Simultaneous Routing and Resource Allocation for Wireless Networks

Lin Xiao Mikael Johansson Stephen Boyd

Information Systems Laboratory Stanford University

Large-Scale Engineering Networks: Robustness, Verifiability, and Convergence

IPAM, April 18, 2002

Wireless communication network

- communication network with nodes connected by wireless links
- multiple flows, from source to destination nodes
- total traffic on each link limited by link capacity
- link capacity is function of communication resource variables such as power, bandwidth, which are limited

goal: find optimal operation of network, i.e., do simultaneous routing and resource allocation (SRRA)

Outline

- network flow/routing
- communication resource allocation
- simultaneous routing and resource allocation (SRRA)
- examples
- solution via dual decomposition
- subgradient method
- analytic center cutting-plane method (ACCPM)

Network topology

- directed graph with nodes $\mathcal{N}=\{1,\ldots,n\}$, links $\mathcal{L}=\{1,\ldots,m\}$
- $\mathcal{O}(i)$: set of outgoing links at node i $\mathcal{I}(i)$: set of incoming links at node i

• incidence matrix $A \in \mathbf{R}^{n \times m}$

$$a_{ik} = \begin{cases} 1, & \text{if } k \in \mathcal{O}(i) \\ -1, & \text{if } k \in \mathcal{I}(i) \\ 0, & \text{otherwise} \end{cases}$$

	1	2	3	4	5	6	7
1	-1	1	0	1	1	0	0
2	1	-1	-1	$0 \\ -1$	0	0	0
3	0	0	1 0	-1	0	-1	1
4	0	0 0	0	0	- 1	1	0
5	0	0	0	0	0	0	-1

Network flow model

- multiple source/destination pairs
- identify flows by destinations $d \in \mathcal{D} \subseteq \mathcal{N}$
 - $-s^{(d)} \in \mathbf{R}^n$: $s_i^{(d)}$ flow from node i to node d
 - $-x^{(d)} \in \mathbf{R}^m$: $x_k^{(d)}$ flow on link k, to node d
- flow conservation laws

$$\sum_{k \in \mathcal{O}(i)} x_k^{(d)} - \sum_{k \in \mathcal{I}(i)} x_k^{(d)} = s_i^{(d)}$$

or
$$Ax^{(d)} = s^{(d)}$$

Multicommodity network flow problem

network flow constraints

$$Ax^{(d)} = s^{(d)},$$
 flow conservation law $x^{(d)} \succeq 0,$ nonnegative flows $t_k = \sum_{d \in \mathcal{D}} x_k^{(d)},$ total traffic on link k $t_k \leq c_k,$ capacity constraints

• one traditional optimal routing problem: with $s, \, c$ fixed, minimize convex separable function of $t, \, e.g.$, average or total delay

$$D_{\text{tot}} = \sum_{k} \frac{t_k}{c_k - t_k}$$

ullet another traditional formulation: with c fixed, maximize sum of concave utility functions over source flows:

$$U_{\text{tot}} = \sum_{d} \sum_{i \neq d} U_i^{(d)}(s_i^{(d)})$$

(which is concave, so this is a convex problem)

many solution methods, including fully distributed algorithms

Communications model and assumptions

now we consider effect of communication resources (e.g., power, bandwidth) on capacity of the links

 θ_k : vector of communication resources for link k, e.g., $\theta_k = (P_k, W_k)$ capacity of link k given by $c_k = \phi_k(\theta_k)$, where ϕ_k is concave, increasing communication resource limits:

$$C\theta \leq b, \qquad \theta \geq 0$$

e.g., limits on total transmit power at node, total bandwidth over groups of nodes

Example: Gaussian broadcast channel with FDMA

- communications variables $\theta_k = (P_k, W_k)$, $P_k, W_k \ge 0$
- $c_k = \phi_k(P_k, W_k) = W_k \log_2(1 + \frac{P_k}{N_k W_k})$
- total power and bandwidth constraints on each outgoing link:

$$\sum_{k \in \mathcal{O}(i)} P_k \le P_{\text{tot}}^{(i)}$$

$$\sum_{k \in \mathcal{O}(i)} W_k \le W_{\text{tot}}^{(i)}$$

Communication resource allocation problem

maximize weighted sum of capacities, subject to resource limits

maximize
$$\sum_k w_k c_k = \sum_k w_k \phi_k(\theta_k)$$
 subject to $C\theta \leq b, \quad \theta \geq 0$

- convex problem
- ullet special methods for particular cases, e.g., waterfilling for variable powers, fixed bandwidth

maximize
$$\sum_k w_k c_k = \sum_k w_k \phi_k(P_k)$$
 subject to $\sum_k P_k \leq P_{\mathrm{total}}, \quad P_k \geq 0$

Simultaneous routing and resource allocation

separable convex objective function $f_{\rm net}(x,s,t) + f_{\rm comm}(\theta)$

$$\begin{array}{ll} \text{minimize} & f_{\mathrm{net}}(x,s,t) + f_{\mathrm{comm}}(\theta) \\ \text{subject to} & Ax^{(d)} = s^{(d)}, & \text{flow conservation} \\ & x^{(d)} \succeq 0, & \text{nonnegative flows} \\ & t_k = \sum_{d \in \mathcal{D}} x_k^{(d)}, & \text{total traffic on links} \\ & t_k \leq \phi_k(\theta_k), & \text{capacity constraints} \\ & C\theta \preceq b, \quad \theta \succeq 0 & \text{resource limits} \end{array}$$

- ullet a convex optimization problem with variables $x,\ s,\ t,\ heta$
- ullet when communication resource allocation heta is fixed, get convex multicommodity flow problem

Examples

Minimum total power/bandwidth SRRA:

- ullet source-sink vectors $s^{(d)}$ given
- SRRA objective function: $w^T \theta$, $w_i = \left\{ \begin{array}{ll} 1 & \theta_i \text{ is a power variable,} \\ 0 & \text{otherwise} \end{array} \right.$

variation: minimum total required bandwidth

Maximum utility SRRA:

 \bullet total utility given by $U(s) = \sum_{d} \sum_{i \neq d} U_i^{(d)}(s_i^{(d)})$

An example with FDMA

- ullet total transmit power at each node: $P_{\mathrm{tot}}^{(i)}=1$
- ullet total bandwidth, over all links in network: $W_{\mathrm{tot}}=11$
- receiver noise spectral densities: $N_k = 0.1$
- ullet objective: maximize sum of flows: $s_1^{(6)} + s_2^{(5)}$

Optimal routing & resource allocation

- \bullet left: allocate power and bandwidth evenly across links, then optimize flow; get $s_1^{(6)}+s_2^{(5)}=1.27$
- right: solve SRRA problem (46 variables); get $s_1^{(6)} + s_2^{(5)} = 8.22$

SRRA gives significant performance improvement, sparse optimal routes

Solution methods

- real-world problems: hundreds of nodes, thousands of links
- general methods for convex problems: interior point methods
- can exploit structure in problem:
 - -A, and often C, are very sparse
 - most constraints are local
- for real-world implementation: distributed algorithms

A larger example

- 50 nodes, 340 links
- 5 destination nodes, 20 source/destination pairs
- 2060 variables (1720 flow variables, 340 power variables)

- generate random network topology
 - nodes uniformly distributed on a square
 - two nodes communicate if distance smaller than threshold
 - randomly choose source and destination nodes
- ullet bandwidth allocation fixed; only allocate transmit power p_k
- ullet total power limit at each node $\sum_{k \in \mathcal{O}(i)} p_k \leq p_{\mathrm{tot}}^i$
- power path loss model $P_k = p_k K \left(\frac{d_0}{d_k}\right)^2$
- ullet noise power N_i uniformly distributed on $[\underline{N},\overline{N}]$
- \bullet source utility function $U(s) = \sum_{d} \sum_{i \neq d} \log s_i^{(d)}$

Optimal routes

aggregate flow

power allocation

link capacities

18

Comparison with uniform power allocation

i	d = 1	d=2	d=3	d=4	d=5
1	-2.26	1.03	0.88	1.01	1.37
2	0.56	-13.95	1.73	9.59	5.92
3	0.54	2.07	-6.61	1.97	4.14
4	0.54	6.70	1.55	-16.34	4.20
5	0.62	4.15	2.45	3.77	-15.63

Table 1: Source-sink flows $s_i^{(d)}$ with fixed capacity routing (uniform power allocation), total utility: 12.77

i	d = 1	d=2	d=3	d=4	d=5
1	-3.88	1.11	0.92	1.12	1.13
2	1.03	-16.05	2.93	6.98	6.97
3	0.84	2.69	-9.43	2.69	2.77
4	0.96	4.80	2.46	-18.23	4.80
5	1.05	7.45	3.12	7.44	-15.67

Table 2: Source-sink flows $s_i^{(d)}$ with simultaneous routing and resource allocation, total utility: 17.27

Exploiting structure via dual decomposition

structure of SRRA problem

- objective separable in network flow and communications variables
- ullet only capacity constraints couple $x,\ s,\ t$ and heta

dual decomposition (Lagrange relaxation)

- relax coupling capacity constraints by introducing Lagrange multipliers
- decompose SRRA into two subproblems, both highly structured, efficient algorithms exist for each (dual decomposition again)
- subproblems coordinated by master dual problem

Dual decomposition

ullet introduce multiplier $\lambda \in \mathbf{R}^m_+$ only for coupling constraints

$$L(x, s, t, \theta, \lambda) = f_{\text{net}}(x, s, t) + f_{\text{comm}}(\theta) + \lambda^{T}(t - \phi(\theta))$$
$$= \left(f_{\text{net}}(x, s, t) + \lambda^{T}t\right) + \left(f_{\text{comm}}(\theta) - \lambda^{T}\phi(\theta)\right),$$

dual function

$$g(\lambda) = \inf \left\{ L(x, s, t, \theta, \lambda) \middle| \begin{array}{l} Ax^{(d)} = s^{(d)}, \ x^{(d)} \succeq 0, \ \sum_{d \in \mathcal{D}} x^{(d)} = t \\ C\theta \leq b, \ \theta \succeq 0 \end{array} \right\}$$
$$= g_{\text{net}}(\lambda) + g_{\text{comm}}(\lambda)$$

$$g_{\mathrm{net}}(\lambda) = \inf \left\{ f_{\mathrm{net}}(x,s,t) + \lambda^T t \middle| Ax^{(d)} = s^{(d)}, \ x^{(d)} \succeq 0, \ \sum_{d \in \mathcal{D}} x^{(d)} = t \right\}$$

$$g_{\text{comm}}(\lambda) = \inf \left\{ f_{\text{comm}}(\theta) - \lambda^T \phi(\theta) \mid C\theta \leq b, \ \theta \geq 0 \right\}$$

The dual problem SRRA*

master dual problem (coordinate capacity prices)

maximize
$$g(\lambda) = g_{\rm net}(\lambda) + g_{\rm comm}(\lambda)$$

subject to $\lambda \succeq 0$

• network flow subproblem (evaluate $g_{\rm net}(\lambda)$)

minimize
$$f_{\text{net}}(x,s,t) + \lambda^T t$$
 subject to $Ax^{(d)} = s^{(d)}, \quad x^{(d)} \succeq 0, \quad \forall d \in \mathcal{D}$ $t = \sum_{d \in \mathcal{D}} x^{(d)}$

• resource allocation subproblem (evaluate $g_{\text{comm}}(\lambda)$)

minimize
$$f_{\text{comm}}(\theta) - \lambda^T \phi(\theta)$$
 subject to $C\theta \leq b, \quad \theta \geq 0$

Solving the subproblems

multicommodity flow problem: standard, efficient algorithms exist

resource allocation problem

- structure
 - objective often separable
 - most constraints are local
 - few global constraints, e.g., total bandwidth
- second-level dual decomposition
 - relax global resource constraints
 - subproblems local (at nodes, links)

Hierarchical dual decomposition

subproblems can be solved in parallel, distributed algorithms also exist

Solving SRRA*

non-smooth convex optimization problem, two class of methods

- subgradient methods (supergradient for maximization problems)
- cutting plane methods, e.g., ACCPM

all need supergradient information

for SRRA* problem

maximize
$$g(\lambda)$$
 subject to $\lambda \succeq 0$

the supergradient $h(\lambda)$ is readily given by $h(\lambda) = t^*(\lambda) - \phi(\theta^*(\lambda))$

Subgradient methods

for $k = 1, 2, 3, \ldots$, find supergradient $h^{(k)}$

$$\lambda^{(k+1)} = \left(\lambda^{(k)} + a_k h^{(k)}\right)_+$$

where step size a_k satisfies

$$a_k \ge 0, \qquad a_k \to 0, \qquad \sum_{k=1}^{\infty} a_k = \infty,$$

for example, $a_k = \frac{c}{k}$

Dual objective versus number of iterations

Analytic center cutting-plane method (ACCPM)

ullet for $k=1,2,3,\ldots$, compute $g(\lambda^{(k)})$ and supergradient $h^{(k)}$, so

$$g(\lambda) \le g(\lambda^{(k)}) + h^{(k)T}(\lambda - \lambda^{(k)})$$

each is a linear inequality in the epigraph space $(g(\lambda), \lambda) \in \mathbf{R}^{m+1}$

• at step k, they form a polyhedron (the localization set)

$$\mathcal{P}^{(k)} = \left\{ z \mid a^{(i)T}z \le b^{(i)}, \ i = 1, \dots, k, \ z \in \mathbf{R}^{m+1} \right\}$$

the optimal solution $z^\star = (g(\lambda^\star), \lambda^\star)$ lies inside this polyhedron

ullet compute the analytic center of $\mathcal{P}^{(k)}$

$$z^{(k+1)} = \arg\max_{z} \sum_{i=1}^{k} \log(b^{(i)} - a^{(i)T}z)$$

- choose $\lambda^{(k+1)}$ as the query point; compute $g(\lambda^{(k+1)})$ and $h^{(k+1)}$
- ullet refine the localization set by adding a halfspace constraint passing through $z^{(k+1)}$ (can have deeper cut)

Dual objective versus number of iterations

Parallel ACCPM running on multiple processors

Compute AC λ (ScaLAPACK)

Routing and RA (Sparse solver)

Subgradient methods versus ACCPM

- subgradient methods: slow convergence, but fully distributed
- ACCPM: fast convergence, but needs centralized coordination
- hybrid algorithms possible (??)

Summary

- model and assumptions for wireless data networks
 - capacitated multicommodity flow model
 - capacity constraints concave in communications variables
 - communications resource limits
- SRRA: convex optimization problem
- efficiently solved via dual decomposition
- subgradient methods and ACCPM
- extensions
 - asynchronous distributed algorithms
 - dynamic routing and resource allocation