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a b s t r a c t

Wedevelop computational bounds onperformance for causal state feedback stochastic controlwith linear
dynamics, arbitrary noise distribution, and arbitrary input constraint set. This can be very useful as a
comparison with the performance of suboptimal control policies, which we can evaluate using Monte
Carlo simulation. Our method involves solving a semidefinite program (a linear optimization problem
with linear matrix inequality constraints), a convex optimization problem which can be efficiently
solved. Numerical experiments show that the lower bound obtained by our method is often close to the
performance achieved by several widely-used suboptimal control policies, which shows that both are
nearly optimal. As a by-product, our performance bound yields approximate value functions that can be
used as control Lyapunov functions for suboptimal control policies.

© 2008 Elsevier B.V. All rights reserved.

1. Linear stochastic control

We consider a discrete-time linear time-invariant system (or
plant), with dynamics

x(t + 1) = Ax(t) + Bu(t) + w(t), t = 0, 1, . . . , (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
w(t) ∈ Rn is the process noise or exogenous input, A ∈ Rn×n is the
dynamics matrix, and B ∈ Rn×m is the input matrix. We assume
that w(t), for different values of t , are zero mean IID. We will also
assume that x(0) is random, and independent of all w(t).

We consider causal state feedback control policies, where the
current input u(t) is determined from the current and previous
states x(0), . . . , x(t), i.e.,

u(t) = φt(x(0), . . . , x(t)), t = 0, 1, . . . ,

where φt : R(t+1)n → Rm. The collection of functions φ0, φ1, . . . is
called the control policy. For the problem we will consider, it can
be shown that there is an optimal policy that is time-invariant and
depends only on the current state, i.e., has the form

u(t) = φ(x(t)), t = 0, 1, . . . , (2)

where φ : Rn → Rm. We will refer to φ as the state feedback
function, or the control policy. For fixed state feedback function

∗ Corresponding author.
E-mail addresses: yw224@stanford.edu (Y. Wang), boyd@stanford.edu

(S. Boyd).
1 This material is based uponwork supported by the Precourt Institute on Energy

Efficiency, by NSF award 0529426, by NASA award NNX07AEIIA, by AFOSR award
FA9550-06-1-0514, and by AFOSR award FA9550-06-1-0312.

φ, the Eqs. (1) and (2) determine the state and control input
trajectories as functions of x(0) and the process noise trajectory.
Thus, for fixed choice of state feedback function, the state and input
trajectories become stochastic processes.

We now introduce the objective function, whichwe assume has
the form

J = lim sup
T→∞

1
T
E

T−1∑

t=0
("x(x(t)) + "u(u(t))) , (3)

where "x : Rn → R is the state stage cost function, and "u : Rm →
R is the input state cost function. (We assume that the expectations
exist.) The objective J is the average stage cost. Finally, we impose
the control input constraint

u(t) ∈ U (a.s.) , t = 0, 1, . . . , (4)

whereU ⊆ Rm is a nonempty constraint set with 0 ∈ U. The stage
cost functions "x and "u, and the input constraint set U, need not
be convex.

We can now describe the stochastic control problem. The
problem data are A, B, the distribution of w(t), the stage
cost functions "x and "u, and the input constraint set U; the
optimization variable is the state feedback function φ. The
stochastic control problem is to find the state feedback function φ
that minimizes the objective J , among those that satisfy the input
constraint (4). We will let J# denote the optimal value of J , and we
let φ# denote an optimal state feedback function.

For more on the formulation of the linear stochastic control
problem, including technical details (e.g., finiteness of J#, existence
and uniqueness of an optimal state feedback function), see, e.g.,
[5,6,26,2,13,27].
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The stochastic control problem can be effectively solved in
only a few special cases. The most famous example (described
in Section 2 in more detail) is when U = Rm (i.e., there are
no constraints on the input) and "x and "u are convex quadratic
functions [14]. In this case the optimal state feedback function is
linear, i.e., u(t) = Kx(t), where K ∈ Rm×n can be effectively
computed from the problem data.

1.1. Suboptimal control policies

Many methods can be used to find a suboptimal state feedback
function, i.e., one with (one hopes) a small value of J . We describe
three methods in this section; many others can be found in the
literature.

1.1.1. Projected linear state feedback
Perhaps the simplest form is a projected linear state feedback,

φplsf(z) = P (Kplsfz), (5)
where Kplsf ∈ Rm×n is a gain matrix (to be chosen), and P is
projection onto U. When U is a box, i.e.,
U = {u | ‖u‖∞ ≤ Umax},
projection is the same as entry-wise saturation, so the projected
linear state feedback policy has the form
φplsf(z) = Umaxsat((1/Umax)Kplsfz),
where the sat function is defined for scalar argument as

sat(a) =
{ a |a| ≤ 1

1 a > 1
−1 a < −1,

and extended to vectors by acting entry-wise. (Projected linear
state feedback is sometimes called saturated linear state feedback
in this case.)

1.1.2. Control-Lyapunov feedback
A more sophisticated state feedback function is given by

φclf(z) = argmin
v∈U

("u(v) + EVclf(Az + Bv + w(t))) , (6)

where Vclf : Rn → R (which is to be chosen) is called a control-
Lyapunov function [11,22,12,23]. (The optimal control has this form,
for a particular choice of Vclf, called the value function or Bellman
function for the problem.) When Vclf is quadratic, the control-
Lyapunov policy (6) can be simplified to
φclf(z) = argmin

v∈U
("u(v) + Vclf(Az + Bv)) . (7)

1.1.3. Certainty-equivalent model predictive control
An even more sophisticated feedback control function is given

by certainty-equivalent model predictive control (MPC) [16,21,10,15,
4,19], in which φ(z) is found by solving the optimization problem

minimize Vmpc(x̃(T )) +
T−1∑

τ=0

(
"x(x̃(τ )) + "u(v(τ ))

)

subject to x̃(τ + 1) = Ax̃(τ ) + Bv(τ ), τ = 0, . . . , T − 1
v(τ ) ∈ U, τ = 0, . . . , T − 1
x̃(0) = z,

(8)

with variables v(0), . . . , v(T − 1), x̃(0), . . . , x̃(T ). The function
Vmpc : Rn → R is the terminal cost (to be chosen), and
T is the horizon (also to be chosen). Let v#(0), . . . , v#(T − 1),
x̃#(0), . . . , x̃#(T ) be a solution of this problem. The MPC policy is
φmpc(z) = v#(0), which is a (complicated) function of z through
the optimization problem (8). As the horizon T becomes larger,
the choice of Vmpc becomes less and less important. When the
horizon is T = 1, the MPC policy reduces to the control-Lyapunov
policy (7), with Vmpc = Vclf.

1.1.4. Parameters in suboptimal control policies
The art in finding a good suboptimal control policy is in

choosing good values for the parameters that appear in them. For
projected state feedback, the gain matrix Kplsf must be chosen; for
a control-Lyapunov policy, Vclf must be chosen; and for MPC, the
terminal cost function Vmpc (and horizon T ) must be chosen. A
common choice for Vclf or Vmpc is the (quadratic) value function for
a related linear stochastic control problemwith no constraints and
quadratic stage cost; Kplsf can be chosen as the associated optimal
gain matrix.

These methods (as well as many others) can give suboptimal
state feedback functions that give good performance, i.e., a low
value for J . (The objective J is typically evaluated by stochastic
simulation, e.g., Monte Carlo.) A natural question that arises is: how
close to optimal are these suboptimal control policies? In other
words, how much larger than the optimal performance J# is J , the
performance obtainedwith a suboptimal control policy? To answer
this question,we need to compute a lower bound on J#, i.e., a bound
on achievable performance over all feasible state feedback control
functions.

1.2. Performance bounds

In this paper we show how a numerical lower bound on J#
can be effectively computed, using convex optimization, from the
problem data. Our bound is not a generic one, that depends only
on the problem dimensions and general assumptions about "x, "u,
and U; instead, it is computed for each specific problem instance.

We cannot (at this time) guarantee that the bound will be close
to J#. But in a large number of numerical simulations, we have
found that our bound is often not too far from the performance
achieved by a suboptimal control policy. It is very valuable
knowledge in practice to know that a proposed suboptimal control
policy attains a specific cost J (found by Monte Carlo simulation),
and that the optimal value of the stochastic control problem must
exceed a known lower bound J lb (found by the method described
in this paper). If the gap between the two is small, we can be
certain that our suboptimal control policy is nearly optimal (and
that our bound is nearly tight) for this problem instance. The gap
can be large, of course, for two reasons: our suboptimal controller
is substantially suboptimal, or, our lower bound is poor (for this
problem instance).

2. Linear quadratic control

It is well known that the linear stochastic control problem can
be effectively solved when U = Rm (i.e., there are no constraints
on the input) and the stage cost functions have the form

"x(z) = zTQz, "u(v) = vTRv,

where Q * 0, R * 0 (meaning, they are symmetric positive
semidefinite). In this sectionwe (briefly) review these results, since
our bound relies on them. Formore detailed discussion of the linear
quadratic stochastic control problem, see, e.g., [5,6,26].

The optimal cost is

J# = Tr(P#W ),

and the optimal state feedback function is

φ#(z) = K #z,

where

K # = −(R + BTP#B)−1BTP#Az.

The matrix W is the covariance of w(t), W = Ew(t)w(t)T. The
symmetric matrix P# can be effectively found by several methods.
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The traditional characterization (and computation) of P# is via the
algebraic Riccati equation (ARE),

P# = Q + ATP#A − ATP#B(R + BTP#B)−1BTP#A,

along with P# * 0. (For a more detailed discussion of the ARE
and its relation to the linear quadratic stochastic control problem,
see, e.g., [5, Section 4.1] [7]) The control policy φ#(z) = K #z
is called the linear quadratic regulator (LQR) [5, Section 4.1] [8,
Section 10.8] [14].

It will be more convenient for us to use a characterization of
P# and J# in terms of a convex optimization problem. Consider the
optimization problem

maximize Tr(PW )

subject to
[
R + BTPB BTPA
ATPB Q + ATPA − P

]
* 0

P * 0,

(9)

with variable P . The optimal point is P = P#, and the optimal value
of this problem is J# [8,1,20,3,7,29].

For future use we make some important comments about this
problem.

• The problem (9) is a convex optimization problem, more
specifically, a semidefinite program, and can be effectively
solved [24,9,18,17,28].

• The block matrix inequality appearing as a constraint is called a
linear matrix inequality (LMI) [8].

• The solution P# does not depend onW , as long asW + 0.
• Since the objective and constraints are also convex (in fact,

affine) jointly in the variables (P,Q , R), it follows that the
optimal value J# is a concave function of (Q , R). (See [9,
Section 5.6.1].)

In the sequel we will refer to the optimal cost J# (feedback gain
K #, value function matrix P#) for the linear quadratic stochastic
control problem with the subscript ‘lq’ (for ‘linear quadratic’), and
explicitly show the dependence on the stage cost data Q and R:

J#lq(Q , R).

(The value also depends on the other problem data, specifically, A,
B, and W .) We have seen that J#lq is concave in (Q , R).

3. Performance bound

3.1. Basic bound

We return now to the general linear stochastic control problem,
with input constraint setU and general stage cost functions "x and
"u, with optimal value J#. Suppose Q * 0, R * 0, and s satisfy the
condition

zTQz + vTRv + s ≤ "x(z) + "u(v), for all z ∈ Rn, v ∈ U, (10)

which can be expressed as

sup
z

(
zTQz − "x(z)

)
+ sup

v∈U

(
vTRv − "u(v)

)
+ s ≤ 0.

Then we have the lower bound

J#lq(Q , R) + s ≤ J#. (11)

The lefthand side can be effectively computed, as described in
Section 2. The challenge will be in verifying the condition (10).

We now justify the lower bound (11). Assume that (10) holds.
Let φ# be an optimal state feedback function (for the general
stochastic problem), and let x and u be the associated (stochastic)

trajectories with control policy φ#. We have u(t) ∈ U a.s., so
by (10), we have

Jlq = lim
T→∞

1
T
E

T−1∑

t=0

(
x(t)TQx(t) + u(t)TRu(t) + s

)

≤ lim
T→∞

1
T
E

T−1∑

t=0
("x(x(t)) + "u(u(t)))

= J#.

Here Jlq is the objective of the optimal policy (for the general
problem), evaluated with the quadratic objective. The bound (11)
follows from J#lq ≤ Jlq, which holds when the righthand side is
evaluated with any feedback function.

We mention one simple case. When the stage costs are
quadratic,

"x(z) = zTQ0z, "u(v) = vTR0v, (12)

where Q0 * 0, R0 * 0, the simple choice Q = Q0, R = R0, and
s = 0 satisfies (10). The corresponding lower bound on J# is just
J#lq(Q0, R0). This is obvious: the optimal average stage cost, with
constraints on the input, is larger than the optimal average stage
cost, with no constraints on the input (which we can effectively
compute).

3.2. Optimizing the bound

We can optimize the lower bound (11), over the parameters Q ,
R, and s, by solving the optimization problem

maximize J#lq(Q , R) + s

subject to (10), Q * 0, R * 0,
(13)

with variables Q , R, and s. This is a convex optimization problem,
since the objective is concave, and the condition (10) is convex
(since it is convex for each z and v). In the general case the
constraint (10) is a semi-infinite constraint, since it is really a
family of constraints, parametrized by the (infinite) set z ∈ Rn,
u ∈ U.

The idea behind (13) is similar to the basic idea in Lagrangian
duality. In Lagrangian duality, we ignore the constraints, but add
to the objective an augmenting function that is nonpositive on
the feasible set. Minimizing this composite function gives a lower
bound on the optimal value of the original problem; optimizing
over the parameters that parametrize the augmenting function we
obtain the best lower bound obtainable using this technique. We
use the same technique here, relying on our ability to solve the
stochastic control problem in the special case when the stage costs
are quadratic and there are no input constraints.

In a few special cases we can solve the problem (13) exactly. In
other cases, we can replace the condition (10) with a conservative
approximation, which still yields a lower bound on J#. We give
more specific examples of each of these cases below.

3.3. Quadratic stage cost and finite input constraint set

We assume the stage costs are quadratic, with the form given in
(12), and the input constraint set is finite, U = {u1, . . . , uK }. The
condition (10) is then

zTQz + uT
i Rui + s ≤ zTQ0z + uT

i R0ui, for all z ∈ Rn, i=1, . . . , K ,

which is the same as Q , Q0, and

uT
i Rui + s ≤ uT

i R0ui, i = 1, . . . , K ,
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a set of linear inequalities on R and s. The problem (13) can be
expressed as the SDP

maximize Tr(PW ) + s

∗subject to
[
R + BTPB BTPA
ATPB Q + ATPA − P

]
* 0

P * 0, Q * 0, R * 0, Q , Q0
uT
i Rui + s ≤ uT

i R0ui, i = 1, . . . , K ,

with variables P , Q , R, and s. The LMI is (matrix) monotone in Q , so
the optimal value of Q is Q = Q0. So we can just as well drop the
variable Q , and replace it with Q0, to obtain the problem

maximize Tr(PW ) + s

subject to
[
R + BTPB BTPA
ATPB Q0 + ATPA − P

]
* 0

P * 0, R * 0
uT
i Rui + s ≤ uT

i R0ui, i = 1, . . . , K ,

(14)

with variables P , R, and s.

3.4. S-procedure relaxation

We suppose again that the stage costs are quadratic, with the
form (12). Suppose we can find R1, . . . , RM and s1, . . . , sM for
which

U ⊆ Ũ = {v | vTRiv + si ≤ 0, i = 1, . . . ,M}.
A sufficient condition for (10) to hold is

zTQz + vTRv + s ≤ zTQ0z + vTR0v, for all z ∈ Rn, v ∈ Ũ,

which holds if and only if Q , Q0 and

vTRiv + si ≤ 0, i = 1, . . . ,M -⇒ vTRv + s ≤ vTR0v.

A sufficient condition for this to hold is (by the so-called S-
procedure; see, e.g., [8, Section 2.6.3]) the existence of nonnegative
λ1, . . . , λM which satisfy

R − R0 ,
M∑

i=1

λiRi, s ≤
M∑

i=1

λisi.

We can optimize over the lower bound by solving the SDP

maximize Tr(PW ) + s0

∗subject to
[
R + BTPB BTPA
ATPB Q + ATPA − P

]
* 0

P * 0, Q * 0, R * 0, Q , Q0

R − R0 ,
M∑

i=1

λiRi, s0 ≤
M∑

i=1

λisi

λi ≥ 0, i = 1, . . . ,M,

with variables P , Q , R, λ1, . . . , λM , and s0, . . . , sM . As before, we
can replace Q with Q0; we can also take s0 = ∑M

i=1 λisi. This yields
the SDP

maximize Tr(PW ) + sTλ

subject to
[
R + BTPB BTPA
ATPB Q0 + ATPA − P

]
* 0

P * 0, R * 0, λ * 0

R − R0 ,
M∑

i=1

λiRi,

(15)

with variables P , R, and λ ∈ RM , where we use , between vectors
to mean componentwise inequality. The optimal value of this SDP
gives a lower bound on J#.

3.4.1. Box constraints
As a more specific example, consider the case where U is a box,

{v ∈ Rm | ‖v‖∞ ≤ Umax}. Since we have v2
i ≤ 1, we have the

quadratic inequalities
vT(eieTi )v − (Umax)2 ≤ 0, i = 1, . . . ,m,

for v ∈ U, where ei is the ith unit vector. If we use only these
inequalities to define Ũ, we have M = m. The objective in the
problem (15) becomes
Tr(PW ) − (Umax)21Tλ,

where 1 is the vector with all entries one, and the last inequality in
the problem becomes
R − R0 , diag(λ).

3.5. Suboptimal control policies

When we solve the problem (13), or a restriction of it obtained
by replacing the condition (10) with some stronger set of tractable
inequalities, we obtain Plb and Rlb (where ‘lb’ stands for ‘lower
bound’). Very roughly speaking, we can interpret our method as
finding anunconstrainedquadratic problem that approximates our
original problem. This suggests that
Vlb(z) = zTPz,
and
Klb = −(Rlb + BTPlbB)−1BTPlbAz
would be good candidates for use in synthesizing suboptimal
control policies, as described in Section 1.1. Examples show that
this is the case.

4. Numerical examples

We will illustrate our bound, and compare it with the
performance of several suboptimal control policies, on three
problem instances. (We have used the method on many other
problem instances, with similar results. All the data and code
required to replicate the results reported here are available on-
line.)

The first instance is a small problem, with n = 8 states,
m = 2 inputs. The data are generated randomly: the entries of the
matrices A and B are drawn from a standard normal distribution,
after which A is scaled so that its spectral radius is one, i.e., so
the open-loop system is marginally stable. The stage costs are
quadratic with R0 = I and Q0 = I . The process disturbance
w(t)has distributionN (0, 0.25I). The input constraint set is finite:
U = {−0.2, 0, 0.2}2. At each time step, each of the two inputs can
only have three possible values, so we refer to a controller for this
system as trilevel.

The second instance is generated in the same way, but is larger,
with n = 30 states, m = 10 inputs. The stage costs are quadratic,
with R0 = I andQ0 = I , andw(t) ∼ N (0, 0.25I). For this example,
the input constraint set U is a box with Umax = 0.1. For the S-
procedure, we use Ri = eieTi , where ei is the ith unit vector, and
si = −(Umax)2, so the inequality vTRiv − si ≤ 0 is equivalent to
|vi| ≤ Umax.

Our third problem instance is a discretized mechanical control
system, consisting of 6 masses, connected by springs, with three
input forces that can be applied between pairs of the masses. This
is the same example as described in [25]. For this problem,we have
n = 12, m = 3, quadratic stage costs with Q0 = I , R0 = I; each
entry of w(t) is uniformly distributed on the interval [−0.5, 0.5].
The input constraint set is a boxwithUmax = 0.1.We use the same
S-procedure relaxation as in the second example.

For each example, we evaluate the performance for several
suboptimal controllers (via Monte Carlo simulation), as well as
several lower bounds. The suboptimal controllers are as follows.
• Projected linear state feedback (PLSF) with K #

lq and with Klb,
respectively.
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Table 1
Performance of suboptimal control policies (top half) and lower bounds (bottom
half) for three examples.

Small trilevel Large random Masses

PLSF, K #
lq 12.91 31.27 269.84

PLSF, Klb 11.15 27.13 70.91
CLF, P#

lq 11.12 27.23 68.01
CLF, Plb 10.76 25.60 61.06
MPC 10.87 25.70 58.87
J lb 9.12 23.83 43.15
LQR 7.47 16.81 4.66
Prescient 6.67 17.30 11.78

• Control-Lyapunov function (CLF) with Vclf(z) = zTP#
lqz and

Vclf(z) = zTPlbz, respectively.
• Model predictive control (MPC) with horizon T = 30.

We do not carry out exact MPC for the trilevel example,
since this requires solving a mixed-integer quadratic program at
each step. Instead we solve the convex relaxation, with u(t) ∈
[−0.2, 0.2], and round the value obtained to {−0.2, 0, 0.2}.

These suboptimal performance values are compared with
several lower bounds, described below.

• The prescient bound, which is the value of J obtained when the
control u(t) is computedwith knowledge of all (past and future)
disturbances. This is found by Monte Carlo: in each step, we
generate a realization of w, and solve the resulting quadratic
program over a long horizon. For the trilevel example, we do
not solve prescient optimal control problem exactly, since it
is a mixed-integer quadratic program. Instead we solve the
relaxation, which gives a lower bound.

• The LQR cost, which gives a simple lower bound.
• The lower bound J lb found by ourmethod. For the first example,

with finite U, we use the optimal value of (14) as our lower
bound; for the second and third examples, with box U, we use
the optimal value of (15) as our lower bound.

The results are shown in Table 1. We can see that, in general,
projected linear state feedback with the gain matrix found as a
by-product of our bound computation does better than the simple
LQR gain matrix. Control-Lyapunov control policies do better still,
again betterwith the control-Laypunov function that arises as a by-
product of our bound computation. Finally, MPC does very well.

On the lower bound side, we can see that J lb is often much
better than the prescient bound, and the simple bound from LQR.
In two of the examples, our lower bound is quite close to the
performance achieved by the best suboptimal control policies. For
the masses example, the gap is larger, but it is still interesting
and useful to know that the MPC control policy is no more than
100(58.87 − 43.15)/43.15 = 36% suboptimal. This is not at all
obvious.

5. Conclusions

We have shown how to effectively compute performance
bounds for linear stochastic control problems using convex

optimization. Our bounds are often close to the performance
attained by suboptimal controllers based on control-Lyapunov
functions and MPC. In these cases, our method shows that these
controllers are close to optimal.
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