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Abstract

The ith singular value of a transfer matrix, ;i (11 (jw)), need
not be a differentiable function of w at frequencies where
its multiplicity is greater than one. However, near a local
maximum, the largest singular value o (I (jw)) has a Lips-
chitz second derivative, but need not have a third derivative.
Based on this regularity result, we present a quadratically
convergent algorithm for computing the L..-norm of a trans-
fer matrix.

1 Introduction

We consider the singular values! of the transfer matrix of
a finear (multi-input-multi-output) dynamical system, eval-
uated on the imaginary axis; that is, we will be concerned
with a;(H (jw)), where w € R, and H{s) is the transfer ma-
trix of the system. We will assume that I (s) has no poles on
the imaginary axis, so that If(jw) is defined for all w € R..
Oue very important quantity defined in terms of the sin-
gular values is the Leo-norm of the transfer matrix I/,

Hlleo = sup o111 (jw)). (1)
u'Ell

IF 11 () is stable (i.c., all ofits poles have negative real part),
this norm coincides with the Heg-norm, whicl is the supre-
mnn of ay(11(s)) over s with positive real part.

We present a quadratically convergent algorithin for com-
puting the Le,-norm of a transfer matrix. The algorithm de-
pends critically on a regularity result for the singular value
functions which extends those of MacFarlane and Hung [1].
Most of the results presented are stated without proof. The
interested reader is referred to [2] or [3] for details.

2 Regularity of the Singular Values
as Functions of Frequency

In [1] MacFarlane and Hung observe that if o;(1/ (jwn)) > 0
and has mltiplicity one, that is, is an isolated singular value,
then a; (1 (jw)) is real analytic near wq, meaning it. is repre-
sentable by a power series in w — wy for w — wy small.

*Research supported in part by NSF under ECS-85-52.465, AFOSR
mnder 89-0228, Boeing Electronics Company under LIF0937, an IBM
faculty development award, and Bell Communications Research.

"I'he dth singular value of a complex matrix M is the nonnegative
squarcroot of the ith largest cigenvalue of Af*Af.
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However, there remains the important question of how the
singular values behave when they are not isolated. Clearly
when two singular values cross (or when one singular value
hecomes zero), they need not. even be differentiable, et alone
analytic. However, by reordering them, and possibly allow-
ing them to become negative, we can guarantee that they
are analytic for all w € R, including frequencies where the
singular values are not distinet. More precisely we have

Theorem 1 There are real analytic functions f; : R — R.
t=1,...,m, such that for all w € R,

{”l(”(j“’))s - ‘,O'm(”(jW))} = {lfl(w)lv cee ,fm(“j)l}

The functions f; can be considered unordered, unsigned ‘sin-
gular values’ of the transfer matrix.

Theorem | allows us to give a universal local representa-
tion of the singular value functions:

Corollary 1 (fiven any wy € R oand 1 < 7 < m, ther
are two real analytic functions f_ and fy such that in o
neighborhood of wy.

a1 (jw)) = { Sl s,
fi(w), w>wy.

This local representation enables us to derive interesting
regularity properties of the maximumsingular value function
around alocal maximum. Specifically, the following theorem
holds:

Theorem 2 Suppose oy(1 (jw)) has a local mazimum at
war. Then near wpy, we have

o1(H(jw)) = a1 (H(jwar)) — alw — war )2V +

n bi(w —war )M b o((w —war )M, w > wpy, 2)
bo(w—war )M+ 4 o((w —war )M, w < way,
Jor some N> 1, a>0, andb_ < by.

Thus, at a local maximum, we are guaranteed that the
maximnn singular value function is twice continuously dif-
ferentiable. In fact, the maximum singular value function
need not have a third derivative at a local maximum, i
other words, the case N = 1, b_ < by can obtain.




3 A quadratically convergent algo-
rithm for computing ||H ||«

In [1] (see also [5], [6] etc), a relation between the singular
values of a transfer matrix and a certain Hamiltonian matrix
is established. This relation enables us to compute the the
frequencies for which, given a real ¥ > 0, any singular value
of the transfer matrix equals 7. With a little more work,
we can separate the frequencies corresponding to different
singular values of the transfer matrix, and therefore for any
v > 01(D) we can compute every solution of each equation,

oi(H(jw)) =1, i=1,...,m (3)

Based just on this property, we can devise a simple bi-
scction algorithm, once we find a lower bound 7, such that
o1(H (jw)) = 71 has some solution, and an upper bound 1y
such that o1(H(jw)) = y has no solutions. The conver-
genee in this case would be lincar, since the error in esti-
mating the global maximum at the end of each step equals
liall the error at the end of the previous step.

But. since we have the additional regularity property ol the
maximum singular value function, we can devise a quadrat-
ically convergent algorithm for computing the global maxi-
nm.

The Quadratically Convergent Algorithm:

repeat {

find the frequency intervals Iy, ..., I; where oy (H(jw)) >
1
for each Iy set wy = madponi(Ic);

v = (1 + ¢) maxg o1 (H(jwr))

Juntd { 1 =0}

v is initialized to any number between o1(D) and ||/ ||co-
On exit, we have v < [|H|Jeo < (1 + €); therefore the algo-
rithm guarantees a relative error less than e.

4 Convergence Properties

First, the algorithm always converges. Referring to the al-
gorithm, we define

(i) =, at iteration i (1)

and

V(i) = max length(I;), at iteration t. (5)
‘Then we have
Theorem 3 V(i+1) < V(i)/2.

Since there are at most n/2 intervals at each iteration, the
total length of the intervals converges to zero; convergence
of 4 to ||| follows from uniform continuity of oy (1 (jw)).
To summarize,

Theorem 4 ¥(i) — ||H||co as i — o0.

Next, the convergence is always at least quadralic, a divect
consequence of the regularity result in theorem 2. Let

Sywr} (6)

Qo = {Wh . .

be the set of frequencics that are global maximizers of the
maximuin singular value, that is,

Qar = {w | (H(jw)) = I]H”,o}. (7)
Let Nj, aj, byj, and b_; be the constants in the local

representation of oy(H (jw)) near o, given by equation (2),
for j=1,...,r. Then we have:

Theorem 5
] - ] . N\ 2N;
Tim M = min L (!’.ﬂiﬁi) (8)
= ([l = ¥(1)) ioaj \ Aa;N;

Remark:

It can also be shown that V(i) converges quadratically to
zero.

For the case where the number of poles n of H(s) is much
larger than cither the number of inputs or outputs, the algo-
rithm typically takes approximately 10013 flops to compute
I I} to double precision, which appears to be a remarkable
improvement over existing methods.

5 Couclusion

"The maximum singular value of a transfer matrix, while gen-
crally not even differentiable, is always at least twice contin-
uously differentiable near a local maximum. We have pre-
sented a quadratically convergent algorithin for computing
[|{]lco Dased on this regularity result.

The algorithin is quite general, and works whenever we are
able to compute the intervals in which a continuous function
exceeds any given number. If the function has a continuons
second derivative, the algorithm has quadratic convergence.
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