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Abstrace: The i-th singular value of a transfer matrix need not

be a differentiable function of frequency where its multiplicity

is greater than one. We show that near a local maximum,

however, the largest singular value has a Lipschitz second

derivative, but need not have a third derivative. Using this

regularity result, we give a quadratically convergent algorithm
. for computing the L_-norm’ of a transfer matrix. .

Keywords: Multi-input multi-output linear system; lrén_sfcr ma-
trix; singular values; regularity of singular values, L -norm;
computation of L -norm; quadratic convergence; H_, control.

1. Introduction

Consider the linear dynamiéal system
. X=Ax + Bu, ' o (1a)
y = Cx—+ Du, : (1b)

where A €R™", BeR™™™ CeRP*", and D€
R7*™ The transfer matrix of this system is

H(s)=C(sI-4)"'B+D. - (2

Throughout this paper we will assume that A has
no imaginary eigenvalues, so that H(jw) is defined
for-all w€R. We will be concerned with the
singular values ' of the transfer matrix evaluated
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LF0937, an IBM faculty development award, and Bell Com-
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! The i-th singular value of a complex matrix M is the

nonnegative squarercot of the i-ih largest eigenvalue of
M*M. ’

on the imaginary axis o;( H(jw)), where w€R.
These singular values, and their associated left and

" right singular vectors, are useful in understanding

at which frequencies, and in which output and
input directions, the transfer matrix (2} is ‘large’
or ‘small’ (see e.g. {7]). One very important quan- -
tity defined in terms of the singular values is the
L_-norm of the transfer matrix H, '

IH I = swpoy(HG(o)). . 3)

In t2], the authors presented a bisection for
computing {|H |, from the matrices 4, B, C,
and D; an equivalent algorithm was described-in-.

_ [14). This algorithm is based on a simple result
{Theorem 3.1) that relates the singular values of

the transfer matrix H(jw) and the imaginary ei-
genvalues of an associated Hamiitonian matrix.
The bisection algorithm has several advantages
over brute force methods that directly use (3). At
each iteration, an upper and lower bound on
| HY, are maintained, so that the algorithm can
compute || H ., to a guaranieed relative or ab-
solute accuracy. The convergence of the algorithm
is linear (with constant one-half), and mdependent
of the input data 4, B, C, D.

In this paper, we present a quadrancally con-
vergent algorithm for computing the L_-norm of a
transfer matrix. The references {5,10,13,1] describe

-other approaches to modifying the bisection al-

gorithm to make it faster. While some of these
algorithms may indeed be quadratically conver—
gent in some cases, no proof is given.

2. Regularity of the singular values as functions of
frequency :

Our algorithm depends critically on a regularity
result for the singular value functions which ex-

-tends those of MacFarlane and Hung [12]. Mac-
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Farlane and Hung observe that if o,(H(jw,)) >0
and has multiplicity one (i.e., o, (H({w,)) #
a,( H{juw,y)) for k + i_), then o,( H{jw)) is real ana-
Iytic near w,, meaning it is representable by a
power series in « —w, for @ — ey, small- This

- observation follows immediately from the fact that

an isolated root of a polynomial whose coeffi-

cients depend analytically on a parameter is ana-
lytic in some nclghborhood of the nommal param--
eter.

Equwalcntly, real analyticity of o; (H(;w)} near

w, means that it can be extended to an analytic
function ¢(s) in some neighborhood of jw, in the
complex plane. In. fact, this extension is

v (sy=yA(H(-5)"H(s)),

.where A’is the oontinuation of the eigenvalue

corresponding to o7 for s = jw,, and the squareroot

-is the principle branch (continuation from- the

positive real axis). We make the obvious -but im-
portant remark that $(s) # 6,(H(s)) except when
s is imaginary. ?
When two singular values coalesce (or when

one singular value becomes zero), they need not
even be differentiable, let alone-analytic. More-
“over it.is well known that the eigenvalues of a
transfer matrix (the so-called characteristic gains)
-need not even be Lipschitz in w, as in the example

1 fe 1
- s+ 1ls ©Q

near w=90.

~ No such behavior is possible for ‘the singular
values: by reordering them, and allowing them to
become negative, we can guarantee that they are
analytic for all » € R, including frequencies where

_ the singular values afe not distinct or zero. More
precisely we have: :

Theorem 2.1. There are real analytic  functions
SRR, i=1,...,m, such that for all w €R,’

{a(HGw)),- .., o, (Hw))}
= {(1A(@) - es L ful@) 1)

The functions f; can be considered unordered,

unsigned singular values of the transfer matrix;

unlike the singular values, however, these func-

2 1t is known that thc_ function oy{ H(s)) is subharmenic in a
neighborhood of the imaginary axis [3} :

tions have analytic extensions into a strip contain-
ing the imaginary axis.
The theorem follows immediately from per-r

~ turbation theory for normal operators; see for -
: example Theorems 1.10 (on page 82) or 6. 1 (on -

page 138) in [11]. We remark that the left and
right singular vectors associated with the f; are
also analytic in a strip containing the imaginary
axis, but we will not need this fact. We are not
aware of the appearance of Theorem 2.1 in the '

. literature. 3

Thcorem 21 allows us to give a universal local
representation of the singular value functions:
Corollary 2.2. Given any w, <€ R and' 1<i<m;
there are two functions f_ and f, such that in a

“neighborhood of w,, f. and f, are real analytic
_and ’

f- (@), A-WS"’Os
f+_(“’.)s S W > W
For i =1, we have in addition

o (H(jw)) = max{ f_(w), f.{@)}.

in other words, f_(w)2f,(w) for <y, dnd

o HG) = {

fo(w) S f (@) for @ > wy.

“This follows from Theorem 2.1; the f_ and f, -
are each of the form f, or —f;» where the f; are ‘the-
functions mentioned in Theorem 2.1. The second
assertion in Corollary 2.2 follows from the fact
that f_ and f, are each some singular value of
the transfer matrix near w,; o;(H(jw)) must be

- their maximum.

. We now consider o;( H(jw)) in nelghborhood-
of a local maximum, at, say, w,,. Let f_ and f,

. denote the left and right analytic functions from’

Corollary 2.2 corresponding to o,( H(j»)) near
wy. If f-=f, then o (H(jw)) is analytic at w,,.
Let us consider the case f,+ f,, so that o;(H(jw))
is not analytic at w,,. Of course, the values of f.
and f, agree at w,,, and their first derivatives at
w,, must be zero. It is less obvious but true that
their second c_:]e_nvatn_ves must also agree at @,,.
For if, say £ (ws) > f1 (wp), then in a neighbor-
hood of w,,, f_(w)>f, (w) except at w,,. Tins
contradicts the second assertion in Corollary 2.2.
Thus the Taylor expansions of f_ and f,
about i,, can disagree first at order three. More

3 Some hints appear in [15], however.
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Fig. 1. Singular values and their second derivatives near «,, =1 for the example system.

generally, the same argument shows that the Taylor
expansions of f_ and f, about w,, disagree first
at some odd order: for some P>1, -

f(.i)(w ) (J‘)(QM}’ j=0,...,2P;
3
f£2P+l)(wM) <fi2P+l)(wM)-

Thus the maximum singular value is 2P times
continuously differentiable, but the derivative of
order 2P + 1 does not exist. Moreover, ‘since w,,
is a local maximum of both f_(w) and f,{w), the

first nonconstant term in their Taylor series ex-

. pansion around ,, must be an even, negative
function of w — w,,. that is, it must of the form
—a(w— wy )" for some N with 1 <N <P and
a >0. We summarize these remarks in the follow-
ing thcorem

Theorem 2.3. Suppose al(H(]w)) has a local maxi-
mum at w,,. Then near w,;, we have

ai(HG‘!’)) = "-’I(HG“’M)) - a(‘-"'_“’M)ZN

2N+l

b (W — ) , 2y,
, b_ (“"“’M)MH, W < Wy,
+0((w—wM)2"“) (4)

for some N> 1, a>0, and b_<b,.

Thus, at a local maximum, we are guaranteed -
that the maximum singular value is twice continu-
ously differentiable. In fact, the maximum singu-
lar value function need not have a third derivative
at a local maximum, in other words, the case
N=P=1, b_<b, can obtain. An example is the
two-input two-output system with transfer matrix -

'Ho(s) -0 :
'H(s)f{ 0o Ho.(s")}' )
where
Ho(s) = L2 V2 e

232+2s+1f

The smgular vaIues of (5) are the magnitudes of
the diagonal entries; both have a global maxlmum
of one at w,, = 1. For (5} we have

fu(w) = | HolG) ™)1
@)

f (@) = | Holiew) 1,

as the maximum singular value, in a neighborhood
left and right of w, =1, respectively. Figure 1
shows (7) and their second derivatives.



4 .. S. Boyd, V. Balakrishnan / Singular values of a transfer matrix »

3. A quadratlcally convergent algorithm for com-
puting || H |f,,

We firs’t show how to compute the frequency
intervals in which the maximum singular value

exceeds any given number. We recali a result from

12}

Theorem 3.1. Suppose y > o(P) and @ E€R. De-

fine the Hamiltonian matrix

A 0
M‘t= 1) __'AT

JgrooQf-2 ¥ “[c o
0 —CT -DpT| |0 BT}
Then det(M - JwI y=0 ;f and only if for some

i, o (H(w))=7-

‘Thus, -the imaginary elgenvalucs of M, are ex-
actly the frequcncncs for which some smgular value

-of the transfer matrix equals y; the endpoints of

the frequency intervals where the maximum singu-
lar value -exceeds y must be among these. For a
multi-input multi-output (MIMO) system (m>1
or p > 1), it is not possible to identify the intervals

1

“o(HG)) =7, |
" ‘Suppose the imaginary eigenvalues of M, are

“on which e,( H(_]w)) > Y, given on!y the imaginary

cigenvalues of M,: Figure 2 gives an example
which illustrates this difficulty.

. With a little work, we can separate the frequen-
cies corresponding to different singular values of-
the transfér matrix, so that for any y we can
compute every solution of each-equation,

c—l,...,m

jor,-..,jw,. One method is to compute the sig-
‘nature of :

v — H(jo,)” Ho,)

. for each k, e.g. compute a lower triangular L and

a diagonal -2 such that
Y- H{jwk) H(_]mk) LZL*.

“Then, o,(H(jw,) =¥ if and only if ¥ has at least.

i nonnegative entrics and fewer than posnwe
entries. :

In particular, we can compute every solutlon of
the equation o,(H{(jw))=7v by computing the
imaginary cigenvalues of M,, and discarding those
for which ’

yi— H(j.w ),*H(jmr)

Flg 2. The dark lines show the singular values of one transfer matrix; the dotted lines show the singular values of anolher transfer
matrix. These systems have identical imaginary elgenvalues of M, but different intervals in “which o (H(w)) > . Thus, the intervals
in which o,( H{jw)) > y cannot be dctemuned from the i mmgmary e:genvalums of M, aione )
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Fig. 3. One iteration of the algorithm: ¥, is the updated value of Y. -

is not: positive semidefinite. These solutions are
exactly the endpoints ‘of the.intervals in which
‘o (H(jw)) > v. If @, and «, are consecutive solu-
tions of a,(H(uo)) v, then on the interval
(w,, @, ), either o;(H(jw))>v or a(H(w)) <7,
wluch is readily determined by checking the sxg-
. naturc of

3 * - A
¥ — H( 2J(Qq +w)) H(3i(w, +0,)).
~ We can now des;:_ribc the algorithm for comput-
ing || Hll.o® » |

¥ < any number betwcen Goan( D) and | Hl o
rcpcat{ :
“ find ‘the frequency intervals I;,. .., 1,
where ¢,( H(jw)) >
- for each'I; set w, = midpoint(l,};
| ¥, o HGe) -

Figure 3 shows one iteration of this algorithm.
. We will prove that y always converges mono-
tonically and quadratically to | HY, - The set
{@;.-.,w} (I may change at each iteration) ap-

proxlmates ‘the set of frequencies that are global

-maximizers of the maximum singular value,
Luner = (@1 01(H(i0)) = [ H ]l } - ®)

This convergence is also monotone and quadratic
" in the following sense: the set U, I, monotonically
and quadratically converges t0.$2,,,,.

Given a prespecified relative tolerance e, one
possible stopping criterion is

until{ o;( H(jw)) = (1 +¢) has no solutions } .

This stopping criterion guardntecs a relative
. error less than & on exit we have '

Y< 1 Hll, <¥(1 +e).

Implcmcnlmg this stoppmg cmenon dlrectiy
would require one additional Hamiltonian eigen-
value computation every iteration. It is more effi-
cient to directly incorporate the stopping criterion
lnto the algorithm as follows:

v < any number between o, (DY and || H || ;.
repeat{ ' ’
find the frequency intervals Ij,.. . I,
where ol(H(;w)) >vy(l+eg);
for each I, set w, = midpoint(L,);
y = max, o,(H(w,)

| } until {{=20}

On exit; we have Yy < || H ||, <v(1+¢).

4. Proof of global convergence

We first brové that the algorilhm always con-
verges. Referring to the algorithm, we define

(i) =v, at iteration i, 9)

and
V(i)= max length(, ), at iteration i: V'(1O')

Then we have:

~ Theorem 4.1. V(i + 1) < 1V(i).

Proof. Let I{”,...,I{" denote the frequency inter-
vals in which al(H(]w)) >y at iteration { of the
algorithm, so that

vi{i)= m',?x lcngt-h(l}f’).

Each interval I{*Y is contained in one of the
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Fig. 4. _dne iteration of the algorithm near the global maximizer wy,.

intervals I{7, ...
cannot contain any of the midpoints of the inter-
vals I, since.at these frequencies we have

a{ H(jw)) <v(i+1), _
whereas in the intervals I{*" we have
o (H(w)) > v(i +1).

Thus, each interval at iteration i + 1 is contained
in either the left or right half of an interval from
iteration i. The theorem follows immediately. O

Since there at most 3n intervals at each itera-
tion, the total length of the intervals converges to

zero; convergence of y to || H|j,, follows from
uniform continuity of o,(H(jw)) To skmmarize:

" Theorem 4.2. v(i) = || H{l,, asi— 0.

5. Proof of quadratic convergence

We now show that the convergence is always at

least quadratic, a direct consequence of the regu-

larity result in Theorem 2.3. Let

Qma)t: {(01,...,(0,,}

be the set of maximizing frequencies (see (8)). Let
N, a,, b, 7 and b_ iy be the constants in the local
representatxon of al(Hﬁw)) near «; given by
equation (4), for j=1,..., r. Then we have

Theorem S.1.

fim Ml = y(i+1)
[ige} )

i=eo (I H o ~ (1)

(12)

l(” moreover, each'interval I{*Y

ar

- a(H (1)) =7,

Remark. It can also be shown that V(:) converges.
quadratically to Zero.

Proof We wilt g;ve the proof for the case when
Q... isa smg!eton say £,,,, = { @, }; our proof is
'readlly extended to the general case. To simplify
notation, we will drop the subscripts j (unneces-

_sary since we assume there is only one maximizing 7

frequency) and "write y for y(i) and v, for
y(i +1).

. The representation (4) of a,(HQw)) imphes the

exxstence of a neighborhood around w,,, with

-6, ( H{jw)) strictly monotonic increasing for w < w,,

and strictly monotonic decreasing for @ > wy,.
Thus we may solve !ocally' for the inverse func-
tions w,(y) and w_(y): for ||H||w - smail.
and positive,

w0, (1) 2 6y

o ( H{jw_ (Y)))=.Y: w_(v) S wy. _
The frequency interval in the algonthm is thus

(@-(y), w.(y)) for v close to IIHIL,,, and we

have '

Yoew =01 Hi(w_(7) + @, (¥)))),

as shown in Figure 4.

‘The inverse functions «_ and w, have Puis-

‘seux series represcntatlons (see e.g. [6, p. 246] or

i
w0 (v) = ot e (uHum -y
+B_(H|., —v)" .
+o(CH H il = 1)), 13)
@, (¥) = p+ o (L H | —y)
+ B (I H o — V) |
+o((I H [l —=¥)*Y). (14).
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' Froin . ‘
a(HGo_)) = oy(HGo.)) =
we find that

1 4

= —gm\N ﬂ;= %a—(na/m,
a+=a—|/2iv, B.= %a—uﬂ/m_
Adding equations (13) and (14), we gét
(w,+0) i bat by
7 —“wta (_TN_-)
AN H lloo =)
+o((HH il — 1))

_Substituting in (4), we obtain
o 1 b b Y ~
1 H Nl =Yoo = g (“m™) (IH 1 =)
+o((1l H Il — 7))

The conclusion (12) follows immediately. 0.

6. Coni:lusionf

In 2] we show how to compute other quantities
of interest such as the maximum of the maximum
singular value over a given frequency band, or the
minimum dissipation of a transfer matrix. The

algorithm described in this paper is readily mod-

ified to compute these quantities as well.

In our experience, the algorithm converges sub-
stantially faster than bisection methods. However,
the task of a careful numerical analysis consider-
ing the effects of roundoff error in-the computa-
tions, remains. ‘
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