Simultaneous Routing and Resource Allocation
for Wireless Networks

Lin Xiao Mikael Johansson Stephen Boyd

Information Systems Laboratory
Stanford University

Large-Scale Engineering Networks:
Robustness, Verifiability, and Convergence

IPAM, April 18, 2002



Wireless communication network

e communication network with nodes connected by wireless links
e multiple flows, from source to destination nodes
e total traffic on each link limited by link capacity

e link capacity is function of communication resource variables such as
power, bandwidth, which are limited

goal: find optimal operation of network, i.e., do simultaneous routing and
resource allocation (SRRA)
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Outline

e network flow/routing

e communication resource allocation

e simultaneous routing and resource allocation (SRRA)
e examples

e solution via dual decomposition

e subgradient method

e analytic center cutting-plane method (ACCPM)
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Network topology

e directed graph with nodes
N ={1,...,n}, links L=A{1,...,m}

e O(i): set of outgoing links at node ¢
Z(7): set of incoming links at node i

e incidence matrix A € R™*™

1, if ke O()
aijr =< —1, if ke Z(i)
0, otherwise
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Network flow model

e multiple source/destination pairs

e identify flows by destinations d € D C N/

— 5@ e R™ 5% flow from node i to node d
— 2@ ¢ R™: ¢ ( ) flow on link k. to node d

e flow conservation laws

> -3 a0 -

keO(3) keZ(1)

or Az = sd)
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Multicommodity network flow problem

e network flow constraints

Az(d) = g(d) flow conservation law
z(4) = 0, nonnegative flows

th =Y epr”, total traffic on link k
tr < cp, capacity constraints

e one traditional optimal routing problem: with s, ¢ fixed, minimize
convex separable function of ¢, e.q., average or total delay

Lk
Dot = —
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e another traditional formulation: with ¢ fixed, maximize sum of concave
utility functions over source flows:

Utot, = Z Z Ui(d)(sq(:d))

d i#d
(which is concave, so this is a convex problem)

e many solution methods, including fully distributed algorithms
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Communications model and assumptions

now we consider effect of communication resources (e.g., power,
bandwidth) on capacity of the links

0. vector of communication resources for link k, e.g., 0 = (P, W)
capacity of link k given by cx = ¢ (0%), where ¢y is concave, increasing

communication resource limits:

e.g., limits on total transmit power at node, total bandwidth over groups
of nodes
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Example: Gaussian broadcast channel with FDMA

e communications variables 0, = (Px, W), Pi, Wi >0

o ¢ = on(Pr, Wi) = Wy logy(1 + 545-)

e total power and bandwidth constraints on each outgoing link:

Z P < Pt(éz
keO(i)

S oWk < W
keO(i)
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Communication resource allocation problem

maximize weighted sum of capacities, subject to resource limits

maximize Zk WECL — Zk wkgbk(ﬁk)
subjectto CO6<0b, 6>0

e convex problem

e special methods for particular cases, e.q., waterfilling for variable
powers, fixed bandwidth

maximize Zk WECL — Zk wkqbk(Pk)
subject to >, Py < Piota, Pr >0
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Simultaneous routing and resource allocation

separable convex objective function fhet(x,s,t) + feomm(0)

minimize  fuet(2, S, 1) + feomm(0)

subject to  Az(® = 5(d), flow conservation
z(4) = 0, nonnegative flows
tk = D _4ep x,id), total traffic on links
try < Or(6y), capacity constraints
cod<b 6>0 resource limits

e a convex optimization problem with variables =, s, ¢, 6

e when communication resource allocation 6 is fixed, get convex
multicommodity flow problem
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Examples

Minimum total power/bandwidth SRRA:
e source-sink vectors s(®) given
e SRRA objective function: w?6, w; = {

0 otherwise

variation: minimum total required bandwidth

Maximum utility SRRA:

e total utility given by Uf(s ZZU(d) ()
d 1#d
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An example with FDMA

e total transmit power at each node: Pt(gz =1
e total bandwidth, over all links in network: Wi, = 11
e receiver noise spectral densities: N, = 0.1

e objective: maximize sum of flows: 3(16) + 3g5>
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Optimal routing & resource allocation

e left: allocate power and bandwidth evenly across links, then optimize
flow; get 856) + 855) = 1.27

e right: solve SRRA problem (46 variables); get s 4 s = 8.22
1 2

SRRA gives significant performance improvement, sparse optimal routes
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Solution methods

e real-world problems: hundreds of nodes, thousands of links
e general methods for convex problems: interior point methods

e can exploit structure in problem:

— A, and often C, are very sparse
— most constraints are local

e for real-world implementation: distributed algorithms
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A larger example

e 50 nodes, 340 links
e 5 destination nodes, 20 source/destination pairs
e 2060 variables (1720 flow variables, 340 power variables)
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generate random network topology

— nodes uniformly distributed on a square
— two nodes communicate if distance smaller than threshold
— randomly choose source and destination nodes

bandwidth allocation fixed; only allocate transmit power p;

total power limit at each node Z Pk < Doy
kO (i)

d
power path loss model P, = pp K <d0>
k

noise power N; uniformly distributed on [N, N]

source utility function U(s ZZlog s( )
d 17#£d
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Optimal routes
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Comparison with uniform power allocation

1|1 d=1|d=2|d=3|d=4|d=5
1 -2.26 1.03 0.88 1.01 1.37
2 0.56 | -13.95 1.73 9.59 5.92
3 0.54 2.07 -6.61 1.97 4.14
4 0.54 6.70 1.55 | -16.34 4.20
5 0.62 4.15 2.45 3.77 | -15.63

Table 1: Source-sink flows sz(.d)

routing (uniform power allocation), total utility: 12.77

with fixed capacity

1 |ld=1|d=2|d=3|d=4|d=5
1 -3.88 1.11 0.92 1.12 1.13
2 1.03 | -16.05 2.93 6.98 6.97
3 0.84 2.69 -9.43 2.69 2.77
4 0.96 4.80 2.46 | -18.23 4.80
5 1.05 (.45 3.12 7.44 | -15.67

Table 2: Source-sink flows sgd)

with simultaneous

routing and resource allocation, total utility: 17.27
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Exploiting structure via dual decomposition

structure of SRRA problem

e objective separable in network flow and communications variables

e only capacity constraints couple z, s, t and 6

dual decomposition (Lagrange relaxation)

e relax coupling capacity constraints by introducing Lagrange multipliers

e decompose SRRA into two subproblems, both highly structured,
efficient algorithms exist for each (dual decomposition again)

e subproblems coordinated by master dual problem
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Dual decomposition

e introduce multiplier A € RT" only for coupling constraints

Foet (@, 5,8) + feomm(0) + X' (£ — $(0))
(Faer(w, 5,8) + 27E) + (feomm(0) — AT0(9)) ,

L(x,s,t,0,\)

e dual function

(@) — g (@) @ _
g()\) = inf{L(CIZ,S,t,Q,)\)‘ Ax =S, T EO, Zder — ¢ }

CO=<b 60
— gnet(>\) + gcomm(>\)

gnet(>\) — inf { fnet<$) S, t) + >\Tt

Az = §@ 3@ 0, T g t}
deD

Jeomm(A) = inf {fcomm(e) —\T¢(6) ‘ CO<b, 0> o}
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The dual problem SRRA*

e master dual problem (coordinate capacity prices)

maximize  g(A) = gnet(A) + Geomm ()

subject to A >0

e network flow subproblem (evaluate gpet(N))

minimize  frei(x,s,t) + ATt
subject to  Az(® = (@) z(d) =
t=>4ep 2(d)

e resource allocation subproblem (evaluate geomm(\))

minimize  foomm(0) — A ¢(0)
subjectto CO=<b, 6>0
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Solving the subproblems

multicommodity flow problem: standard, efficient algorithms exist

resource allocation problem

® Structure

— objective often separable
— most constraints are local
— few global constraints, e.g., total bandwidth

e second-level dual decomposition

— relax global resource constraints
— subproblems local (at nodes, links)
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Hierarchical dual decomposition

SRRA

%

relax capacity constraints

/ \
MCNF RA

/ relax global resource constraints

decoupled single-commodity / / ‘ \
flow problems S

subproblems at each node

subproblems can be solved in parallel, distributed algorithms also exist
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Solving SRRA*

non-smooth convex optimization problem, two class of methods

e subgradient methods (supergradient for maximization problems)

e cutting plane methods, e.g., ACCPM

all need supergradient information

for SRRA™ problem
maximize g(\)
subjectto A >0

the supergradient h()\) is readily given by h(A) = t*(A) — ¢(0*(N))
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Subgradient methods

for k=1,2,3,..., find supergradient h(*)

Ak+D) — (A““) + akh(k))
_l_

where step size a; satisfies

oo
akZO, ak—>0, E ar — OQ,
k=1

C
for example, a, = —
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Dual objective versus number of iterations

Dual objective versus number of iterations
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Analytic center cutting-plane method (ACCPM)

o for k=1,2,3,..., compute g(A*)) and supergradient h(*), so
g(\) < gAE) BB (= AB)
each is a linear inequality in the epigraph space (g(\),\) € R™*!

e at step k, they form a polyhedron (the localization set)

pk) — {z | a DT < =1,k z¢€ RmH}

the optimal solution z* = (g(A*), A\*) lies inside this polyhedron
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e compute the analytic center of P (k)

k
2D — arg maxz log(b(i) —aWTy)
i=1

\_

k+1)
P(k+1)

o choose \**t1 as the query point; compute g(Ak+1)) and pk+1)

e refine the localization set by adding a halfspace constraint passing
through z*T1) (can have deeper cut)
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Dual objective versus number of iterations

Dual objective versus number of iterations
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Parallel ACCPM running on multiple processors

Compute AC A
(ScaLAPACK)

Routing and RA

(Sparse solver)
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31



Subgradient methods versus ACCPM

Dual objective versus number of iterations
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e subgradient methods: slow convergence, but fully distributed
e ACCPM: fast convergence, but needs centralized coordination

e hybrid algorithms possible (77)
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Summary

e model and assumptions for wireless data networks

— capacitated multicommodity flow model
— capacity constraints concave in communications variables
— communications resource limits

e SRRA: convex optimization problem

o cfficiently solved via dual decomposition

e subgradient methods and ACCPM

e extensions

— asynchronous distributed algorithms
— dynamic routing and resource allocation
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