Performance Bounds for Constrained Linear Stochastic Control

Yang Wang and Stephen Boyd

Electrical Engineering Department Stanford University

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

Outline

- constrained linear stochastic control problem
- some heuristic control schemes
 - projected linear control
 - control-Lyapunov
 - certainty-equivalent model predictive control (MPC)
- the linear quadratic case
- performance bound
- performance bound parameter choices for control schemes
- numerical examples

Linear stochastic system

• linear dynamical system with process noise:

$$x_{t+1} = Ax_t + Bu_t + w_t, \quad t = 0, 1, \dots,$$

- $x_t \in \mathbf{R}^n$ is the state
- $u_t \in \mathcal{U}$ is the control input
- $\mathcal{U} \subset \mathbf{R}^m$ is the input constraint set, with $0 \in \mathcal{U}$
- $w_t \in \mathbf{R}^n$ is zero mean IID process noise, $\mathbf{E} w_t w_t^T = W$
- state feedback control policy:

$$u_t = \phi(x_t), \quad t = 0, 1, \dots,$$

 $\phi: \mathbf{R}^n \to \mathcal{U}$ is the state feedback function

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

Objective

• objective is average stage cost:

$$J = \limsup_{T \to \infty} \frac{1}{T} \mathbf{E} \sum_{t=0}^{T-1} \left(\ell_x(x_t) + \ell_u(u_t) \right)$$

- $\ell_x : \mathbf{R}^n \to \mathbf{R}$ is state stage cost function - $\ell_u : \mathcal{U} \to \mathbf{R}$ is the input state cost function
- ℓ_x , ℓ_u , \mathcal{U} need not be convex

Stochastic control problem

- stochastic control problem: choose feedback function ϕ to minimize J
- infinite dimensional nonconvex optimization problem
- problem data:
 - dynamics and input matrices A, B
 - distribution of process noise w_t
 - state and input cost functions ℓ_x , ℓ_u
 - input constraint set ${\cal U}$
- ϕ^* denotes an optimal feedback function
- J^{\star} denotes optimal objective value

'Solution' via dynamic programming

• find $V^{\star}: \mathbf{R}^n \to \mathbf{R}$ and α with

$$V^{\star}(z) + \alpha = \min_{v \in \mathcal{U}} \left(\ell_u(v) + \mathbf{E} V^{\star} (Az + Bv + w_t) \right)$$

(expectation is over w_t)

optimal feedback function is then

$$\phi^{\star}(z) = \operatorname*{argmin}_{v \in \mathcal{U}} \left(\ell_u(v) + \mathbf{E} V^{\star} (Az + Bv + w_t) \right)$$

- optimal value of stochastic control problem is $J^{\star}=\alpha$

Stochastic control problem

- generally very hard to solve (even more: how would we represent a general function ϕ ?)
- can be effectively solved
 - when the problem dimensions are very small, $e.g.,\ n=m=1$
 - when $\mathcal{U} = \mathbf{R}^m$ and ℓ_x , ℓ_u are convex quadratic; in this case optimal policy is linear: $\phi^*(z) = Kz$
- many suboptimal methods have been proposed
 - can evaluate J for a given ϕ via Monte Carlo simulation
 - but how suboptimal is it?
- this talk: an effective method for finding a (good) lower bound on J^*

Projected linear state feedback

• a simple suboptimal policy:

$$\phi_{\rm pl}(z) = \mathcal{P}(K_{\rm pl}z)$$

- $K_{\text{pl}} \in \mathbf{R}^{m \times n}$ is a gain matrix (to be chosen) - \mathcal{P} is projection onto \mathcal{U}
- when \mathcal{U} is a box, *i.e.*, $\mathcal{U} = \{u \mid ||u||_{\infty} \leq U^{\max}\}$, reduces to *saturated linear state feedback*

$$\phi_{\rm pl}(z) = U^{\rm max} \operatorname{sat}((1/U^{\rm max})K_{\rm pl}z)$$

sat is (entrywise) unit saturation

Control-Lyapunov policy

• control-Lyapunov policy is

$$\phi_{\rm clf}(z) = \operatorname*{argmin}_{v \in \mathcal{U}} \left(\ell_u(v) + \mathbf{E} V_{\rm clf}(Az + Bv + w_t) \right)$$

- $V_{\text{clf}} : \mathbf{R}^n \to \mathbf{R}$ (which is to be chosen) is the *control-Lyapunov* function
- when $V_{\rm clf} = V^{\star}$, this is optimal policy
- when $V_{\rm clf}$ is quadratic, the control-Lyapunov policy simplifies to

$$\phi_{\rm clf}(z) = \operatorname*{argmin}_{v \in \mathcal{U}} \left(\ell_u(v) + V_{\rm clf}(Az + Bv) \right)$$

since $\mathbf{E} w_t = 0$, and term involving $\mathbf{E} w_t w_t^T = W$ is constant

Certainty-equivalent model predictive control (MPC)

• $\phi_{\rm mpc}(z)$ is found by solving (possibly approximately)

$$\begin{array}{ll} \text{minimize} & \sum_{\tau=0}^{T-1} \left(\ell_x(\tilde{x}_{\tau}) + \ell_u(v_{\tau}) \right) + V_{\text{mpc}}(\tilde{x}_T) \\ \text{subject to} & \tilde{x}_{\tau+1} = A \tilde{x}_{\tau} + B v_{\tau}, \quad \tau = 0, \dots, T-1 \\ & v_{\tau} \in \mathcal{U}, \quad \tau = 0, \dots, T-1 \\ & \tilde{x}_0 = z \end{array}$$

- variables are v_0, \ldots, v_{T-1} , $\tilde{x}_0, \ldots, \tilde{x}_T$
- $V_{\rm mpc}: \mathbf{R}^n \to \mathbf{R}$ is the terminal cost (to be chosen)
- -T is the planning horizon (also to be chosen)
- let solution be $v_0^{\star}, \ldots, v_{T-1}^{\star}$, $\tilde{x}_0^{\star}, \ldots, \tilde{x}_T^{\star}$

• MPC policy is
$$\phi_{\rm mpc}(z) = v_0^{\star}$$

Parameters in heuristic control policies

- performance of suboptimal policies depends on choice of parameters $(K_{\rm pl}, V_{\rm clf}, V_{\rm mpc} \text{ and } T)$
- one choice for $V_{\rm clf}$, $V_{\rm mpc}$: (quadratic) value function for some unconstrained linear quadratic problem
- one choice for $K_{\rm pl}$: optimal gain matrix for some unconstrained linear quadratic problem
- we will suggest some parameters later . . .

The performance bound

our method:

- computes a lower bound $J^{lb} \leq J^*$ using convex optimization (hence is tractable)
- bound is computed for each specific problem instance
- (at this time) cannot guarantee tightness of bound

Judging a heuristic policy

- suppose we have a heuristic policy ϕ with objective J (evaluated by Monte Carlo, say)
- since $J^{\rm lb} \leq J^{\star} \leq J$, if $J J_{\rm lb}$ is small, then
 - policy ϕ is nearly optimal
 - bound $J^{\rm lb}$ is nearly tight
- if $J J^{lb}$ is big, then for this problem instance, either
 - policy is poor, or,
 - bound is poor (or both)
- examples suggest that $J J^{\rm lb}$ is often small

Unconstrained linear quadratic control

• can effectively solve stochastic control problem when

-
$$\mathcal{U} = \mathbf{R}^m$$
 (no constraints)
- $\ell_x(z) = z^T Q z$, $\ell_u(v) = v^T R v$, $Q \succeq 0$, $R \succeq 0$

• optimal cost is
$$J_{lq}^{\star} = \mathbf{Tr}(P_{lq}^{\star}W)$$

• optimal state feedback function is $\phi^{\star}(z) = K_{lq}^{\star}z$, where

$$K_{\mathrm{lq}}^{\star} = -(R + B^T P_{\mathrm{lq}}^{\star} B)^{-1} B^T P_{\mathrm{lq}}^{\star} A$$

• P_{lq}^{\star} is positive semidefinite solution of ARE

$$P_{\mathrm{lq}}^{\star} = Q + A^T P_{\mathrm{lq}}^{\star} A - A^T P_{\mathrm{lq}}^{\star} B (R + B^T P_{\mathrm{lq}}^{\star} B)^{-1} B^T P_{\mathrm{lq}}^{\star} A$$

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

Linear quadratic control via LMI/SDP

• can characterize J_{lq}^{\star} and P_{lq}^{\star} via the semidefinite program (SDP)

maximize
$$\operatorname{Tr}(PW)$$

subject to $P \succeq 0$
$$\begin{bmatrix} R + B^T P B & B^T P A \\ A^T P B & Q + A^T P A - P \end{bmatrix} \succeq 0$$

- variable is P
- optimal point is $P = P_{lq}^{\star}$; optimal value is J_{lq}^{\star}
- solution does not depend on W, as long as $W \succ 0$
- constraints are convex in (P,Q,R), so $J^{\star}_{\rm lq}(Q,R)$ is a concave function of (Q,R)

Basic bound

• suppose $Q \succeq 0$, $R \succeq 0$, s satisfy

$$z^T Q z + v^T R v + s \le \ell_x(z) + \ell_u(v)$$
 for all $z \in \mathbf{R}^n, v \in \mathcal{U}$

i.e., quadratic stage costs are everywhere smaller than $\ell_x + \ell_v$

- then $J^{\star}_{lq}(Q,R) + s$ is a lower bound on J^{\star}
- follows from monotonicity of stochastic control cost w.r.t. stage costs
- lefthand side is optimal value of unconstrained quadratic problem

Optimizing the bound

• can optimize the lower bound over Q, R, s by solving

 $\begin{array}{ll} \text{maximize} & J_{\text{lq}}^{\star}(Q,R) + s \\ \text{subject to} & Q \succeq 0, \quad R \succeq 0, \\ & z^{T}Qz + v^{T}Rv + s \leq \ell_{x}(z) + \ell_{u}(v) \quad \text{for all } z \in \mathbf{R}^{n}, \ v \in \mathcal{U} \end{array}$

- a convex optimization problem
 - objective is concave
 - constraints are convex
 - last constraint is convex in $Q{\rm ,}\ R{\rm ,}\ s$ for each z and v
- last constraint is semi-infinite, parameterized by the (infinite) set $z \in \mathbf{R}^n$, $u \in \mathcal{U}$

Optimizing the bound

- semi-infinite constraint makes problem difficult in general
- can solve exactly in a few cases
- in other cases, can replace semi-infinite constraint with conservative approximation, which still gives a lower bound

Quadratic stage cost and finite input set

• can solve optimization problem exactly when

-
$$\ell_x(z) = z^T Q_0 z$$
, $\ell_u(v) = v^T R_0 v$, $Q \succeq 0$, $R \succeq 0$
- $\mathcal{U} = \{u_1, \dots, u_K\}$ (finite input constraint set)

• constraint

$$z^T Q z + v^T R v + s \le \ell_x(z) + \ell_u(v)$$
 for all $z \in \mathbf{R}^n, v \in \mathcal{U}$

becomes

$$Q \leq Q_0, \qquad u_i^T R u_i + s \leq u_i^T R_0 u_i, \quad i = 1, \dots, K$$

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

• to optimize the bound we solve SDP (with variables P, Q, R, s)

$$\begin{array}{ll} \text{maximize} & \mathbf{Tr}(PW) + s \\ \text{subject to} & P \succeq 0, \quad Q \succeq 0, \quad R \succeq 0, \quad Q \preceq Q_0 \\ & \begin{bmatrix} R + B^T P B & B^T P A \\ A^T P B & Q + A^T P A - P \end{bmatrix} \succeq 0 \\ & u_i^T R u_i + s \leq u_i^T R_0 u_i, \quad i = 1, \dots, K \end{array}$$

• monotone in Q, so we can set $Q = Q_0$ w.l.o.g.

S-procedure relaxation

- suppose stage costs are quadratic
- suppose we can find R_1, \ldots, R_M and s_1, \ldots, s_M for which

$$\mathcal{U} \subseteq \tilde{\mathcal{U}} = \{ v \mid v^T R_i v + s_i \le 0, \ i = 1, \dots, M \}$$

• a sufficient condition for

$$z^T Q z + v^T R v + s \le \ell_x(z) + \ell_u(v)$$
 for all $z \in \mathbf{R}^n, v \in \mathcal{U}$

is

$$z^T Q z + v^T R v + s \le z^T Q_0 z + v^T R_0 v$$
 for all $z \in \mathbf{R}^n, v \in \tilde{\mathcal{U}}$

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

• equivalent to $Q \preceq Q_0$ and

$$v^T R_i v + s_i \le 0, \ i = 1, \dots, M \implies v^T R v + s \le v^T R_0 v$$

• which is implied by $Q \preceq Q_0$ and the existence of $\lambda_1, \ldots, \lambda_M \ge 0$ with

$$R - R_0 \preceq \sum_{i=1}^M \lambda_i R_i, \qquad s \leq \sum_{i=1}^M \lambda_i s_i$$

(by the S-procedure)

• so
$$J^{\star}_{lq}(Q,R) + s$$
 is a still a lower bound on J^{\star}

Workshop on Optimization and Control with Applications, Harbin, June 9 2009

• to optimize the bound we solve the SDP

maximize
$$\operatorname{Tr}(PW) + s_0$$

subject to $P \succeq 0, \quad Q \succeq 0, \quad R \succeq 0, \quad Q \preceq Q_0$
 $\begin{bmatrix} R + B^T P B & B^T P A \\ A^T P B & Q + A^T P A - P \end{bmatrix} \succeq 0$
 $R - R_0 \preceq \sum_{i=1}^M \lambda_i R_i, \quad s_0 \leq \sum_{i=1}^M \lambda_i s_i$
 $\lambda_i \geq 0, \quad i = 1, \dots, M$

with variables P, Q, R, $\lambda_1, \ldots, \lambda_M$, s_0, \ldots, s_M

• can set $Q = Q_0$ w.l.o.g.

Suboptimal control policies

- optimizing the lower bound gives $P_{\rm lb}$
- can interpret $\mathbf{Tr}(P_{lb}W)$ as optimal cost of an unconstrained quadratic problem that approximates (and underestimates) our problem
- suggests that

$$V_{\rm lb}(z) = z^T P_{\rm lb} z,$$

and

$$K_{\rm lb} = -(R_{\rm lb} + B^T P_{\rm lb} B)^{-1} B^T P_{\rm lb} A$$

are good choices of parameters for suboptimal control policies

• examples show this is the case

Numerical examples

- illustrate bounds for 3 examples
 - small problem with trilevel inputs
 - large problem with box constraints
 - discretized mechanical control system
- compare lower bound with various heuristic policies
 - projected linear state feedback
 - model predictive control
 - control-Lyapunov policy

Small problem with trilevel inputs

• n = 8, m = 2

- A, B matrices randomly generated; A scaled so $\max_i |\lambda_i(A)| = 1$
- quadratic stage costs with $R_0 = I$, $Q_0 = I$
- $w_t \sim \mathcal{N}(0, 0.25I)$
- finite input set: $U = \{-0.2, 0, 0.2\}^2$

Large problem with box constraints

- n = 30, m = 10
- A, B matrices randomly generated; A scaled so $\max_i |\lambda_i(A)| = 1$
- quadratic stage costs with $R_0 = I$, $Q_0 = I$
- $w_t \sim \mathcal{N}(0, 0.25I)$
- box input constraints: $\mathcal{U} = \{ v \in \mathbf{R}^m \mid \|v\|_{\infty} \le 0.1 \}$

Discretized mechanical control system

- 6 masses connected by springs; 3 input tensions between masses
- quadratic stage costs with $R_0 = I$, $Q_0 = I$
- w_t uniform on [-0.5, 0.5]
- box input constraints: $\mathcal{U} = \{ v \in \mathbf{R}^m \mid ||v||_{\infty} \le 0.1 \}$

Heuristic policies

- projected linear state feedback with $K_{\rm pl} = K_{\rm lq}^{\star}$
- control-Lyapunov policy with $V_{\rm clf}(z) = z^T P_{\rm lb} z$
- model predictive control (MPC) with T = 30, $V_{mpc}(z) = z^T P_{lb} z$ (for trilevel example we solve convex relaxation with $u(t) \in [-0.2, 0.2]$, then round value to $\{-0.2, 0, 0.2\}$)

Results

	small trilevel	large random	masses
PLSF	12.9	31.3	269.8
CLF	10.8	25.6	61.1
MPC	10.9	25.7	58.9
$J^{ m lb}$	9.1	23.8	43.2

- control-Lyapunov with $P_{\rm lb}$ and MPC achieve similar performance
- control-Lyapunov policy can be computed *very* fast (in tens of microseconds); MPC policy can be computed in milliseconds
- bound $J_{\rm lb}$ is reasonably close to J for these examples

Conclusions

- we've shown how to find lower bounds on optimal performance for constrained linear stochastic control problems
- requires solution of convex optimization problem, hence is tractable
- provides only provable lower bound on optimal performance that we are aware of
- as a by-product, provides excellent choice for quadratic control-Lyapunov function
- in many cases, gives everything you want:
 - a provable lower bound on performance
 - a relatively simple heuristic policy that comes close

References

- Wang & Boyd, *Performance Bounds for Linear Stochastic Control*, Systems Control Letters 58(3):178–182, 2008
- Wang & Boyd, *Performance Bounds and Suboptimal Policies for Linear Stochastic Control via LMIs*, (manuscript)
- Cogill & Lall, *Suboptimality Bounds in Stochastic Control: A Queueing Example*, Proceedings ACC p1642–1647, 2006

(similar results in MDP setting)

• Lincoln & Rantzer, *Relaxing Dynamic Programming*, IEEE T-AC 51(8):1249-2006, 2006