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Statistical variation in digital circuits

e growing in importance as devices shrink

e modeling still open

— many sources: environmental, process parameter variation,
lithography

— intrachip, interchip variation

— distributions, correlations not well known, change as process matures
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Statistical digital circuit sizing

e standard design approaches: margining, guardbanding, design over
corners

e statistical design explicitly takes statistical variation into account
(combines circuit design with design for manufacturing, yield
optimization, design centering, . . . )

e statistical design is very hard problem (even for small circuits)

e this talk: a (relatively) simple heuristic method for statistical design
that appears to work well
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Outline

e A quick example

e Digital circuit sizing: models and optimization
e New method for statistical digital circuit sizing
e Digital circuit sizing example

e Conclusions and future work
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A Quick Example



Example: Ladner-Fisher 32-bit adder

e 64 inputs, 33 outputs, 451 gates, 3214 paths, max depth 8
e simplified RC delay model

e design variables: 451 scale factors for gates

e cycle time Ty is max path delay

e minimize cycle time subject to limits on area, min/max scale factor
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Optimization results (no statistical variation)

path delays with optimized & uniform scale factors (same total area)
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Statistical variation in gate delay

e simple Pelgrom model; larger gates have less (relative) variation in delay

e min sized gate has 10% variation

probability
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Effects of statistical variation on nominal optimal design

Ttycle PDF estimated via Monte Carlo
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Why isn’t 1., PDF centered around nominal value?

® Tiycle is max of 3214 random path delays

e max of RVs behaves differently from sum of RVs

— in sum, negative and positive deviations tend to cancel out;
PDF is centered, has smaller relative variation

— Iin max, large deviation of any leads to large value;
PDF is shifted, skewed to right, has large relative deviation

Microlithography'06 2/23/06



PDF of sum of random variables
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4 = maX{Xl, ..
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Simple worst-case design

e use slow model for all gates, e.g., 1.2D);
e gives same design

e can we do better?
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Statistically robust design via new method

same circuit, uncertainty model, and constraints

distribution of cycle time

robust design

46
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Statistically robust design via new method

nominal delay | ED | op | Q?°(D)
nominal optimal 45.9 49.4 | 0.91 51.1
robust 46.5 47.6 | 0.29 48.1

e same circuit, uncertainty model, and constraints

e compared to nominal optimal design, some gates are upsized, others are

downsized
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Nominal vs. statistical robust designs
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Path delay mean/std. dev. scatter plots
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Area/delay trade-off analysis
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Area/delay trade-off analysis
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Digital Circuit Sizing: Models



Gate scaling
input flip flops  combinational logic block output flip flops
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e combinational logic; circuit topology & gate types given
e gate sizes (scale factors x; > 1) to be determined

e scale factors affect total circuit area, power and delay
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RC gate delay model

L Va
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Lop o ok
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7L = =
e input & intrinsic capacitances, driving resistance, load capacitance
O,}n = é;n$i, C;nt = C_*;ntxi, RZ = R@/xz, Z Cm
JEFO(7)

e RC gate delay: |
D; = 0.69R;(C} + C™)
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Path and circuit delay
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e delay of a path: sum of delays of gates on path

e circuit delay (cycle time): maximum delay over all paths
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Area & power

e total circuit area: A = x1A; + -+ x,A,

e total power is P = Pyyn + Patat

— dynamic power Py, = Z fi(CF + C™O V2,
i=1
fi is gate switching frequency

n
— static (leakage) power Pyt = Z IRy,
i=1

I'eak is leakage current (average over input states)
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Parameters used in example

e model parameters:

gate type | O C™t R A
INV 3 3 048 3
NAND2 4 § 048 8
NOR?2 5 6 0.48 10
AOI21 0 7 0.48 17
OAI21 0 7 0.48 16

e time unit is 7, delay of min-size inverter (0.69-0.48 -3 = 1)

e area (total width) unit is width of NMQOS in min-size inverter
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Statistical variation in threshold voltage

e we focus on statistical variation in threshold voltage Vi

(can also model variations in other parameters, e.g., tox, Lest, - - -

e Pelgrom model:

o —1/2
OVin — V¥ /

where E%/th is Vin variance for unit scaled gate

e larger gates have less Vi variation
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Statistical gate delay model

e alpha-power law model:

(=~ 1.3)
e for small variation in Vi,

oD
OVin

—1= —0.5
OV — Oz(Vdd — Wh) O'VchC D

O'D%|

e gate scaling affects mean delay and relative variation differently
e relative variation decreases as gate scale factor increases:
0.5

op/D < x”
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Statistical variation in gate delay

10% relative variation for min sized gate (op/D = 0.1)
inverter driving C, = 4

probability
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Statistical variation in gate delay

inverter driving C, = 4
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Statistical leakage power model

e leakage current
leak .= Vin/Vo

(Vo =~ 0.04)
e linearization does not give accurate prediction of E I'°3% g ..
e exact values for V4, Gaussian:

_ _ 1/2
EIleak _ Ileak,nornea'%/th/(2‘/02$)7 J%/th/(V02x) . 1) Elleak

O rleak =— (6

[leakonom g |eakage current when statistical variation is ignored
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Effects of statistical variation on leakage power

Vih ~ N (Vin, 0.15V4y,), Vi = 0.25, Vy = 0.04

PDF

Ileak o< :Ue_vth/vo
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Statistical variation in leakage power
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Digital Circuit Sizing: Optimization



Basic gate scaling problem (no statistical variation)

minimize D
subject to P < P™m&*, A < Amax
1<z, ¢=1,...,n

a geometric program (GP); can be solved efficiently

extensions/variations:

e minimize area, power, or some combination

e maximize clock frequency subject to area, power limits
e add other constraints

e optimal trade-off of area, power, delay
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Statistical parameter variation

e now model gate delay & power as random variables
e circuit performance measures P, D become random variables P, D
e distributions of P, D depend on gate scalings z;

e for fixed design, can estimate PDFs of P, D via Monte Carlo

frequency

MMWW [

: 53
45 cycle time D
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Statistical design

e measure random performance measures by 95% quantile (say)

minimize Q*°(D)
subject to Q%°(P) < pmax, A < Amax
1<z, 1=1,...,n

o extremely difficult stochastic optimization problem; almost no
analytic/exact results

e but, simple heuristic method works well
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The New Method



Statistical power constraint

e total power is sum of gate powers

EP=) EP;
i=1
e if n is large and Py,...,P,, are independent (enough),

P~> EP,
i=1
e can use EP < P™3X 35 reasonable approximation of Q°(P) < pmax
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Surrogate gate delay

e define surrogate gate delays

~

k;0i(x) is margin on gate delay (k; is typically 2)

gate delay

scale factor

e gives more margin to smaller gates
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Interpretation of gate delay margins

e margins k,;0;(x) take statistical gate delay variation into account

e x; related to Prob (Dz < u; + /iiO'i)

— Chebyshev inequality:

k3
1+ kK

Prob (Dz S |97 + /437;0'1') Z

SN

— if D, is Gaussian

1 ©.@)
Prob (D; < p; + kio;) = —/ e~t/2 g
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Heuristic for statistical design

e use modified (leakage) power model taking into account statistical
variation

e use surrogate gate delays D;(z) = D;(z) + kioi(z)
e now solve resulting (deterministic) gate scaling problem

e verify statistical performance via Monte Carlo analysis

(can update x;'s and repeat)
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Digital Circuit Sizing Example



Statistically robust design via new method

same circuit, uncertainty model, and constraints

distribution of cycle time

robust design
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Path delay mean/std. dev. scatter plots
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Comparison of nominal optimal and robust designs
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Comparison of nominal optimal and robust designs

scale factor (robust design)
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Effect of margin coefficients
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Sensitivity to model assumptions

question: how sensitive is robust design to our model of process variation?

e distribution shape
e correlation between gates

e Pelgrom model of variance vs. scale factor

answer: not very
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Simulation with uniform gate delay distributions

robust design

nominal optimal design

distribution of cycle time

46 47 48 49 50 51 52 53
cycle time

compared with Gaussian gate delays:
nominal optimal design not quite as bad; robust design still quite good
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Simulation with correlated gate delays

connected gates have delays that are 30% correlated

robust design

nominal optimal design

distribution of cycle time

46 47 48 49 50 51 52 53
cycle time

nominal optimal not as bad; but robust design still quite good

Microlithography'06 2/23/06

44



Conclusions and Future Work



Conclusions

e statistically robust design is subtle; cannot be done by hand

e exact or direct methods will not work well

— computationally intractable
— depend on details of statistical models

e heuristic method is relatively simple, scales well, gives good designs

— reduces problem to a deterministic one
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