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a b s t r a c t

We consider the switched-affine optimal control problem, i.e., the problem of selecting a sequence of
affine dynamics from a finite set in order to minimize a sum of convex functions of the system state. We
develop a new reduction of this problem to amixed-integer convex program (MICP), based on perspective
functions. Relaxing the integer constraints of this MICP results in a convex optimization problem, whose
optimal value is a lower bound on the original problem value. We show that this bound is at least as tight
as similar bounds obtained from twootherwell-knownMICP reductions (via conversion to amixed logical
dynamical system, and by generalized disjunctive programming), and our numerical study indicates it is
often substantially tighter. Using simple integer-rounding techniques, we can also use our formulation to
obtain an upper bound (and corresponding sequence of control inputs). In our numerical study, this bound
was typically within a few percent of the optimal value, making it attractive as a stand-alone heuristic,
or as a subroutine in a global algorithm such as branch and bound. We conclude with some extensions of
our formulation to problems with switching costs and piecewise affine dynamics.

© 2015 Elsevier B.V. All rights reserved.
1. Switched-affine control

A switched-affine system has the form

xt+1 = Aut xt + but , t = 0, 1, . . . ,

where xt ∈ Rn is the state at time t , ut ∈ {1, . . . , K} is the control
input at time t , and A1, . . . , AK and b1, . . . , bK are given matrices
and vectors. At each time period, the control input selects from
a given finite set of affine dynamics. We assume, without loss of
generality, that (Ai, bi) ≠ (Aj, bj) for i ≠ j. Switched-affine systems
arise in various engineering applications, for example as models of
switched-mode power supplies and power conversion circuits.

The switched-affine control problem is

minimize
T

t=0

gt(xt)

subject to xt+1 = Aut xt + but
ut ∈ {1, . . . , K},

(1)
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where the constraintsmust hold for t = 0, . . . , T −1. The problem
variables are the system states x0, . . . , xT ∈ Rn and the control
inputs u0, . . . , uT−1. The problem parameters are the dynamics
(Ai, bi) for i = 1, . . . , K and the stage cost functions g0, . . . , gT .
We assume the stage cost functions gt : Rn

→ R ∪ {∞} are
convex and extended valued, which allows us to represent convex
state constraints in the stage cost function. We define the state
constraint set as Xt = {x | gt(x) < ∞}, so the objective is infinite
unless xt ∈ Xt holds for t = 0, . . . , T . We can use g0 to encode a
given initial condition, so that X0 = {xinit}, for some xinit ∈ Rn.

The switched-affine control problem (1) is NP-hard in general
(this is proven by Egerstedt and Blondel [1] for a special case),
and can be solved globally only at great computational cost in
the worst-case. However, by reformulating it as a mixed-integer
convex program (MICP), lower bounds on the optimal value can
be obtained by relaxing the integer constraints, and upper bounds
can be obtained by applying an integer-rounding heuristic to the
relaxed solution. These bounds can be used as the basis for a
global solver (using, e.g., branch and bound), or alternatively, the
rounding procedure can be used as a heuristic to produce a good,
if not optimal, sequence of control inputs. The success of both
methods (i.e., the run-time of a global solution algorithm, or the
quality of the heuristic control sequence) depends crucially on the
MICP reformulation (and the tightness of the bounds it produces).
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In this paper,we give a newMICP formulation that achieves bet-
ter bounds than those obtained from other popular reformulation
techniques. Althoughwe focus on the specific problem given in (1),
we give some extensions of our approach to some related problems
in Section 6.

1.1. Previous work

1.1.1. Switched-affine control
Many approaches exist for optimal control of switched systems;

a summary can be found in [2]. Herewemention some particularly
relevant techniques.
Mixed logical dynamical systems. Switched-affine systems are a
special case of hybrid systems, i.e., systems involving continuous
and logical dynamics. A standard approach to solve (1), proposed
by Torrisi and Bemporad [3], is to first convert the switched-affine
system into an equivalent mixed logical dynamical (MLD) system,
which expresses the system using a combination of linear and
binary constraints on the original variables and some auxiliary
variables (see [4] for details onMLD systems). Minimizing a sum of
convex functions of the system states can therefore be expressed
as an MICP. We will call this the MLD approach to solving (1), and
will briefly describe it in Section 4.1.
Disjunctive programming. Problem (1) can be cast as a disjunc-
tive program, i.e., an optimization problem in which the decision
variables must lie in the union of some sets (see [5]). Ceria and
Soares [6] show that minimizing a convex function over the union
of convex sets can be equivalently formulated as an MICP, using
lifted variables and perspective functions. This technique has seen
much application in process engineering (see, e.g., [7]); for some
other applications, see [8]. Several works apply disjunctive pro-
gramming to switched-affine optimal control; the first appears to
be by Stursberg and Panek [9]; we refer to this approach as the GDP
formulation, and we describe it in Section 4.2. Oldenburg andMar-
quardt [10,11] give a detailed account of how to formulate complex
switched dynamic constraints using a disjunctive programming
framework. Disjunctive programming techniques have also been
suggested for deriving mixed logical dynamical systems; see [12].
Several strategies for finding an upper bounds, some with guaran-
teed suboptimality bounds, can be found in thework of Sager, Jung,
and Reinelt [13,14].
Approximate dynamic programming. Wang, O’Donoghue, and
Boyd [15] give a method for obtaining relaxations for several
hard optimal control problems, including switched-affine systems.
The bounds are obtained by maximizing a quadratic approximate
value function, evaluated over some initial state distribution, while
constraining it to be an under-estimator of the true value function
(using a chain of Bellman inequalities).

1.2. Convex optimization

Convex optimization problems can be solved efficiently and
reliably using standard techniques [16, Ch. 1]. In practice, this is
often done by representing the functions involved in terms of a
few standard convex cones, then using a conic optimization solver.
Typical cones used in convex optimization include the positive
orthant, second-order cone, semidefinite cone, exponential cone,
and combinations thereof. Many functions and constraints are
representable in terms of these cones; several examples are given
in [17–20].

Mixed-integer optimization problems that are convex if the
integrality constraints are relaxed are called mixed-integer convex
programs (MICPs). Although mixed-integer convex programming
is NP-hard, these problems can, in principle, be solved using
simple branch-and-bound schemes; see [21] for details. Other
techniques apply specifically mixed-integer linear programs
(MILPs) and, more recently, mixed-integer second-order cone
programs (MISOCPs); specialized solvers capable of handling
MILPs andMISOCPs include the commercial solversMosek, Gurobi,
and CPLEX, as well as ECOS-BB, an extension to the open-source,
embedded second-order cone programming solver ECOS [22].

1.3. Contributions

In this paper, we give a new formulation of (1) as a mixed-
integer convex program, based on perspective functions. We
can then obtain a lower bound on (1) by relaxing the integer
constraints and solving the resulting convex optimization problem.
We show that this lower bound is at least as good as the lower
bound obtained by relaxing the integer constraints of either the
MLD or GDP formulations; our numerical study suggests that
this difference can be substantial. We also show how to combine
our formulation with a simple shrinking-horizon heuristic to get
upper bounds on (1). Again, our numerical study suggests that this
upper bound can be much tighter than the upper bound obtained
using the same shrinking-horizon heuristic with the MLD or GDP
formulation.

Our formulation is of course related to, and derivable from,
several other approaches, although not in simple or obvious ways.
Our formulation is derivable from the standardMICP reformulation
procedure for (convex) disjunctive programs, as given in [6,7].
However, it differs from the ‘‘convex hull’’ approach followed in [9],
which involvesminimizing the original objective function over the
convex hull of the disjunctive constraints. Instead, our formulation
is obtained by first considering an epigraph formulation of (1),
then treating all constraints as disjunctive constraints (even if the
constraint is the same for all disjunctions); only then do we apply
the convex hull relaxation.

Our lower bound can also be derived from the approach of
Wang, O’Donoghue, and Boyd [15] (when modified to apply to
a finite-horizon problem). In particular, if we take a chain of T
Bellman inequalities, and restrict our search to value function
under-estimators that are affine (instead of quadratic), then
the problem of maximizing the value function under-estimator
(evaluated at xinit) is the dual of our formulation.

1.4. Outline

In Section 2, we review some properties of perspectives
of convex functions. In Section 3, we give an alternate MICP
formulation based using perspective functions, and we prove its
equivalence to (1). In Section 4, we review three other approaches
to solving (1): by the standard conversion to a mixed logical
dynamical system, by generalized disjunctive programming, and
by approximate dynamic programming. We then compare these
methods to our perspective-base formulation. In Section 5, we give
an example with numerical results, and in Section 6, we give some
extensions of our method to problems similar to (1).

2. Perspective of a function

Recall that the perspective of an extended-value convex function
g : Rn

→ R∪ {∞} is the function p : Rn+1
→ R∪ {∞} defined by:

p(x, s) =

sg(x/s) s > 0
0 s = 0, x = 0
∞ otherwise.

Crucially, if g is convex, then so is p. (This can be shown by di-
rectly checking Jensen’s inequality for all cases above.) For more
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details on perspective functions, see [16, Section 3.2.6] or [23, Sec-
tion IV.2.2]. (Note that the definitions in these references differ for
s = 0.)

Closedness. If g is closed andproper, then its perspective p is closed
if and only if g grows superlinearly in all directions, starting from
any point in its domain (i.e., lims→∞(g(x + sz) − g(x))/s = ∞

for all nonzero z and x ∈ X). For details, see [23, Section IV.2.2] or
[24, Section 8]. Examples of functions that meet this condition are
positive definite quadratic functions and functions with bounded
domain.

For this reason, in the sequel we assume that gt in (1) is closed,
proper, and satisfies the superlinear growth condition given above.
For some functions of interest, such as norms, this condition does
not hold; a practical workaround is to include a small quadratic
penalty in gt , or to restrict the domain of gt to be bounded.

Conic representation. A conic representation of g consists of a
matrix C , vectors d and e, and a closed cone K such that

epi g = {(x, λ) | g(x) ≤ λ} = {(x, λ) | Cx + λd + e ∈ K}, (2)

where epi g is the epigraph of g . Conic representations allow us
to express nonsmooth functions (e.g., perspective functions) in a
smooth form, so they can be used in standard conic optimization
software. Given a conic representation (2) of g , then if p is closed,
a conic representation of p is

epi p = {(x, s, λ) | p(x, s) ≤ λ}

= {(x, s, λ) | Cx + λd + se ∈ K}. (3)

This fact has important practical consequences for solving convex
optimization problems involving perspective functions, such as the
perspective formulation of (1) given below. In particular, by using
a smooth, conic representation of the perspective, we sidestep
troublesome nondifferentiability and division-by-zero issues that
could arise by attempting to directly implement perspective
functions numerically.

3. Perspective formulation

The perspective formulation of (1) is the following MICP:

minimize gT (xT ) +

T−1
t=0

K
i=1

pt(z it , s
i
t)

subject to xt+1 =

K
i=1

Aiz it + bisit

xt =

K
i=1

z it

s1t + · · · + sKt = 1
sit ∈ {0, 1},

(4)

where all constraints must hold for t = 0, . . . , T − 1, and the
last constraint also holds for i = 1, . . . , K . In addition to xt , the
variables are z it ∈ Rn and sit , for t = 0, . . . , T − 1 and i = 1, . . . , K .
The function pt is the perspective of gt .

Problem (4) can be solved using an MICP solver, which may re-
quire transforming the objective and constraints to conic form. This
can be done by hand, or bymodeling software such as CVX [25,26].

Proof of equivalence. To see the equivalence of (1) and (4), take
any xt , z it and sit (for appropriate t and i) that are feasible for (4)
(i.e., they satisfy all constraints, and the objective value is finite).
For each t from 0 to T −1, we have sit = 1 for exactly one value of i;
denote this value as ut . Because the objective is finite, and because
sit = 0 for i ≠ ut , we must also have z it = 0 for i ≠ ut . The value of
the objective is then

gT (xT ) +

T−1
t=0

K
i=1

pt(z it , s
i
t) = gT (xT ) +

T−1
t=0

pt(xt , 1)

=

T
t=0

gt(xt), (5)

and the first constraint implies

xt+1 = Aut xt + but , for t = 0, . . . , T − 1.

Then xt and ut are a feasible point for (1) with the same objective
value as our feasible point for (4).

Similarly, if xt and ut are feasible for (1), we define

(z it , s
i
t) =


(xt , 1) ut = i
(0, 0) otherwise,

for t = 0, . . . , T − 1. It is easy to check that xt , z it , and sit (for
appropriate t and i) satisfy all constraints for (4).We can then apply
(5) to show that the objective values of (1) and (4) agree.
Bounds and approximate solutions. To obtain a lower bound on
the optimal value of (4), we can relax the integer constraints sit ∈

{0, 1} to sit ∈ [0, 1]. This problem is convex (hence easily solved)
and its optimal value is a lower bound on the optimal value of (1).
We call this problem the perspective relaxation of (1).

An upper bound for (1) can be found by choosing an initial
condition x0 and a sequence of switching controls u0, . . . , uT−1,
simulating the dynamical system according to xt+1 = Aut xt + but ,
and evaluating the objective function

T
t=0 gt(xt). The relax-and-

roundmethod for choosing a sequence of switching controls starts
from a solution x̃t , z̃ it , s̃

i
t of the integer relaxation of (4). We then

take x0 = x̃0 and ut ∈ argmaxi∈{1,...,K} s̃it . A more sophisticated
(and typically much better) upper bound can be found by taking
u0 ∈ argmaxi∈{1,...,K} s̃i0, as in the relax-and-round method. We
then compute x1 = Au0x0+bu0 , and repeat the procedure, solving a
new relaxed problemwith initial state x1 and horizon length T −1.
This technique requires solving T convex optimization problems of
decreasing size. We refer to this as the shrinking-horizon bound (as
in [27]). It often produces a good, if not optimal, choice of switching
controls, as well as an upper bound on the optimal value of the
switching control problem. (Of course, these heuristics may also
fail to find a feasible point, even if one exists.)

4. Comparison to other formulations

In this sectionwe compare the perspective formulation to three
other solution techniques for (1) from the literature.

4.1. Mixed logical dynamical formulation

A standard approach to solve (1) is by optimizing over an
equivalent MLD system, as described in [28]. (For simplicity, we
refer to this as the MLD formulation, although other methods
for converting switched-affine systems to MLD systems are
possible.) Here wemake the assumption that the dynamics update
expressions are bounded over Xt , i.e.,

mi
t ≤ Aixt + bi ≤ M i

t , for all xt ∈ Xt

for some known vectors mi
t , M

i
t ∈ Rn (the inequalities are taken to

be elementwise). (When this assumption does not hold, standard
practice is to take mi

t to be sufficiently small, and M i
t sufficiently

large, so that they can reasonably be expected not to affect the
problem solution. This is often called a big-M method.) Under this
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assumption, theMLD formulation of (1) is:

minimize
T

t=0

gt(xt)

subject to mi
ts

i
t ≤ yit ≤ M i

ts
i
t

Aixt + bi − M i
t(1 − sit) ≤ yit

≤ Aixt + bi − mi
t(1 − sit)

xt+1 =

K
i=1

yit

s1t + · · · + sKt = 1
sit ∈ {0, 1},

(6)

where all constraints must hold for t = 0, . . . , T − 1 and i =

1, . . . , K . In addition to xt , the variables include yit ∈ Rn and sit ,
for t = 0, . . . , T − 1 and i = 1, . . . , K . Similar to (4), this problem
can be solved using an MICP solver.

The same procedures used to bound the optimal value of (4)
can be used to bound the optimal value of (6), or produce an
approximate solution. To obtain a lower bound, we again relax the
constraints sit ∈ {0, 1} to sit ∈ [0, 1]; we call this theMLD relaxation
of (1). The same relax-and-round and shrinking-horizon methods
can be used to find an approximately optimal choice of switching
controls, and therefore also an upper bound on the optimal value
of (1).

4.1.1. Comparison of lower bounds
Here we prove that the lower bound obtained from the integer

relaxation (4) is at least as tight as the bound from the integer
relaxation of (6). To do this, we will show that, given an arbitrary
feasible point for the relaxation of (4), we can construct a feasible
point for the relaxation of (6) with lower objective value. We
only treat the case in which the assumption of Section 4.1 holds;
otherwise, the MLD method cannot be used.
Constraint satisfaction. Suppose xt , z it , and sit (for appropriate
values of t and i) are a feasible point for integer relaxation of (4).
From the definition of perspective, for pt to be finite (and thus for
our point to be feasible), we must have z jt/s

j
t ∈ Xt if s

j
t > 0, and

z jt = 0 if sjt = 0. Combining thiswith the assumption of Section 4.1,
we have

misjt ≤ Aiz jt + bisjt ≤ M isjt (7)

for all i and j, and all t = 0, . . . , T − 1.
Now we show that by defining yit = Aiz it + bisit , we have that

xt , yit , and sit satisfy all (non-integrality) constraints of (6). The
first constraint is obtained by applying (7) with j = i, and noting
that the middle term is equal to yit . We now consider the second
constraint. By summing (7) over all j ≠ i, and using

K
i=1 s

i
t = 1

and
K

i=1 z
i
t = xt we have

mi(1 − sit) ≤ Ai(xt − z it) + bi(1 − sit) ≤ Mi(1 − sit).

Rearranging these inequalities yields

Aixt + bi − M i(1 − sit) ≤ Aiz it + bisit ≤ Aixt + bi − mi(1 − sit),

and substituting yit for Aiz it + bisit gives the desired result. The
third constraint of (6) is obtained by substituting Aiz it + bisit for y

i
t ,

and noting equivalence with the first constraint of (4). Finally, the
fourth constraint is equivalent to the fourth constraint of (4).
Objective bound. We now show the objective value of the new
point for the integer relaxation of (6) is lower than that of the
original point for (4). The objective of (6) is
T

t=0

gt(xt) = gT (xT ) +

T−1
t=0

gt


i∈It

sit(z
i
t/s

i
t)


,

where It = {i | sit ≠ 0}. We are justified in replacing xt with this
sumbecause xt =

K
i=1 z

i
t , and z it vanishes if s

i
t does. Using Jensen’s

inequality for gt , the right-hand side is bounded above by

gT (xT ) +

T−1
t=0


i∈It

sitgt(z
i
t/s

i
t).

Because pt(z it , s
i
t) = 0 for sit = 0 and z it = 0, this is in fact equal to

the objective of (4).

4.2. Generalized disjunctive programming formulation

Here we introduce the generalized disjunctive programming
(GDP) formulation, which first appeared in [9]. (This name
common in the literature, but is somewhat unfortunate in this
context, as our approach can also be derived from disjunctive
programming techniques.)

Define the perspective P of a set X as

P = {(x, s) | s > 0, x/s ∈ X} ∪ {(0, 0)}.

The perspective of a convex set is convex. (To see this, take g to be
the indicator function over X, and note that the perspective of g is
the indicator function of the perspective of X.)

The GDP formulation of (1) is

minimize
T

t=0

gt(xt)

subject to xt+1 =

K
i=1

Aiz it + bisit

xt =

K
i=1

z it

s1t + · · · + sKt = 1
(z it , s

i
t) ∈ Pt

sit ∈ {0, 1}.

(8)

The variables and constraints are the same of those of (4), except
the added constraint (z it , s

i
t) ∈ Pt , which holds for i = 1, . . . , K

and t = 1, . . . , T − 1. The sets Pt are the perspectives of the sets
Xt . For Xt bounded, this problem is equivalent to (1).

As with the previous formulations, a lower bound on (1) can be
obtained by relaxing the integer constraints of (8) and solving the
resulting convex optimization problem, which we call the GDP re-
laxation. Note that the objectives of the GDP andMLD formulations
are the same, as are the feasible sets of the GDP and perspective
formulations, making the GDP formulation a hybrid between the
two formulations. In fact, by following the same arguments given
in Section 4.1.1, any feasible point for the MLD relaxation can be
used to generate a feasible point for the GDP relaxation with the
same objective value. Similarly, any feasible point for the GDP re-
laxation is also a feasible point for the perspective relaxation, and
attains a greater or equal objective value. This establishes a hier-
archy of relaxations: the MLD relaxation is weaker than the GDP
relaxation,which is in turnweaker than the perspective relaxation.

4.3. Approximate dynamic programming

The dual of (4) can be written as

maximize µ0

subject to λT
t x + µt ≤ gt(x) + λT

t+1(A
kx + bk) + µt+1

(9)

with variables λt for t = 1, . . . , T and µt for t = 0, . . . , T . The
constraint holds for i = 1, . . . , K , t = 0, . . . , T − 1 and all x ∈ Rn.
(We takeλ0,λT+1, andµT+1 to be zero, for notational convenience.)
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This problem can be interpreted as an approximate dynamic
programming (ADP) method. Recall that if a (time-dependent)
approximate value function V̂t satisfies V̂T (x) ≤ gT (x), as well as
the chain of Bellman inequalities

V̂t(x) ≤ inf
k
gt(x) + V̂t+1(Akx + bk)

for all x and t = 0, . . . , T − 1, then we have V̂t(x) ≤ Vt(x) for
all x and t , where Vt is the optimal value function for (1). Problem
(9) can therefore be interpreted as the problemof finding the affine
value function underestimator V̂t(x) = λT

t x+µt (withλ0 = 0) that
achieves the highest cost at time t = 0. This approach to ADP is re-
lated to the linear programming solution of finite Markov decision
problems given by de Farias and Van Roy [29] and the semidefinite
programming approaches to ADP given by Rantzer [30], andWang,
O’Donoghue, and Boyd [15], which are applicable to switched-
affine dynamics and quadratically representable costs.

5. Example

In this section we give numerical results for a specific example,
linear–quadratic switching control, with stage cost function

gt(x) =


xTQx ∥x∥∞ ≤ xmax
∞ otherwise,

for t = 1, . . . , T , where Q ∈ Sn
++

. The perspective of gt is

pt(z, s) =

zTQz/s ∥z∥∞ ≤ xmaxs, s > 0
0 z = 0, s = 0
∞ otherwise.

The function g0 is used to encode an initial condition, so that

g0(x) =


0 x = xinit
∞ otherwise.

The perspective of g0 is

p0(z, s) =


0 z = sxinit, s ≥ 0
∞ otherwise.

In this case (4) is a mixed-integer second-order cone program,
and can be solved using several available solvers, such as Gurobi,
Mosek [31], and ECOS-BB (an extension of ECOS [22]),
Tightness of bounds. To test the tightness of the various bounds,
we generated 200 random instances of the linear–quadratic
switching control problem, with state dimension n = 3, K = 5
different switched dynamics, horizon length T = 20, stage cost
matrix Q = I , and state bound xmax = 5. (We chose relatively
small problems so they could be solved globally in reasonable
time. All relaxations, however, scale to problems with far larger
dimensions.) The dynamics matrices were randomly chosen as
Ai

= I + 0.1Ãi and bi = 0.1b̃i, with the elements of Ãi, b̃i, and
xinit sampled from a standard normal distribution.

The values ofmi
t andM i

t (used in theMLDmethod) were chosen
to give the tightest bounds on the dynamics functions over the set
Xt (i.e., we took mi

0 = M i
0 = Aixinit + bi and mi

t = bi − xmaxai,
M i

t = bi + xmaxai, for t = 1, . . . , T , where each element of the
vector ai is the ℓ1-norm of the corresponding row of Ai).

For each random instance we first computed the optimal value
by solving the mixed integer problem (4) globally, using CVX
[25,26], with Gurobi as the solver. All 200 instances were feasible.
We then computed six bounds on the optimal value: three lower
bounds from the perspective relaxation, the MLD relaxation, and
the GDP relaxation (i.e., the integer relaxations of (6), (4), and (8))
and three upper bounds from shrinking-horizon heuristic based on
the three formulations (6), (4), and (8). For each problem instance,
Table 1
Themean andmedian of the ratio of each bound to the optimal value, as well as the
percentage of instances for which the bound is infinite, for the randomly generated
instances of the linear–quadratic switching control example.

Bound Mean Median % inf.

Shrinking-horizon, perspective 1.11 1.04 0%
Shrinking-horizon, MLD ∞ 1.14 1%
Shrinking-horizon, GDP 1.38 1.13 0%
Relaxation, perspective 0.76 0.79 –
Relaxation, MLD 0.19 0.17 –
Relaxation, GDP 0.20 0.19 –

the bounds were scaled by the optimal value, so that the lower
bounds are between 0 and 1, and the upper bounds are greater than
or equal to 1.

The means and medians of the four (scaled) bounds across the
200 instances are shown in Table 1. The shrinking horizon heuristic
based on theMLDmethod did not always find a feasible point, even
though all problem instances were feasible, so themean is infinite;
we also show in Table 1 the fraction of instances for which each
upper bound is infinite. Note that the median of the shrinking-
horizon bound using the perspective formulation is 1.04, meaning
that in the majority of instances, this heuristic produced a bound
within four percent of the optimal value. The histograms of all six
bounds are shown in Fig. 1.
Solve time. We also performed a simple comparison of the time
required to globally solve the perspective formulation (4), the
MLD formulation (6), the GDP formulation (8). We used the
same numerical parameter values that we used for comparing
the tightness of the bounds; however, due to the difficulty of
solving (6) and (8) globally, we consider only the first 50 of the
200 instances, and we terminated the solver if an instance took
longer than five hours. We used CVX with Gurobi, running on a
Linuxmachine with an Intel Xeon processor. Using the perspective
formulation, the mean solve time for was around 7 min, and the
maximumsolve timewas 1h. Using theGDP formulation, themean
solve timewas (at least) 52min,with six instances terminated after
five hours. Using theMLD formulation, themean solve timewas (at
least) 1.5 h, with 12 of the instances terminated after five hours.

6. Extensions

We conclude with some extensions of the perspective-based
reformulation for problems that are not in the form of problem (1).
Switching costs. To incorporate switching costs, we add

T−1
t=0 ht

(ut−1, ut) to the objective of (1), where ht(i, j) > 0 is the cost
of transitioning from dynamics i to dynamics j. We take u−1 ∈

{1, . . . , K} to be a known parameter. (Intuitively, u−1 gives the
dynamics applied just before our problem begins.) An equivalent
MICP is obtained by adding
K

i=1

h0(u−1, s0) +

T−1
t=1

K
i=1

ht(sit−1, s
i
t)

to the objective of (4).
Switch-dependent stage costs. In some applications, the stage
cost function may depend on ut , so that the objective of (1)
becomes

gT (xT ) +

T−1
t=0

gut
t (xt),

where gut
t (xt) is convex in xt for each value of ut . An equivalent

problem is formed from (4), with the objective replaced by

gT (xT ) +

T−1
t=0

K
i=1

pit(z
i
t , s

i
t),

where pit is the perspective of g i
t .
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Fig. 1. Histograms of the scaled upper and lower bounds (a bound of 1 is the tightest bound possible). The top shows the lower bounds from integer relaxation (red) and
upper bounds from the shrinking-horizon heuristic (blue), both obtained using the MLD formulation (6). The bottom shows the same bounds obtained using the perspective
reformulation (4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Piecewise affine systems. A piecewise affine system has the form

xt+1 =


A1xt + Bvt f 1(xt) ≤ 0

...
...

AK xt + Bvt f K (xt) ≤ 0

for t = 0, 1, . . . . The (continuous) control input is vt ∈ Rm. We
assume the functions f i are convex, and also that the sublevel sets
{x | f i(x) ≤ 0} for i = 1, . . . , K have disjoint interior, that their
union is Rn, and that on the intersection of any two of these sets,
the piecewise dynamics agree.

Using switch-dependent constraints (and adding a continuous
input), we can minimize gT (xT ) +

T−1
t=0


gt(xt) + lt(vt)


, where lt

is convex, over a piecewise affine system, by solving

minimize gT (xT ) +

T−1
t=0


lt(vt) +

K
i=1

pt(z it , s
i
t)


subject to xt+1 =


K

i=1

Aiz it


+ Bvt

xt =

K
i=1

z it

s1t + · · · + sKt = 1
sit ∈ {0, 1}
qi(z it , s

i
t) ≤ 0,

(10)

where qi is the perspective of f i. The first three constraints must
hold for t = 0, . . . , T − 1, and the last two constraints must hold
for t = 0, . . . , T − 1 and i = 1, . . . , K . The variables are the same
as those of (4), with the addition of vt ∈ Rm for t = 0, . . . , T − 1.

7. Conclusion

In this paper, we presented a formulation of the switched-affine
optimal control problem as an MICP, allowing us to obtain bounds
on the optimal problem value using convex optimization, and to
use standard MICP solvers to solve the problem. We compared our
MICP formulation to someother popular reformulation techniques,
and showed that our formulation provides very competitive
bounds, both theoretically and numerically.

We conclude by noting that unlike the MLD and GDP
formulations, the perspective formulation crucially depends on
reformulating the objective of (1) in addition to the feasible set,
even though the objective is already a convex function. We believe
that this principle could be fruitfully applied to other types of
hybrid optimal control problems and this may be the subject of
future research.
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