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Abstract

This paper presents a method of synthesizing controllers
for systems with input saturation that guarantees state
space regions of attraction. While the computation of
stability regions and the corresponding state feedback
design has appeared recently in the control literature,
the more realistic case of output feedback has not been
addressed. This note provides a simple design tech-
nique using an LMI framework to produce controllers
that maximize the region of stability for systems having
limited control when only partial state information is
available for measurement.

1 Introduction and Problem Statement

This paper extends the analysis work done in [1] to
the case of synthesizing output feedback controllers that
maximize regions of attraction. In particular, the con-
trollers are designed to maximize the region in state
space such that any initial condition zo starting in this
region will imply z(t) — 0. The controllers G, will be
dynamic, of the same order as the given linear plant,
and computed using an LMI approach. The stability
regions will not be invariant, but will have a property re-
ferred to pseudo-invariance [2], which means that state
trajectories originating in the region may exit but will
eventually return as the state converges. This region is
defined by the ellipse

Ep={z|zTPz<1} 1)

for some P = PT > 0. The plant G(s) is considered
LTI with open loop dynamics

& = Az+Bp, x(0)=g0o
y = Cz (2)
p = sat(u)

The system matrix A is assumed to have unstable eigen-
values. Similarly, G, has linear dynamics given by

B, = Acwe+ Bey
u = Ccx, 3)
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The design objective is find (4., B.,C.) which maxi-
mizes the volume the state space region for which initial
conditions of the plant will be guaranteed to converge
absolutely to zero.

2 Synthesis Procedure
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Fig. 1: System with loop transformation.

To solve the maximization problem from the previous
section, we follow the work done in [1], which developed
analytical means of determining local regions of stability
for systems with saturation. The loop transformation
shown in Figure 1 is introduced so that local regions can
be parameterized by the saturation level r. By defining
the constants in the transformation as

1 1
p=501+7) ) @
then the transformed saturation operator, ® : @ — p
can be thought of as “locally” sector bounded. That
is ® € sect[-1,1] when |i(t)] < r for all ¢. Similarly,
the transformed system G : p — 4, has a state space
representation in terms of 4, p given by

A pBC. éB =
[oe 1L ] A5
[0 all o ¢lo

) (5)
Now, since the ||®||z, < 1, if we can enforce ||Galleo < 1,
then by the small gain theorem we can conclude that the

closed loop system is L-stable for the given level of r.
If V(z,z.) = T P%, P > 0 is a storage function for G
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then ||Gulloo < 1 if and only if G satisfies the small
gain dissipation inequality V < pTp — @Ta, in which
case the system is stable and # = [zT zT]T — 0. The
stability constraint imposed by the dissipation has the
matrix form

Si arh ATA BA
[—PA—A P-CT¢C 1;3 s ©)
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Approximating the inverse of the ellipse volume as

Trace P, then, as shown in [3, pg 48], the stability region
is maximized by solving

minimize  TraceP
subject to P >0, C.P~'C.T <12, (6)

™)

which is an optimization problem bilinear in the stability
parameter P and the controller matrices (A, B, C;)-
To convert this problem to an LMI, we parameterize P
and its inverse Q = P~! as

P=lae W] o[ ¥ ©

and then apply the Elimination lemma, [3] to rid A, from
(6), which yields the equivalent constraints

[ —~ATP_PA-2ZC-CT2T _§PB ] >0 (%)

—-6BTP I
—AQ - QAT - pBY — pYTBT _5B YT
—-sBT I 0 ] >0 (9b)
Y 0 I

Similarly, using the Completion lemma, the first two
constraints in (7) are expressed as the LMI

P I 0
[ I Q YT ] > 0. (10)
0 Y r°

Problem (7) then becomes

minimize TraceP (11)
subject to: P > 0,Q > 0,(9),(10)
which is a convex optimization problem with linear ma-
trix inequality constraints, and therefore solveable using
available LMI software [4]. The solution to (11) provides
matrix variables P,@,Y and Z which can then be used
to reconstruct the controller G¢, as described in [2]. This
controller maximizes the state space stability region for
G, as defined by (1).

3 Numerical Example: Balanced Pointer

Here we consider an example using (11) to maximize the
region of attraction £p for a simple inverted pendulum
system. The dynamics of the unstable plant G(s) are
described by
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Fig. 2: Guaranteed regions of attract. for various r values.

and C=[ 1 0 ], which is not stabilizable using static
output feedback. The optimal regions of attraction were
solved for values of r = 0.4, 1.2. and 4.0, and are plotted
in Figure 2. The region is quite small for r = 0.4 (strictly
linear operatation), but increases for larger values of
r. The controller for r = 4 was used for a nonlinear
time simulation of several initial condition responses.
Several initial condition response trajectories (dashed
lines) confirm that the attraction region is not invariant,
as two of the state trajectories leave the region, but we
have z(t) - 0 as t = oo.

4 Conclusions

This paper extends recent analysis of systems with sat-
uration with an LMI-based procedure to synthesize dy-
namic controllers that maximize the region of attrac-
tion for systems that have saturating actuators. The
design procedure presented produces output feedback
controllers that guarantee maximum regions of attrac-
tion while allowing the system to run at a prescribed
level of saturation. The algorithm is used to compute
controllers for a simple inverted pendulum system to ef-
fectively produce stability regions several times larger
than that guaranteed for a controller restricted to oper-
ate in the linear region.
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