A Heuristic Method for Statistical Digital Circuit Sizing

Stephen Boyd

Seung-Jean Kim Mark Horowitz Dinesh Patil

Microlithography'06 2/23/06

Statistical variation in digital circuits

- growing in importance as devices shrink
- modeling still open
 - many sources: environmental, process parameter variation, lithography
 - intrachip, interchip variation
 - distributions, correlations not well known, change as process matures

Statistical digital circuit sizing

- standard design approaches: margining, guardbanding, design over corners
- **statistical design** explicitly takes statistical variation into account (combines circuit design with design for manufacturing, yield optimization, design centering, . . .)
- statistical design is very hard problem (even for small circuits)
- this talk: a (relatively) simple heuristic method for statistical design that appears to work well

Outline

- A quick example
- Digital circuit sizing: models and optimization
- New method for statistical digital circuit sizing
- Digital circuit sizing example
- Conclusions and future work

A Quick Example

Example: Ladner-Fisher 32-bit adder

- 64 inputs, 33 outputs, 451 gates, 3214 paths, max depth 8
- simplified RC delay model
- design variables: 451 scale factors for gates
- cycle time T_{cycle} is max path delay
- minimize cycle time subject to limits on area, min/max scale factor

Optimization results (no statistical variation)

path delays with optimized & uniform scale factors (same total area)

Statistical variation in gate delay

- simple Pelgrom model; larger gates have less (relative) variation in delay
- $\bullet\,$ min sized gate has 10% variation

Effects of statistical variation on nominal optimal design

 $T_{\rm cycle}$ PDF estimated via Monte Carlo

Why isn't T_{cycle} PDF centered around nominal value?

- $T_{\rm cycle}$ is **max** of 3214 random path delays
- max of RVs behaves differently from sum of RVs
 - in sum, negative and positive deviations tend to cancel out;
 PDF is centered, has *smaller relative variation*
 - in max, large deviation of *any* leads to large value;
 PDF is *shifted, skewed* to right, has *large relative deviation*

PDF of sum of random variables

 $Z = \sum_{i=1}^{M} X_i$, $X_i \sim \mathcal{N}(1, 0.1)$ independent

PDF of max of random variables

 $Z = \max\{X_1, \ldots, X_M\}$, $X_i \sim \mathcal{N}(1, 0.1)$ independent

Simple worst-case design

- use slow model for all gates, e.g., $1.2D_i$
- gives same design
- can we do better?

Statistically robust design via new method

same circuit, uncertainty model, and constraints

Statistically robust design via new method

		nominal delay	$\mathbf{E} \mathbf{D}$	$\sigma_{\mathbf{D}}$	$\mathbf{Q}^{.95}(\mathbf{D})$
_	nominal optimal	45.9	49.4	0.91	51.1
-	robust	46.5	47.6	0.29	48.1

- same circuit, uncertainty model, and constraints
- compared to nominal optimal design, some gates are upsized, others are downsized

Nominal vs. statistical robust designs

Path delay mean/std. dev. scatter plots

Area/delay trade-off analysis

Area/delay trade-off analysis

Digital Circuit Sizing: Models

- combinational logic; circuit topology & gate types given
- gate sizes (scale factors $x_i \ge 1$) to be determined
- scale factors affect total circuit area, power and delay

RC gate delay model

• input & intrinsic capacitances, driving resistance, load capacitance

$$C_i^{\text{in}} = \bar{C}_i^{\text{in}} x_i, \qquad C_i^{\text{int}} = \bar{C}_i^{\text{int}} x_i, \qquad R_i = \bar{R}_i / x_i, \qquad C_i^{\text{L}} = \sum_{j \in \text{FO}(i)} C_j^{\text{in}}$$

• RC gate delay:

$$D_i = 0.69R_i(C_i^{\mathrm{L}} + C_i^{\mathrm{int}})$$

Path and circuit delay

- delay of a path: sum of delays of gates on path
- circuit delay (cycle time): maximum delay over all paths

Area & power

- total circuit area: $A = x_1 \overline{A}_1 + \dots + x_n \overline{A}_n$
- total power is $P = P_{dyn} + P_{stat}$

- dynamic power
$$P_{dyn} = \sum_{i=1}^{n} f_i (C_i^{L} + C_i^{int}) V_{dd}^2$$

 f_i is gate switching frequency

- static (leakage) power $P_{\text{stat}} = \sum_{i=1}^{n} I_i^{\text{leak}} V_{\text{dd}}$

 I_i^{leak} is leakage current (average over input states)

Parameters used in example

• model parameters:

gate type	$ar{C}^{ ext{in}}$	$ar{C}^{\mathrm{int}}$	$ar{R}$	$ar{A}$
INV	3	3	0.48	3
NAND2	4	6	0.48	8
NOR2	5	6	0.48	10
AOI21	6	7	0.48	17
OAI21	6	7	0.48	16

- time unit is τ , delay of min-size inverter $(0.69 \cdot 0.48 \cdot 3 = 1)$
- area (total width) unit is width of NMOS in min-size inverter

Statistical variation in threshold voltage

- we focus on statistical variation in threshold voltage $V_{\rm th}$ (can also model variations in other parameters, *e.g.*, $t_{\rm ox}$, $L_{\rm eff}$, ...)
- Pelgrom model:

$$\sigma_{V_{\rm th}} = \bar{\sigma}_{V_{\rm th}} x^{-1/2}$$

where $\overline{\sigma}_{V_{\mathrm{th}}}^2$ is V_{th} variance for unit scaled gate

• larger gates have less $V_{\rm th}$ variation

Statistical gate delay model

• alpha-power law model:

$$D \propto rac{V_{
m dd}}{(V_{
m dd} - V_{
m th})^{lpha}}$$

 $(\alpha \approx 1.3)$

 $\bullet\,$ for small variation in $V_{\rm th}$,

$$\sigma_D \approx \left| \frac{\partial D}{\partial V_{\rm th}} \right| \sigma_{V_{\rm th}} = \alpha (V_{\rm dd} - V_{\rm th})^{-1} \bar{\sigma}_{V_{\rm th}} x^{-0.5} D$$

- gate scaling affects mean delay and relative variation differently
- relative variation decreases as gate scale factor increases:

$$\sigma_D/D \propto x^{-0.5}$$

Statistical variation in gate delay

10% relative variation for min sized gate ($\sigma_D/D=0.1$) inverter driving $C_{\rm L}=4$

Statistical variation in gate delay

inverter driving $C_{\rm L} = 4$

Statistical leakage power model

• leakage current

$$I^{\mathrm{leak}} \propto x e^{-V_{\mathrm{th}}/V_0}$$

 $(V_0 \approx 0.04)$

- linearization does not give accurate prediction of ${\bf E}\,I^{\rm leak}$, $\sigma_{I^{\rm leak}}$
- exact values for $V_{\rm th}$ Gaussian:

$$\mathbf{E} I^{\text{leak}} = I^{\text{leak},\text{nom}} e^{\overline{\sigma}_{V_{\text{th}}}^2 / (2V_0^2 x)}, \qquad \sigma_{I^{\text{leak}}} = \left(e^{\overline{\sigma}_{V_{\text{th}}}^2 / (V_0^2 x)} - 1 \right)^{1/2} \mathbf{E} I^{\text{leak}}$$

 $I^{\text{leak,nom}}$ is leakage current when statistical variation is ignored

Effects of statistical variation on leakage power

 $V_{\rm th} \sim \mathcal{N}(\bar{V}_{\rm th}, 0.15 \bar{V}_{\rm th})$, $\bar{V}_{\rm th} = 0.25$, $V_0 = 0.04$

 $I^{
m leak} \propto x e^{-V_{
m th}/V_0}$

Statistical variation in leakage power

Digital Circuit Sizing: Optimization

Basic gate scaling problem (no statistical variation)

 $\begin{array}{ll} \mbox{minimize} & D \\ \mbox{subject to} & P \leq P^{\max}, & A \leq A^{\max} \\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$

a geometric program (GP); can be solved efficiently

extensions/variations:

- minimize area, power, or some combination
- maximize clock frequency subject to area, power limits
- add other constraints
- optimal trade-off of area, power, delay

Statistical parameter variation

- now model gate delay & power as **random variables**
- circuit performance measures P, D become random variables \mathbf{P} , \mathbf{D}
- distributions of \mathbf{P} , \mathbf{D} depend on gate scalings x_i
- $\bullet\,$ for fixed design, can estimate PDFs of ${\bf P},\, {\bf D}$ via Monte Carlo

Statistical design

• measure random performance measures by 95% quantile (say)

$$\begin{array}{ll} \text{minimize} & \mathbf{Q}^{.95}(\mathbf{D}) \\ \text{subject to} & \mathbf{Q}^{.95}(\mathbf{P}) \leq P^{\max}, & A \leq A^{\max} \\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$$

- extremely difficult stochastic optimization problem; almost no analytic/exact results
- but, simple heuristic method works well

The New Method

Statistical power constraint

• total power is sum of gate powers

$$\mathbf{E} \mathbf{P} = \sum_{i=1}^{n} \mathbf{E} \mathbf{P}_{i}$$

• if n is large and $\mathbf{P}_1, \ldots, \mathbf{P}_m$ are independent (enough),

$$\mathbf{P} \approx \sum_{i=1}^{n} \mathbf{E} \mathbf{P}_{i}$$

• can use $\mathbf{E} \mathbf{P} \leq P^{\max}$ as reasonable approximation of $\mathbf{Q}^{.95}(\mathbf{P}) \leq P^{\max}$

Surrogate gate delay

• define surrogate gate delays

$$\tilde{D}_i(x) = D_i(x) + \kappa_i \sigma_i(x)$$

 $\kappa_i \sigma_i(x)$ is margin on gate delay (κ_i is typically 2)

scale factor

• gives more margin to smaller gates

Interpretation of gate delay margins

- margins $\kappa_i \sigma_i(x)$ take statistical gate delay variation into account
- κ_i related to $\operatorname{\mathbf{Prob}}\left(\mathbf{D}_i \leq \mu_i + \kappa_i \sigma_i\right)$
 - Chebyshev inequality:

$$\operatorname{Prob}\left(\mathbf{D}_{i} \leq \mu_{i} + \kappa_{i}\sigma_{i}\right) \geq \frac{\kappa_{i}^{2}}{1 + \kappa_{i}^{2}}$$

- if D_i is Gaussian

$$\operatorname{Prob}\left(\mathbf{D}_{i} \leq \mu_{i} + \kappa_{i}\sigma_{i}\right) = \frac{1}{\sqrt{2\pi}} \int_{\kappa_{i}}^{\infty} e^{-t^{2}/2} dt$$

Heuristic for statistical design

- use modified (leakage) power model taking into account statistical variation
- use surrogate gate delays $\tilde{D}_i(x) = D_i(x) + \kappa_i \sigma_i(x)$
- now solve resulting (deterministic) gate scaling problem
- verify statistical performance via Monte Carlo analysis

```
(can update \kappa_i's and repeat)
```

Digital Circuit Sizing Example

Statistically robust design via new method

same circuit, uncertainty model, and constraints

Path delay mean/std. dev. scatter plots

Comparison of nominal optimal and robust designs

Comparison of nominal optimal and robust designs

Effect of margin coefficients

Sensitivity to model assumptions

question: how sensitive is robust design to our model of process variation?

- distribution shape
- correlation between gates
- Pelgrom model of variance vs. scale factor

answer: not very

Simulation with uniform gate delay distributions

compared with Gaussian gate delays:

nominal optimal design not quite as bad; robust design still quite good

Simulation with correlated gate delays

connected gates have delays that are 30% correlated

nominal optimal not as bad; but robust design still quite good

Conclusions and Future Work

Conclusions

- statistically robust design is subtle; cannot be done by hand
- exact or direct methods will not work well
 - computationally intractable
 - depend on details of statistical models
- heuristic method is relatively simple, scales well, gives good designs
 - reduces problem to a deterministic one

References

- Boyd, Kim, and Mohan, *DATE Tutorial 2005* Geometric programming and its applications to EDA problems
- Boyd, Kim, Patil, and Horowitz, *SPIE ML 2006* A heuristic method for statistical digital circuit sizing
- Kim, Boyd, Patil, and Horowitz, *Optimization and Engineering*, 2006 A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing
- Boyd, Kim, Patil, and Horowitz, *Operations Research*, 2005 Digital circuit optimization via geometric programming
- Patil, Yun, Kim, Cheung, Horowitz, and Boyd, *ISQED 2005* A new method for design of robust digital circuits

all available from www.stanford.edu/~boyd/research.html

References (continued)

- Mani, Devgan, Orshansky, DAC 2005 An efficient algorithm for statistical minimization of total power under timing yield constraints
- Satish, Ravindran, Moskewicz, Chinnery, and Keutzer, UCB tech. report, 2005
 Evaluating the effectiveness of statistical gate sizing for power optimization
- Bhardwaj and Vrudhula, DAC 2005 Leakage minimization of nano-scale circuits in the presence of systematic and random variations