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Abstract: We consider a portfolio of storage devices which is used to modify a commodity
flow so as to minimize an average cost function. The individual storage devices have different
parameters that characterize attributes such as capacity, maximum charging rates, and losses
in charging and storage. We address two problems related to such a system. The first is the
problem of operating a portfolio of storage devices in real-time, i.e., making real-time decisions
as to how to charge or discharge each of the storage devices in response to the fluctuating
commodity flow and cost function. The second is the problem of configuring the portfolio of
storage devices, i.e., choosing a single portfolio from a set of candidate portfolios. Here we are
given the cost of each candidate portfolio as a function of its parameters, and seek to minimize
a combination of initial configuration cost and average operating cost. In this paper, we show
how both problems can be approximately solved using convex optimization.

1. INTRODUCTION

We propose the use of multiple storage devices, operated
in a coordinated fashion to serve as a single storage
portfolio, which is used to modify a commodity flow so
as to minimize an average cost function. We consider
two problems: The (real-time) operation of such a storage
portfolio, and the configuration of such a portfolio (which
is a planning or design decision) in order to trade off
the running cost and the capital construction cost of the
storage portfolio. Although our method is general and can
include any commodity, the primary application is energy
storage.

In power systems, energy storage devices are used to mod-
ify a given input energy flow to help synthesize a desired
output energy flow. The uses for energy storage devices
are extremely broad and include frequency regulation
(Oudalov et al. [2007]), system stability (Mercier et al.
[2009]), peak shaving (Even et al. [1993]), and spinning
reserve (Kottick and Blau [1993]). Due to the varied uses,
scales, and requirements for energy storage applications,
the number of different types of energy storage devices is
equally broad, and includes pumped hydro, compressed
air energy storage (CAES), battery energy storage sys-
tems (BESS), supercapacitors, and deferrable loads, as
just some examples.

A recent application for energy storage devices is buffering
the output power flow of intermittent, renewable energy
sources including wind (Zeng et al. [2006], Arulampalam
et al. [2006]) and solar (Teleke et al. [2010]) farms. These
systems are typically built with an accompanying battery
bank that is able to maintain a desired output power flow

in the presence of either cloud cover or decreased wind
speed by being charged during periods of increased power
generation. Because both the capital costs of the storage
systems and the potential energy savings can range from
the tens of thousands (Barton and Infield [2004]) into the
tens of millions (Alt et al. [1997]) of dollars per year for
large-scale systems, operation and configuration of energy
storage portfolios is of paramount importance.

There is an extensive literature on the operation and
sizing of batteries (Lee and Chen [1993], Yoshimoto et al.
[2006], Banos et al. [2006]), with optimal operation and
sizing being considered under many different operating
conditions (Oudalov et al. [2006]). Different battery sizes
and types are considered under multiple usage scenarios,
and the best performing type and size of battery is sub-
sequently picked as the (single device) storage portfolio.
However, single energy storage systems are typically spe-
cialized for specific scenarios. We will see that a properly
constructed portfolio of different energy storage devices
can better meet a wide range of requirements.

We describe a method called receding horizon control
(RHC), which we will use for operating the storage port-
folio. In RHC, we solve an optimization problem at each
time step to determine a plan of action over a finite
time horizon. The first step of the plan is executed,
and the process is repeated at the next time step, in-
corporating new measurements and external data that
have become available (Maciejowski [2002], Bemporad
[2006]). RHC has been successfully applied in a wide range
of settings, including chemical process control (Qin and
Badgwell [2003]), supply chain management (Cho et al.



[2003]), stochastic control in economics and finance (Her-
zog [2005], Talluri and Ryzin [2004]), and many others.

RHC is an ideal controller for energy storage portfo-
lios for several reasons. First, it is highly versatile, and
handles a variety of objectives and constraints naturally
and directly. In classical control systems, objectives and
constraints are instead handled indirectly, by adjusting
controller coefficients via a cumbersome trial and error
process. Another advantage is that RHC does not require
a formal stochastic model of the uncertainty, which is
not easy to obtain in practical settings. The controller
only requires predictions of future quantities, which can
be based on historical data, stochastic models, weather
forecasts, or analyst predictions. In many problems, even
when the predictions are poor, the controller often per-
forms exceptionally well (Wang and Boyd [2009]).

Recent advances in convex optimization allow for RHC
problems to now be solved at millisecond and microsecond
time-scales (Wang and Boyd [2008], Mattingley et al.
[2010], Bemporad et al. [2002], Bemporad and Filippi
[2004]). This allows the control policy to be implemented
online at kilohertz rates, which covers a wide range of
applications, and essentially all energy storage problems.
Our ability to solve the required optimization problems at
very high speed is useful even when the actual application
does not require high speed execution; for example, offline
Monte Carlo simulations to evaluate the system perfor-
mance can be carried out quickly. In this way, RHC can
be extensively tested offline via simulation, before online
implementation.

Another important problem we consider is how to choose
the configuration of the storage devices in our portfo-
lio. Larger sizes lead to better performance, but larger
batteries/reservoirs/pumps are also more expensive. The
configuration problem is to choose the parameters of the
storage system in order to minimize a trade-off between
the average per-period operation cost plus the initial cost
of constructing the storage portfolio, amortized over the
portfolio lifetime. In this paper we propose leveraging the
ability to rapidly solve optimization problems to solve the
the configuration problem via Monte Carlo simulations.

The rest of the paper is organized as follows. In section 2
we give the system model, objective, constraints, and
we define the operation and configuration problems. In
section 3 we describe methods for solving these problems,
and in section 4 we present a numerical example.

2. MODEL DESCRIPTION

2.1 System dynamics and constraints

We consider a portfolio of n storage devices (shown in
Figure 1) with dynamics

qt+1 = ηl ◦ qt + ηc ◦ u+
t − (1/ηd) ◦ u−

t + wt,

for t = 1, 2, . . ., where qt ∈ Rn is the vector of charge
levels, u+

t ∈ Rn is the vector of charging rates or
inflows into the storage devices, and u−

t ∈ Rn is the
vector of discharging rates or outflows from the storage

devices, at time t. The parameters ηl, ηc, ηd ∈ (0, 1]n are
vectors of storage leakage, and charging and discharging
efficiencies, respectively; 1/ηd is interpreted elementwise;
and ◦ denotes the Hadamard (elementwise) product.
Lastly, wt ∈ Rn is an exogenous input at time t. In
the simplest case with lossless storage devices we have
ηl = ηc = ηd = 1, where 1 is the vector with all entries
equal to one.

st dt

u+
t,1

u+
t,2 u+

t,nu−
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Fig. 1. Storage model with n storage devices. Dotted box
encloses the storage system.

We require that qt, u
+
t , and u−

t lie in the ranges

0 ≤ qt ≤ Q, 0 ≤ u+
t ≤ C, 0 ≤ u−

t ≤ D, t = 1, 2, . . . ,

where Q ∈ Rn is the vector of storage capacities, and
C ∈ Rn and D ∈ Rn are vectors of maximum charging
and discharging rates. (The inequalities are interpreted
elementwise.) The total inflow into our storage system at
time t is 1Tu+

t and the total outflow is 1Tu−
t . The storage

portfolio is completely characterized by the parameters
(Q,C,D, ηl, ηc, ηd).

The amount of energy pulled from the source at time t is
denoted by st ∈ R, and the amount of energy delivered is
dt ∈ R. Energy balance can be expressed as

dt − st + 1Tu+
t − 1Tu−

t = 0.

To simplify our notation, we let

vt = (dt, st, u
+
t , u

−
t )

be the vector of control variables at time t.

2.2 Objective

The cost incurred in each time period is denoted ℓt(vt, qt),
where ℓt : R2n+2 × Rn → R is a convex stage cost
function. The cost depends on the amount of charging and
discharging, the amount of energy pulled from the source,
the amount of energy delivered, and the charge levels. For
the problems we consider, the stage cost function has the
separable form

ℓt(vt, qt) = φsr
t (st) + φde

t (dt) + φch
t (u+

t , u
−
t ) + φst

t (qt).

We can interpret each term of this decomposition. The
first term, φsr

t (st), is a cost for pulling energy from the
source. In many applications we simply have φsr

t (st) =



ptst, where pt is the energy price at time t. Another choice
for φsr

t is

φsr
t (st) =

{

ptst, 0 ≤ st ≤ Smax

∞, otherwise,

which additionally constrains st to lie in the interval
[0, Smax]. The second term, φde

t (dt), is a cost that depends
on the amount of energy delivered. For example, we can
have φde

t (dt) = α(rt − dt)+, where rt is the amount of
energy requested at time t, α is a penalty for not meeting
the requested demand, and (z)+ = max{z, 0}. In other
applications we might penalize excessive charging and
discharging via φch

t , or add an energy storage cost, φst
t .

We do not assume that ℓt is known in advance. Indeed,
for many of the examples we consider, uncertainties such
as time-varying price or demand are precisely captured by
the uncertain stage cost function. Our overall objective is
the average operation cost

Jop = lim
T→∞

1

T

T−1
∑

t=0

ℓt(vt, qt), (1)

where we assume the limit exists.

2.3 Control policy

The control policy is a function that chooses the vector
of control variables at time t, vt, based on information
available at time t. The information available can include
measured quantities (such as a history of charge levels),
but it can also include estimates of quantities that are
not known (such as future stage costs) based on known
information. We denote these estimates by ŵτ |t and

ℓ̂τ |t, where the subscript τ |t denotes an estimate of the
quantity at time τ , based on information available at time
t. All other quantities, such as the parameters associated
with the storage portfolio, Q, C, D, ηl, ηc, ηd, are known
and fixed during operation.

These estimates can be obtained by many methods. When
we have a statistical model of the uncertain quantity,
the estimates can be the conditional expectations. For
example when wt, t = 1, 2, . . ., are independent and
identically distributed, we can take wτ |t = Ewt. However,
estimates need not come from statistical models; indeed,
in many applications such models do not even exist.
Instead, external data such as weather forecasts, historical
patterns, or analyst predictions can also be used to obtain
estimates.

2.4 Operation

The operation problem is to find a policy that chooses
the control variables vt, as a function of the information
available at time t, so that the average operation cost, Jop,
is minimized and all constraints are satisfied. We should
point out that our description of the optimal operation
problem is informal, since we have not specified statistical
models for the unknown quantities. We could state the
problem formally as a stochastic control problem; how-
ever, for practical applications accurate statistical models

are not usually available, so such a formal statement
would not be particularly meaningful.

2.5 Configuration

We consider a set of N candidate portfolios, which are
constructed from combinations and configurations of in-
dividual storage devices, such as batteries, reservoirs, and
capacitors. Each portfolio has an associated capital cost
Jcap, which represents the cost to build or acquire that
candidate portfolio. Given a particular control policy, each
portfolio also incurs an average operating cost Jop. The
configuration problem is to find portfolios that are Pareto
optimal with respect to the costs (Jcap, Jop).

3. METHODS

3.1 Operation

We will use receding horizon control as the control policy
for operating storage portfolios. At time t, we consider a
fixed time interval extending T steps into the future: t, t+
1, . . . , t+T −1. We first form predictions of exogenous in-

puts, ŵt|t, . . . , ŵt+T−1|t, and stage costs ℓ̂t|t, . . . , ℓ̂t+T−1|t

over this time interval. Next, we solve

minimize
1

T

t+T−1
∑

τ=t

ℓ̂τ |t(v̂τ , q̂τ )

subject to q̂τ+1 = ηl ◦ q̂τ + ηc ◦ û+
τ − (1/ηd) ◦ û−

τ + ŵτ |t,

d̂τ − ŝτ + 1Tu+
τ − 1Tu−

τ = 0,
0 ≤ q̂τ ≤ Q, 0 ≤ u+

τ ≤ C,
0 ≤ u−

τ ≤ D, τ = t, . . . , t+ T − 1
q̂t = qt, q̂t+T = qfinal,

with variables q̂t, . . . , q̂t+T and v̂t, . . . , v̂t+T−1. At time t,
let q̂⋆t , . . . , q̂

⋆
t+T , v̂

⋆
t , . . . , v̂

⋆
t+T−1, be an optimal solution to

the RHC problem. The RHC policy takes vt = v̂⋆t . The
process is repeated at the next time step, with new data
and predictions.

We make a few comments about this control policy. First,

when ℓ̂t|t, . . . , ℓ̂t+T−1|t are convex, this is a convex opti-
mization problem and can be solved efficiently (Boyd and
Vandenberghe [2004], Nocedal and Wright [1999], Grant
and Boyd [2008]). This will be the case for the example we
present in this paper. Problems with nonconvex objective
and constraints can also be handled. In these instances,
we solve the nonconvex problem by solving a sequence
of convex optimization problems to obtain good local
solutions (Diehl et al. [2002], Houska and Ferreau [2008]).
We have also added a terminal constraint q̂t+T = qfinal,
to ensure that the storage system is not depleted at the
end of the time horizon.

3.2 Configuration

We identify Pareto optimal portfolios by evaluating Jcap

and Jop for each candidate portfolio. We assume Jcap is
given for each candidate portfolio. The operation cost Jop

is evaluated by simulating the operation of the portfolio
with the RHC policy, and averaging the stage costs



incurred over a large number of time periods. If N is too
large to efficiently perform exhaustive simulations, we can
grid or find representative samples of regions of the set of
candidate portfolios and then use successive refinement
to exhaustively evaluate all candidate portfolios in good
performing areas.

One way to choose a particular portfolio is to amortize
Jcap over the operational lifetime of the constituent stor-
age devices in each candidate portfolio. We then pick the
candidate portfolio that achieves the smallest sum of av-
erage operation cost and amortized capital configuration
cost.

4. NUMERICAL EXAMPLE

Our storage portfolio is comprised of n = 3 different
types of storage devices with parameters listed in Table
1. We reference these devices by their storage capacity
as large (L), medium (M), and small (S). We refer to
the portfolio containing one large, one medium, and one
small device as the basic candidate storage portfolio. A
candidate portfolio is constructed by selecting 0, 1, 2, or
3 units of each storage device, giving N = 43 candidate
portfolios.

device Q C D η ηc ηd Jcap/unit

L 5 0.75 0.75 0.98 0.8 0.8 5

M 2 0.5 0.5 0.99 0.9 0.9 3

S 1 0.5 0.5 0.995 1 1 2

Table 1. Storage device parameters.

We discretize time into 30 minute intervals and use the
two term stage cost

ℓt(vt, qt) = ptst + α(rt − dt)+,

where pt is the price we pay for pulling energy from the
source at time t, and α > 0 is a penalty for not delivering
the requested energy rt; typically we have α ≫ pt.

Uncertainty in ℓt follows from uncertainty in rt and pt.
We model rt and pt as stochastic processes with diurnal
components, where the initial time t = 0 corresponds
to midnight, and the expected peak demand request and
price occur at 3PM and 6PM each day, respectively. These
processes are given by

log rt = ar + br cos(2πt/48− 5π/4) + ut + xt,
log pt = ap + bp cos(2πt/48− 3π/2) + ut + yt,
ut = hut−1 + zt,

for t = 1, 2, . . ., where xt, yt, zt are each IID gaussian
processes, with xt ∼ N (0, σ2

x), yt ∼ N (0, σ2
y), zt ∼

N (0, σ2
z), and ut is a zero mean, first order autoregressive

process — common to both prices and requests — with
autocorrelation

Eutut+τ =

{

σ2
z/(1− h2), τ = 0

hτσ2
z(1− h2τ )/(1− h2), τ 6= 0.

At time t, we assume that the controller has access to the
charge qt, the current and previous 48 (24 hours) prices
and energy requests pt, pt−1, . . . , pt−48, rt, rt−1, . . . , rt−48,

as well as all model parameters. We take the planning
horizon of our RHC control policy to be the next 24 hours
(T = 48). We note that log rτ and log pτ are gaussian
processes, and their conditional distributions are given by

log rτ |rt, . . . , rt−48 ∼ N (µrτ|t
, σ2

rτ|t
),

log pτ |pt, . . . , pt−48 ∼ N (µpτ|t
, σ2

pτ|t
),

for τ = t, t + 1, . . . , t + 47, where µrτ|t
, σ2

rτ|t
, µpτ|t

,

and σ2
pτ|t

are easily computed as affine functions of

log rt, . . . , log rt−48, log pt, . . . , log pt−48. We predict the
future demands and prices over the RHC horizon using
their conditional expectations

r̂τ |t = exp(µrτ|t
+ σ2

rτ|t
/2),

p̂τ |t = exp(µpτ|t
+ σ2

pτ|t
/2),

for τ = t, t+1, . . . , t+47. Thus our stage cost predictions
are

ℓ̂τ |t(vt, qt) = p̂τ |tst + α(r̂τ |t − dt)+,

for τ = t, t + 1, . . . , t + 47. For this example, we used
the parameters ar = 0.2, ap = 0.15, br = 0.4, bp = 0.4,
h = 0.9, σ2

x = 0.01, σ2
y = 0.01, and σ2

z = 0.01. In addition,
α = 20, and the maximum energy purchase is restricted
to Smax = 1.5, for all t.

We should mention that our model for price and demand
is chosen to be simple to describe but also have some
characteristics of real electrical demand and price. These
include a large, predictable baseline diurnal variation,
common and coupled variations from this baseline (given
by ut), and small, short-term, unpredictable fluctuations
(xt and yt). Of course, we could easily use more complex
models for predicting future price and demand for the
RHC control policy.

4.1 Operation

We used CVXGEN (Mattingley and Boyd [2010a,b]) to
solve for the average operating cost of the RHC control
policy over a 1 year period (365 days) for each candidate
portfolio. CVXGEN transformed the original RHC opti-
mization problem into a standard form quadratic program
with 576 variables and 1296 constraints. On a 3.2 Ghz
Intel Core i3, the CVXGEN code took an average of
6.56 ms (on a single core) to solve at each time step, so
that a year long simulation of a candidate portfolio could
be carried out in under 2 minutes. The same problem
took an average of 3.23 seconds to solve using the generic
optimization solver SDPT3 (Toh et al. [1999], Grant and
Boyd [2008]), so that a year long simulation of a single
candidate portfolio would take in excess of 15 hours.

Figures 2 and 3 show typical 5-day price and demand, and
charge trajectories, respectively, for the basic portfolio.
The top plot in Figure 2 shows demand requested (blue)
and price (red). The bottom plot compares the demand
requested (blue) to the power delivered by RHC (green)
and the power delivered with no storage (black). With
energy storage, we can match the demand much more
closely, only failing to meet the demand for a fraction of
one of the five days.
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Fig. 2. Top: demand (blue), price (red). Bottom: demand
(blue), energy delivered using RHC (green), energy
delivered with no storage (black).
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Fig. 3. Storage device charge profiles for basic portfolio.
Top: (qt)L, Middle: (qt)M . Bottom: (qt)S .

4.2 Configuration

Figure 4 shows the capital cost versus average cost of
operating the system for 1 year for all 64 candidate port-
folios. The Pareto optimal configurations are indicated in
red while the basic portfolio is indicated in black. Of all
candidate portfolios, 13 are Pareto optimal with respect
to the costs (Jcap, Jop).

We make a few statements about particular Pareto opti-
mal portfolios. The four leftmost (smallest Jcap) Pareto
optimal portfolios correspond to, in increasing order of
Jcap, no storage, one small, one medium, and one large
storage device, and have average operating costs of 4.16,
4.07, 4.04, and 3.60, respectively. These four portfolios all
operate in a ‘capacity limited’ regime, where they are each
unable to fully meet daily energy requests. Consequently,
the portfolios with larger energy storage capacity can
meet more of the energy demand, thereby reducing their
average operating costs by incurring a smaller demand
shortfall penalty. The three rightmost Pareto optimal

configurations correspond to configurations with 3 units
of both the small and medium storage devices, and, in in-
creasing order of Jcap, 1, 2, and 3 units of the large storage
device, with average operating costs 2.74, 2.722, and 2.720
respectively. In this ‘capacity satisfied’ regime, all three
storage portfolios can (nearly) match energy requests on
every day. Thus, the addition of large storage devices adds
substantially to capital costs, while minimally improving
operational performance.
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Fig. 4. Capital cost versus average operating cost for all
configurations.

5. CONCLUSIONS

In this paper we have presented methods, based on convex
optimization, for operating and configuring a portfolio of
energy storage devices. A major advantage of our methods
is that they are highly versatile, and apply to a wide range
of energy storage applications, without requiring a specific
model of future uncertainty.
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