTCORE w/ reduction
* intersection

0 . . . . .
0 2000 4000 6000 8000 10000 12000

number of core reactions

Figure 3: Benchmark of SWIFTCORE against FASTCORE on Recon3D

Regarding the impact of the weights, Figures and [6] demonstrate that the number of solved LPs,
the runtime, and the sparsity of the output subnetworks is pretty robust with respect to the variations of
weights. In these figures, we randomly sample half of the reactions in the network and run both algorithms
with the weight vectors 2¥1 for k = 0,1,...,15. Note that the magnitude of the largest weight vector is
32768 times the magnitude of the smallest one yet again, as claimed before, SWIFTCORE is robust to the
choice of o.
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Figure 6: The difference in sparsity is less than 1% for all algorithms

In the end, we have also benchmarked SWIFTCC against FASTCC on the flux inconsistent version of the
Recon3D model and its randomly selected subnetworks. In Figures [7] and [8] swiFTcc’s runtime is 8%
of FASTCC’s runtime on Recon3D model averaged over sampled subnetworks of different sizes from 1 to
n = 13543.
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Figure 7: SWIFTCC is more than 12X faster than FASTCC on average over these 467 iterations of varying sizes
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Figure 8: FASTCCH+ is only 4% faster than FASTCC on average

In a second setting, we evaluated both algorithms by the reconstruction of a liver model previously studied
in the original MBA and FASTCORE articles [JSRI10, VPST4]. All simulations were performed on a laptop
with Intel© Core™i7-5500U CPU @ 2.40GHz x 2 and 16 GB of memory, and the Gurobi™ optimizer was
employed as the LP solver. Figures[0] and [I0] are consistent with our previous findings.
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Figure 9: SWIFTCORE requires to solve at most 18 LPs for the hepatocyte-specific reconstruction
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Figure 10: SWIFTCORE is more than 5x faster than FASTCORE on average over these 100 iterations

Since FASTCORE is a deterministic algorithm, we see a corresponding flat line in Figure [[1] because of the
same hepatocyte-specific core set used in every iteration. On the other hand, the randomly selected x in
makes SWIFTCORE a stochastic algorithm which samples the space of alternative optimal subnetworks. It has
been proposed that a careful balance between model sparsity and metabolic functionality helps in reducing
the ambiguity of context-specific metabolic network predictions [REN16, RENT7]. In order to do so, we
have tested all reconstructions by the list of data-inferred metabolic tasks recently published in [RCKL19].
As we can see in Figure [I2] both versions of the SWIFTCORE algorithm sometimes pass an additional task
which can be a guidelines to obtain a more biologically relevant reconstruction from the sampled alternative
optima.
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Figure 12:
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SWIFTCORE with reduction passes 2.12 and without reduction passes 1.44 more tasks than

FASTCORE on average

Conclusions

Here, we have presented SWIFTCC and SWIFTCORE and one can easily implement a corresponding SWIFTGAP-
FILL by substituting the subroutine calls to FASTCC and FASTCORE in the FASTGAPFILL [TVF14]. We have
demonstrated through a real-world genome-scale model that the SWIFTCORE family improves the efficiency
of metabolic network reconstruction significantly.
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Appendix

To the end of this Appendix, without loss of generality we assume that all the reactions are irreversible,
i.e., T ="R. If this is not the case, we can replace each reversible reaction by a pair of irreversible reactions
corresponding to its forward and reverse directions.

We define the skeleton digraph of a metabolic network as G = (M, .A) where M is the set of metabolites
and A is the set of ordered pairs of metabolites (M;, M;) for which there exists a reaction Ry € R whose
reactants and products include M; and Mj, respectively.

We define the mapping f : R — P(A) by

f(By) = {(Mi, Mj) | Sir. <0, 5% > 0},
where P(A) denotes the power set (the set of all the subsets) of A. Moreover, we define its extension
f:P(R) — P(A) by
FR) = U F(Rw).

Rkeﬁ

Note that, f (R) = A. Intuitively, f of a subset of reactions R C R is the corresponding directed arcs in A
by breaking any hyperarcs in R into directed arcs.
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Let A = {A1,As,..., A}, and Sy denote the kth column of S. Suppose that 17.S = 0. Then for any

R € R we can define
Z Szk - Z S]k‘ - Z|SH€|

Sk <0 S;1>0

and we have that

S = E Sike; + E S]ke]
Sik<0 Sjr>0
szjk szjk
=2 > EDYDS €
Lk<OS]k>0 JK>OS1K<O

—SitSik
— Z 7Ck J (e] — ei).

Sik<07sjk>0

Therefore,
S = 0F,
where 0 is the incidence matrix of G and F' is the nonnegative [ X n matrix whose entries are
—SikSik
flk: - Ok y

if Ay = (MZ,MJ) € f(Rk) and flk =0if 4 iﬁ f(Rk)

The support of a vector v € R"™, denoted by supp(v), is defined to be the set of its nonzero indices.
With a slight abuse of notation, this is also used to show the set of reactions in R which are active in a flux
distribution, i.e.,

supp(v) = {R; € R | v; # 0}.

Suppose that 175 = 0. We claim that f (supp(v)) is a strongly connected subgraph of G for any steady-state
flux distribution v. The sketch of the proof is to first note that

f(supp(v U J[(Ry) = U supp(F) = supp(F'v)
v #0 v #0

but then d(Fv) = Sv = 0 and hence supp(Fv) is strongly connected and so is f(supp(v)).

This observation gives rise to a preprocessing step for any flux consistency checking algorithm by parti-
tioning G into its strongly connected components, and any reaction which is not inside a strongly connected
component would be blocked. Then the flux consistency checking algorithm is called on each one of them to
get the rest of blocked reactions. It only remains to show that the assumption 17.S = 0 holds for a broad
class of metabolic networks with a slight modification to internalize their boundary reactions but without
changing their steady-state flux distributions.

The boundary reactions Rp C R, as the name suggests, lie on the boundary of a given metabolic
network, e.g., exchange reactions with extracellular metabolites, and all the reactants utilized or all the
products formed by these reactions are external, i.e., their corresponding stoichiometric vectors are either
nonnegative or nonpositive. Consequently,

f('RB) = 0.

On the other hand, internal reactions R are the subset of R which only comprise internal metabolites
in M, hence the name internal. Next, we will see that this distinction is necessary for the stoichiometric
consistency analysis where we restrict our attention to the internal reactions. Otherwise, the missing infor-
mation on extracellular metabolites can be misinterpreted as stoichiometric inconsistency in the metabolic
network.

Let S; denote the submatrix of S restricted to the columns indexed by R;, and w € R™ denote the
positive vector of the molecular masses of M. By the law of mass conservation in a stoichiometrically

14



consistent metabolic network, the sum of molecular masses of M weighted by their associated stoichiometric
coefficients in any arbitrary R; € R; must be equal to zero. Therefore, any w > 0 which fulfils the mass
conservation law is assumed to satisfy w”S; = 0 by our earlier convention. A metabolic network is called
stoichiometrically consistent if there exists at least one molecular mass vector w such that

STw=0 (©)
w >0,
and stoichiometrically inconsistent otherwise [GPF08]. We note that, determining whether a metabolic
network is stoichiometrically consistent or not by @ is the same feasibility problem as by replacing S
and Z with ST and M.

Consider the following stoichiometric matrix

, [ ws
o= ]

where w > 0 is an arbitrary molecular mass vector and W is the diagonal matrix whose diagonal entries
are w. We associate the additional row with a fictitious extracellular metabolite M,,+1, and because of
w?'S; = 0, the stoichiometry of the internal reactions do not involve this newly added metabolite. Since
the last row of S’ is a linear combination of the other rows, we have Sv = 0 & Sv = 0. Therefore, we
can replace S by S’ and the set of the steady-state flux distributions does not change. Furthermore, if S;
is either nonnegative or nonpositive, then the ith entry of —w?S has the other sign and hence with respect
to S’ all reactions are internal, i.e., St = S’. The boundary reactions which were previously defined to
have either nonnegative or nonpositive stoichiometric vectors correspond to the reactions which involve the
fictitious metabolite M,, 1 in this new setting. Eventually,

WS

Tg _ 1T
178 =1 [—wTS

} =1"WwSs—-w"s=0.

As a final remark, we recall that in order to construct G and f we only need to know the signs of the
elements of S/, thus this can be done without computing w explicitly. Even when we do not know whether
the metabolic network is stoichiometrically consistent or not, we can still construct G, and if it is not strongly
connected, we conclude that the metabolic network has either stoichiometric or flux inconsistencies.
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