Operation and Configuration of a Storage Portfolio via Convex Optimization

Matt Kraning, Yang Wang, Ekine Akuiyibo, Stephen Boyd

Information System Laboratory Electrical Engineering Department, Stanford University

> 18th IFAC World Congress Milan, 9/1/2011

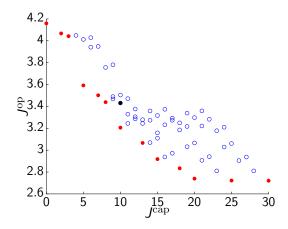
This talk

- a general framework for operating and configuring a portfolio of storage devices
- ▶ find optimal trade-off between operation cost (J^{op}) and capital construction cost (J^{cap})

Where we are going

- assume that J^{cap} is known for all candidate portfolios
- ▶ focus on evaluating *J*^{op} for each portfolio

The final result



Storage portfolio

- portfolio of n different storage devices
- ▶ charge $q \in \mathbf{R}_+^n$, charging/discharging rates $u^+, u^- \in \mathbf{R}_+^n$
- ► maximum charge, charging/discharging rates (Q, C, D) ∈ R³ⁿ
- ► charge leakage, charging/discharging efficiencies (η^l, η^c, η^d) ∈ (0, 1]³ⁿ
- exogenous input w
- discrete time state evolution:

$$q_{t+1} = \eta' \circ q_t + \eta^c \circ u_t^+ - (1/\eta^d) \circ u_t^- + w_t, \quad t = 0, 1, \dots$$

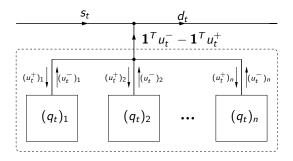
Storage portfolio

 pull energy s from source and deliver energy d to destination

$$\blacktriangleright \text{ let } v_t = (d_t, s_t, u_t^+, u_t^-)$$

power balance:

$$(-1, 1, -1, 1)^T v_t = 0, \quad t = 0, 1, \dots$$



Objective function

decomposable objective function

$$\ell_t(\mathsf{v}_t, \mathsf{q}_t) = \phi^{\mathrm{sr}}_t(\mathsf{s}_t) + \phi^{\mathrm{de}}_t(\mathsf{d}_t) + \phi^{\mathrm{ch}}_t(\mathsf{u}^+_t, \mathsf{u}^-_t) + \phi^{\mathrm{st}}_t(\mathsf{q}_t)$$

- functions not necessarily known ahead of time
- encode constraints by setting $\ell_t = +\infty$ if violated
- $\{\ell_t\}$ encodes all problem uncertainty other than $\{w_t\}$
- operation cost

$$J^{\mathrm{op}} \equiv \lim_{T o \infty} rac{1}{T} \sum_{t=1}^{T} \ell_t(\mathsf{v}_t, q_t)$$

(we assume limit exists)

Example objective functions

Control policy

- *ŵ*_{τ|t}, *ℓ*_{τ|t}: estimates of exogenous input, objective function at time τ, based on information available at time t
- estimates can be obtained many ways
 - conditional expectation (if statistical model exists)
 - historical patterns
 - analyst predictions
 - futures market
- ▶ goal: pick v_t to minimize J^{op} and satisfy constraints, based on information available at time t

Control policy

- we use model predictive control (MPC)
- ► at time *t*, construct estimates $\hat{\ell}_{\tau|t}$, $\hat{w}_{\tau|t}$ for *T* steps into the future and solve

$$\begin{array}{ll} \text{minimize} & \frac{1}{T} \sum_{\tau=t}^{t+T-1} \hat{\ell}_{\tau|t} (\hat{v}_{\tau}, \hat{q}_{\tau}) \\ \text{subject to} & \hat{q}_{\tau+1} = \eta^{\text{l}} \circ \hat{q}_{\tau} + \eta^{\text{c}} \circ \hat{u}_{\tau}^{+} - (1/\eta^{\text{d}}) \circ \hat{u}_{\tau}^{-} + \hat{w}_{\tau|t}, \\ & \hat{d}_{\tau} - \hat{s}_{\tau} + \mathbf{1}^{T} \hat{u}_{\tau}^{+} - \mathbf{1}^{T} \hat{u}_{\tau}^{-} = 0, \\ & 0 \leq \hat{q}_{\tau} \leq Q, \quad 0 \leq \hat{u}_{\tau}^{+} \leq C, \\ & 0 \leq \hat{u}_{\tau}^{-} \leq D, \quad \tau = t, \dots, t + T - 1 \\ & \hat{q}_{t} = q_{t}, \quad \hat{q}_{t+T} = q_{\text{final}} \end{array}$$

• when $\hat{\ell}_{\tau|t}$ are convex, problem is convex and so easily solved

Numerical example

- time discretized into 30 minute intervals
- T = 48 (one day prediction horizon)
- ▶ $\ell_t(v_t, q_t) = p_t s_t + \alpha (r_t d_t)_+$, with capacitated source
- *r_t*, *p_t* are log-normal stochastic process, with diurnal variation
- $\hat{r}_{\tau|t}$, $\hat{p}_{\tau|t}$ are conditional expectations

Portfolio configurations

▶ 3 types of devices: small (S), medium (M), large (L)

_	device	Q	С	D	η	η_{c}	η_{d}	$J^{ m cap}/ m unit$
	L	5	0.75	0.75	0.98	0.8	0.8	5
-	М	2	0.5	0.5	0.99	0.9	0.9	3
	S	1	0.5	0.5	0.995	1	1	2

64 configurations consisting of all combinations containing
 0, 1, 2, or 3 units of each device type

MPC evaluation

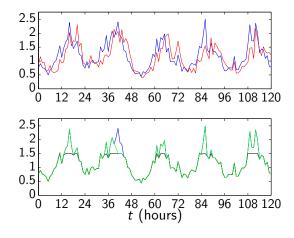
- simulate MPC for each portfolio configuration for 365 days (17520 time periods)
- solve times on single core of 3.2 Ghz Intel i3
 - SDPT3: 3.23 s (15 hours total)

MPC evaluation

- simulate MPC for each portfolio configuration for 365 days (17520 time periods)
- solve times on single core of 3.2 Ghz Intel i3
 - SDPT3: 3.23 s (15 hours total)
 - CVXGEN: 6.56 ms (under 2 minutes total)

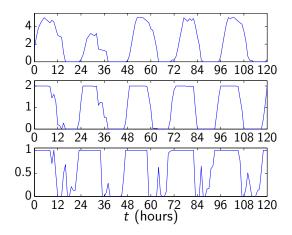
▶ nearly **500**× speedup

Results



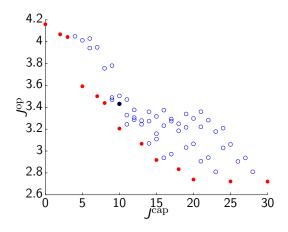
- top: r_t (blue), p_t (red)
- ▶ bottom: *d_t* with storage (green), without (black)

Results



• top: $(q_t)_L$, middle: $(q_t)_M$, bottom: $(q_t)_S$.

Results



- Pareto optimal portfolios (red)
- portfolio with one of each type of device (black)

Interpretation

- at low amounts of storage, well chosen additional devices allow for large decrease in operation cost
- at high amounts of storage, additional devices have minimal impact on operation cost of well chosen portfolios
- Pareto optimal portfolios tend to have mixtures of devices

Conclusion

- a well chosen portfolio of different storage devices can deliver better performance than a single type
- a storage device must be judged in the application context, with a good control policy
- while basic operation of a portfolio of storage devices is simple and intuitive, good operation requires optimization
- super fast solvers make possible substantial simulation-based analysis

