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Abstract—In wireless data networks, the optimal routing of data
depends on the link capacities which, in turn, are determined by the
allocation of communications resources (such as transmit powers
and bandwidths) to the links. The optimal performance of the net-
work can only be achieved by simultaneous optimization of routing
and resource allocation. In this paper, we formulate the simulta-
neous routing and resource allocation (SRRA) problem, and ex-
ploit problem structure to derive efficient solution methods. We
use a capacitated multicommodity flow model to describe the data
flows in the network. We assume that the capacity of a wireless
link is a concave and increasing function of the communications re-
sources allocated to the link, and the communications resources for
groups of links are limited. These assumptions allow us to formu-
late the SRRA problem as a convex optimization problem over the
network flow variables and the communications variables. These
two sets of variables are coupled only through the link capacity
constraints. We exploit this separable structure by dual decompo-
sition. The resulting solution method attains the optimal coordina-
tion of data routing in the network layer and resource allocation in
the radio control layer via pricing on the link capacities.

Index Terms—Communication systems, networks, optimization
methods, resource allocation, routing.

I. INTRODUCTION

AS THE DEMAND for wireless services increases, effi-
cient use of radio resources grows in importance. One way

of improving the resource use in wireless data networks is to
move from optimizing each networking layer in isolation to op-
timally coordinating the operation across the networking stack.
In this paper, we develop a method for joint optimization of the
routing in the network layer and the resource allocation in the
radio control (physical) layer.

Traditionally, routing problems for data networks have often
been formulated as convex multicommodity network-flow
problems (e.g., [1]) for which many efficient solution methods

Paper approved by G.-S. Kuo, the Editor for Communications Architecture
of the IEEE Communications Society. Manuscript received September 19,
2002; revised June 2, 2003 and January 8, 2004. This work was supported in
part by the National Science Foundation under Grant 0140700, in part by the
Air Force Office of Scientific Research under Grant F49620-01-1-0365, and
in part by the Defense Advanced Research Projects Agency under Contracts
F33615-99-C-3014 and MDA972-02-1-0004. This paper was presented in
part at the 39th Annual Allerton Conference on Communication, Control,
and Computing, Monticello, IL, October 2001, and at the 4th Asian Control
Conference, Singapore, September 2002.

L. Xiao is with the Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305 USA (e-mail: lxiao@stanford.edu).

M. Johansson is with the Department of Signals, Sensors and Systems,
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden (e-mail:
mikaelj@s3.kth.se).

S. P. Boyd is with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA 94305 USA (e-mail: boyd@stanford.edu).

Digital Object Identifier 10.1109/TCOMM.2004.831346

exist, e.g., [2]–[6]. The optimal routing of data flows depends
on the link capacities, which are usually assumed fixed. In wire-
less data networks, however, link capacities are not necessarily
fixed, but can be adjusted by the allocation of communications
resources, such as transmit powers, bandwidths, or time-slot
fractions, to different links. Adjusting the resource allocation
changes the link capacities, influences the optimal routing of
data flows, and alters the total utility of the network. Hence, the
routing problem in the network layer and resource allocation
problem in the radio control layer are coupled through the link
capacities, and the overall optimal performance of the network
can only be achieved by simultaneous optimization of routing
and resource allocation.

Both optimal routing and optimal resource allocation prob-
lems have been studied in isolation: routing in data networks
has a long tradition, e.g., [1], [5], [6]; while optimal resource
allocation problems for wireless systems have been considered
more recently, e.g., [7]–[9]. Joint optimization of routing and ca-
pacity assignment has been studied in the context of design and
provisioning of computer communication networks (see, e.g.,
[10]–[12]). In this case, the capacities take one of several dis-
crete values (corresponding to, say, the number of transmission
lines between two routers), and the routing is often restricted to
paths, which leads to nonlinear integer programs. Related is also
the joint routing and link scheduling problem studied in, e.g.,
[13] and [14]. However, these approaches do not account for
the nontrivial relationship between resource allocation and the
resulting capacities of the wireless links. A systematic approach
for joint design across the two networking layers is needed.

In this paper, we study the simultaneous routing and resource
allocation (SRRA) problem for wireless data networks within a
convex optimization framework, and exploit the problem struc-
ture via dual decomposition. The resulting solution method
can be interpreted as a pricing mechanism on the link capaci-
ties, which attains the optimal coordination of data routing in
the network layer and resource allocation in the radio control
layer. Because of our convex formulation of the SRRA problem
and associated strong duality results, the dual decomposition
method obtains the global optimal solution. This is in contrast
to the nonlinear integer program formulation and the appli-
cation of similar methods (Lagrange relaxation) in obtaining
suboptimal solutions for the joint routing and capacity assign-
ment problems in computer communication networks (see, e.g.,
[10]–[12]).

This paper is organized as follows. Section II describes the
network topology and the multicommodity flow model for the
data network. In Section III, we present our model of the com-
munication system that supports the data network, and illustrate
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how many classical channel models and capacity formulas fit
our framework. Based on our models for the two networking
layers, we formulate the SRRA problem as a convex optimiza-
tion problem in Section IV, and demonstrate the benefits of
joint optimization on a numerical example in Section V. Finally,
in Section VI, we describe how to exploit the structure of the
SRRA problem via dual decomposition, and we solve the dual
of the SRRA problem using a subgradient method. Section VII
concludes the paper and points to several possible extensions.

II. NETWORK FLOW MODEL

We use the standard directed graph model to represent the
network topology, and a multicommodity flow model for the
average behavior of data transmissions across the network.

A. Network Topology

We represent the topology of a data network by a directed
graph (we assume that the graph is always connected). In this
model, a collection of nodes, labeled , can send,
receive, and relay data across communication links. A commu-
nication link is represented as an ordered pair of distinct
nodes. The presence of a link means that the network is
able to send data from the start node to the end node . We
label the links with integers . The network topology
can be represented by a node-link incidence matrix ,
whose entry is associated with node and link via

if is the start node of link
if is the end node of link
otherwise

We define as the set of links that are outgoing from node
, and as the set of links that are incoming to node .

B. Multicommodity Network Flows

We use a multicommodity flow model for the routing of data
packets across the network. Such models are widely used in the
literature of network routing and optimization (see, e.g., [1], [2],
[6]). In this model, each node can send (different) data to many
destinations and receive data from many sources, but multicast
is not considered. We assume that the data flows are lossless
across links, and that they satisfy flow conservation laws at each
node.

We identify the flows by their destinations, i.e., flows with the
same destination are considered as one single commodity, re-
gardless of their sources. We assume that the destination nodes
are labeled , where . For each destina-
tion , we define a source-sink vector , whose th

entry denotes the nonnegative amount of flow
(data rate in bits/s) injected into the network at node (the
source) and destined for node (the sink). In light of the flow
conservation law, the sink flow at the destination is given by

, where the summation is over all nodes,
except the destination.

On each link , we let be the amount of flow des-
tined for node . We call the flow vector for des-
tination . At each node , components of the flow vector and

the source-sink vector with the same destination satisfy the flow
conservation law

The flow conservation law across the whole network can be
compactly written as

(1)

where is the node-link incidence matrix defined in Sec-
tion II-A.

Finally, we impose capacity constraints on the individual
links. Let be the capacity of link and be the
total amount of traffic on link . We then require that .

In summary, our network flow model imposes the following
group of constraints on the network flow variables
and :

(2)

where means component-wise inequality, and means
component-wise inequality except for the th component (the
sink flow is always negative). We will use to denote
the collection of flow vectors and use to denote the
collection of source vectors .

This model describes the average behavior of data transmis-
sions, i.e., the average data rates on the communication links,
and ignores packet-level details of transmission protocols and
forwarding mechanisms. The link capacity in practical commu-
nication systems should be defined appropriately, taking into
account packet loss and retransmission, so the flow conserva-
tion law holds for the effective throughput or goodput (see, e.g.,
[15]).

C. Multicommodity Flow Problems With Fixed Link Capacities

In traditional multicommodity network flow problems, the
capacities are usually assumed fixed and one is to minimize
some convex function of the network flow variables subject to
the set of constraints (2). For example, one of the most common
cost functions used in the communication network literature is
the total delay function (see, e.g., [1], [16])

(3)

which is a convex function of . In the minimum-delay routing
problem, the source vectors (i.e., the load to be supported by
the network) are given, and one is to minimize by se-
lecting the optimal flow variables and , subject to the con-
straints (2).

There is a vast literature on convex multicommodity network
flow problems, and many efficient solution methods have been
developed; see, e.g., [2]–[5] and references therein. In this paper,
however, we are interested in the interplay between resource al-
location, link capacities, and optimal routing present in wireless
data networks. The dependence of link capacities on communi-
cations resources will be described next.
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III. COMMUNICATIONS MODEL AND ASSUMPTIONS

In this section, we derive a model of the wireless communi-
cation system that supports the data traffic. In a wireless system,
the capacities of individual links depend on the media-access
scheme and the selection of certain critical parameters, such as
transmit powers, bandwidths, or time-slot fractions, allocated
to individual links or groups of links. We refer to these critical
communications parameters collectively as communications
variables, and denote the vector of communications variables
by . We assume that the medium-access methods and coding
and modulation schemes of the communication system are
fixed, but that we can optimize over the communications
variables . The communications variables are themselves
limited by various resource constraints, such as limits on the
total transmit power at each node or the total signal bandwidth
available across the whole network.

A. A Generic Model for Communications Resource Constraints

Let be a vector of communications variables associated
with link . In general, the capacity depends not only on , but
also on communications resources allocated to other links in the
network (due to interferences). However, in this paper, we will
focus on the case where the link capacity is only a function of
the local resource allocation , i.e., . For example,
communication systems with frequency-division multiple ac-
cess (FDMA) and time-division multiple access (TDMA) fit this
model (see Section III-B). We will use the following generic
model to relate the vector of total traffic and the vector of com-
munications variables :

(4)

We make the following assumptions about this generic model.

• The functions are concave and monotone increasing in
. The concavity of implies that the first set of con-

straints are jointly convex in and . The monotonicity
condition means that the link capacities increase with in-
creasing resources.

• The second set of constraints are in the form of linear in-
equalities. They describe resource limits, such as the total
available transmit power at each node, and/or the total
bandwidth for group of links (examples will be given in
Section III-B). They also specify that the communications
variables are nonnegative.

This generic communications model and the network flow
model in Section II will allow us to formulate the SRRA
problem as a convex optimization problem in Section IV.

B. Examples of Communications Resource Constraints

Capacity formulas of many important communication
channel models satisfy the concavity and monotonicity as-
sumptions of the generic model (see, e.g., [7], [8], [17]). Here,
we will only illustrate how the Gaussian broadcast channels
with FDMA and TDMA fit into this framework.

1) Gaussian Broadcast Channel With FDMA: In the
Gaussian broadcast channel using FDMA, the transmitters at

node send information to receivers at the end nodes of its out-
going links. The outgoing links are assigned disjoint
frequency bands with bandwidths and powers .
The receivers at the end of the links are subject to independent
additive white Gaussian noises (AWGNs) with power spectral
densities . The classical Shannon capacity formula relates the
capacity and the communications variables by

(5)

It can be easily verified that is concave and monotone in-
creasing in the variables . Hence, (5) is in the generic
form of the first set of constraints in (4).

The communications variables are constrained by total re-
source limits

If we denote the vector of all communications variables by
, then these resource limits can be

expressed in the generic form in (4) by letting

where the matrix has the same size as the incidence matrix
, and its elements are given by , which

only identify the outgoing links at each node.
2) Gaussian Broadcast Channel With TDMA: In the TDMA

case, each link is assigned a time-slot fraction , and the average
capacity of each link is a linear (hence, concave) function of

Here the communications variables are the time-slot fractions
, and they satisfy

In terms of the generic form (4), we have
and , where is the vector of all ones (here, its

dimension is , the number of nodes in the network).

C. Communications Resource Allocation Problem

Many resource allocation problems in wireless systems can
be written in the form of maximizing a weighted sum of com-
munication rates (or capacities) of multiple users. For example,
varying the weights and solving the associated resource alloca-
tion problem allows us to trace the capacity region of multiuser
communication systems (see, e.g., [7], [8], [17]). We can for-
mulate the following resource allocation problem based on the
generic model (4):

maximize

subject to (6)

where are nonnegative scalar weights. This includes, for ex-
ample, the problem of allocating both powers and bandwidths
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in the FDMA model from Section III-B.1 to maximize the total
communication rate. Since the functions are assumed to be
concave, this is a convex optimization problem, and the glob-
ally optimal solution can be found using a variety of methods.
In addition, many specialized algorithms have been developed
for problem (6) that exploits its structure. For example, if there is
only one total resource limit, then it can be solved by the clas-
sical waterfilling algorithm (see, e.g., [17, Sec. 10.4] and [18,
p. 245]). Actually, waterfilling is the one-dimensional version
of the more general dual decomposition method, which will be
described in Section VI.

IV. THE SRRA PROBLEM

A model for the wireless data network can be obtained by
combining the network flow model and the communications
model described in the previous two sections. This model
reflects how the link capacities depend on the allocation of
communications resources, and how the overall optimal per-
formance of the network can only be achieved by simultaneous
optimization of routing and resource allocation. In this section,
we formulate the SRRA problem as a convex optimization
problem and describe some useful examples.

A. A Generic Convex Optimization Formulation

Consider the operation of a wireless data network described
by the network flow model (2) and the communications model
(4), and suppose that the objective is to minimize a convex
cost function (or maximize a concave utility func-
tion). We have the following generic formulation of the SRRA
problem:

minimize

subject to

(7)

Here, the optimization variables are the network flow variables
and the communications variables . Since the constraints

in (7) define a convex set and the objective function is convex,
the SRRA problem is a convex optimization problem. This im-
plies that it can be solved globally and efficiently by recently de-
veloped interior-point methods (see, e.g., [18] and [19]). More-
over, in the above model, the matrices and are sparse and
highly structured, which can be exploited to develop far more
efficient algorithms.

B. Examples of SRRA Problem

The SRRA problem is very general and includes many impor-
tant design problems for wireless data networks. We conclude
this section by describing three of these in some detail.

1) Minimum Power SRRA: Given a set of (fixed)
source-sink vectors to be supported by the network,
it is natural to try to find the joint routing and resource al-

location that minimizes the total transmit power used by the
network. This problem is readily formulated as

minimize

subject to constraints in (7)

where

if is a power variable
otherwise.

Many variations, such as minimizing the maximum power used
by any node in the network, or minimizing a weighted sum
(hereby accounting for the relative costs of draining the dif-
ferent power sources) can be handled similarly. Another useful
problem, which can be treated analogously, is to minimize the
total bandwidth needed to support the desired traffic.

2) Minimax Link Utilization SRRA: It may be desirable to
generalize the minimum delay routing problem mentioned in
Section II-C within the SRRA framework. However, the total
delay function in (3) is not jointly convex in and when

is substituted by the capacity function . Another cost
function with similar qualitative properties is the maximum link
utilization [1]

This function is quasi-convex. To see this, first notice that the
functions are quasi-convex because the
sublevel sets

are convex; the function is the nonnegative weighted
maximum of the quasi-convex functions , and hence, is
quasi-convex (see [18, Ch. 3]).

We can formulate the minimax link utilization SRRA
problem as

minimize

subject to constraints in (7)

where the source-sink vectors are fixed. This quasi-convex
optimization problem can be solved efficiently through a se-
quence of convex feasibility problems (see, e.g., [18, Sec. 4.2]).

3) Maximum Utility SRRA: Let be a concave and
strictly increasing utility function, and let
represent the utility of node for sending data at rate to
destination . Then the maximum utility SRRA problem can be
formulated as

maximize

subject to constraints in (7) (8)

We will give an numerical example of this problem in Section V.
It is worthwhile to point out that our SRRA formulation allows

a possible extension of the work on optimization-based conges-
tion control in computer networks (see, e.g., [20]–[22]) to joint
flow and power control in wireless networks. In these cases, it is
natural to keep the routes between the source–destination pairs
fixed, and only optimize over source rates on the different routes
and resource allocation on the communication links.
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Fig. 1. Topology of a randomly generated wireless network with 50 nodes and
170 bidirectional links.

We label all the routes by integers , and let
be the data rate sent through route . In place of the node-link
incidence matrix , we use the link-route incidence matrix

, whose entries are defined as

if route passes through link
otherwise.

With this definition, the total traffic vector on the links is given
by . The joint rate and resource allocation problem can
be formulated as

maximize

subject to

(9)

where is a concave and strictly increasing utility function of
the source rate . Similar to the approaches in [20] and [21],
the dual decomposition method in Section VI can be applied to
problem (9) to develop distributed joint flow and power control
algorithms.

V. A NUMERICAL EXAMPLE

To demonstrate the benefits of SRRA, we consider the wire-
less network shown in Fig. 1. The network is randomly gener-
ated by drawing node positions from a uniform distribution on
the unit square , and allowing two nodes to com-
municate if their distance is smaller than the threshold 0.25.
The network has nodes and links (the 170
double-directed links shown in Fig. 1). We randomly choose five
source and destination nodes, labeled in Fig. 1.

In this example, we assume that the bandwidth allocation is
fixed (each link is assigned unit bandwidth), and that there is no
interference among links (using FDMA). We are free to adjust
the transmit powers allocated to each link, but we impose a
total power constraint for the outgoing links of each node

Let be the distance between the two end nodes of link . We
use an inverse-square path-loss model. The power at the receiver
is given by , where is a reference dis-
tance. The additive Gaussian noise powers at the receivers are
generated randomly, with a uniform distribution on the interval

. We use the link capacity formula (cf. (5) with unit
bandwidth)

We consider the problem of joint optimization of routing and
power allocation to maximize the total utility of the network,
where all source–destination pairs (chosen from the five nodes

) have the logarithmic utility function

This maximum-utility SRRA problem has total 2060 variables,
of which 340 are power variables and 1720 are network flow
variables (there are five destinations, each with 340 flow routing
variables and four source variables).

While this problem can be solved by general interior-point
methods, we solved it by implementing the dual decomposition
method that will be described in Section VI, which exploits
the layered structure of the wireless network. Figs. 2(a) and (b)
show the optimal data routing for the destinations and ,
respectively (others are omitted since they have similar patterns),
and Fig. 2(c) shows the aggregate flow, i.e., the total traffic on all
links. Fig. 2(d) shows the optimal power allocation over the links
across the network. In all these figures, the thickness of the link
drawn is roughly proportional to the associated flow amount or
power allocation. Table I shows the source and sink flows which
achieve the maximum total utility 17.27. The diagonals are the
negative total flows (sinks) at the five destinations. To compare
with the SRRA approach, we also solved a maximum-utility
routing problem with uniform power allocation, where all the
nodes distribute their total powers evenly to their outgoing links.
The result of routing under uniform power allocation is shown
in Table II, with the maximum total utility 12.77. We see that the
SRRA formulation gives a 35% improvement of performance.

VI. DUAL-DECOMPOSITION METHOD

We now turn our attention to the development of efficient
solution methods for the SRRA problem (7). Our approach is
based on exploiting problem structure via the dual-decomposi-
tion method (see, e.g., [23, Ch. 6]).

A. Formulation of the Dual SRRA Problem

Although the dual-decomposition method applies to the
generic SRRA formulation (7), we will illustrate it on the
maximum-utility problem (8), which is rewritten here

maximize

subject to

(10)

Due to the rich structure of this problem, there are many ways to
formulate the dual problem, depending on for which constraints
the Lagrange multipliers are introduced. We will focus on the
layered structure: the network flow variables and the com-
munications variables (that appear in different layers of the
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Fig. 2. Optimal routing and power allocation solutions. The thickness of the link drawn is proportional to the associated flow amount or power allocation.
(a) Routing for destination node S . (b) Routing for destination node S . (c) Aggregate flow for all destinations. (d) Optimal power allocation over the links.

TABLE I
OPTIMAL SOURCE-SINK FLOW SOLUTIONS s FOR SRRA PROBLEM;

TOTAL UTILITY IS 17.27

network) are only coupled through the capacity constraints
.

We form the dual problem by introducing Lagrange multi-
pliers only for the coupling constraints .
This results in the partial Lagrangian

The dual function, i.e., the objective function of the dual
problem, is defined as

(11)

TABLE II
OPTIMAL SOURCE-SINK FLOW SOLUTIONS s WITH UNIFORM POWER

ALLOCATION; TOTAL UTILITY IS 12.77

One immediate observation is that the dual function can be eval-
uated separately in the network flow variables and the
communications variables , i.e.,

where

(12)

(13)

Moreover, as we will see shortly, and can be
evaluated very efficiently.

The Lagrange dual problem associated with the primal
problem (10) is given by

minimize

subject to (14)
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Since the dual function is always convex (see, e.g., [18]
and [23]), this is a convex optimization problem. We assume
that Slater’s condition for constraint qualification (see, e.g.,
[18, Sec. 5.2] and [23, Sec. 3.3]) is satisfied for the SRRA
problem, i.e., there exists a feasible solution such that
the capacity constraints (the only nonlinear constraints) hold
with strict inequality

(This is almost always true in practice.) With this assumption,
we conclude that strong duality holds, i.e., the optimal values
of the dual problem (14) and the primal problem (10) are equal
(see, e.g., [18] and [23]). This allows us to solve the primal via
the dual.

Because the objective function in (10) is not strictly con-
cave in the variables and , the dual function is usually only
piecewise differentiable. Hence, the dual problem (14) is a non-
differentiable convex optimization problem. Effective methods
to solve nondifferentiable convex problems include the subgra-
dient method and cutting-plane methods, which we will describe
in some detail in Section VI-C.

As another consequence of the nonstrict concavity of the
primal objective function, extra care must be taken to recover
optimal primal solutions in the dual-decomposition method
(see, e.g., [23, Ch. 6]). One simple effective approach is to add
a strictly concave regularization term to the primal objective
function. For example, we added a small quadratic term of
in solving the numerical example of Section V. More sophisti-
cated approaches include augmented Lagrangian methods and
proximal bundle methods (see, e.g., [23], [24], and [25]).

B. Evaluating the Dual Function and Its Subgradient

To solve the dual problem (14), we need to be able to eval-
uate the dual function and compute its subgradient for any
given dual variable .

To evaluate the dual function , we compute and
separately, and add them together. By their definitions

(12) and (13), we can find by solving the problem

maximize

subject to

(15)

and find by solving the problem

maximize

subject to (16)

We call (15) the network flow subproblem and (16) the resource
allocation subproblem. They are parametrized by the dual vari-
able . Both subproblems are convex optimization problems
with special structure that allows them to be solved very effi-
ciently. In particular, the network flow subproblem (15) is nat-
urally decomposed into single-commodity flow problems.

A subgradient of a nondifferentiable convex function at
is a vector such that

(17)

for all (see, e.g., [26]). Given a dual variable , let
be an optimal solution to the network flow

subproblem (15), and be an optimal solution to the re-
source allocation subproblem (16). From the definition of the
dual function in (11), we find that a subgradient of
at is given by

(18)

Note that can be interpreted as the excess capacity on link ,
i.e., the difference between the capacity provided by the com-
munication system and the proposed traffic by the routing.

Interpreting the dual variable as the price for the capacity
of link (in dollars per unit flow), the dual-decomposition
method has an interesting economic interpretation. Given the
prices , the network layer solves the uncapacitated network
flow problem (15), trying to maximize the total utility function
discounted by , the total cost of the link capacities used;
the radio control layer solves the resource allocation problem
(16), trying to maximize , the total revenue from
capacities that it supports. The operation of the two layers are
coordinated by the master dual problem (14) through the vector
of prices . The subgradient method for solving the master
dual problem described in Section VI-C can be interpreted
as specific rules for updating the prices in order to arrive the
optimal coordination.

C. Solving the Dual Problem by Subgradient Method

With the ability of evaluating the dual function and its sub-
gradients, we now discuss how to solve the master dual problem
(14) by the subgradient method.

In the subgradient method, we start with an initial point .
At each iteration step , we compute the dual func-
tion and a subgradient (see Section VI-B), then
update the dual variable by

(19)

Here, denotes projection on the nonnegative orthant, and
is a positive scalar stepsize. There are many ways to select

the stepsize in subgradient methods. One simple convergence
condition (see [26, Ch. 2]) requires that the stepsize sequence
satisfies

An extensive account of subgradient methods, as well as many
acceleration techniques to improve their convergence properties
can be found in, e.g., [23] and [26]. In the numerical example of
Section V, we used the simple stepsize rule , where
is a positive constant. Fig. 3 shows the dual objective function
versus the number of iterations for and .

With the economic interpretation at the end of Section VI-B,
the subgradient method (19) simply follows the laws of supply
and demand at each link. If the link is underused (i.e., we have
positive excess capacity ) the price is de-
creased, otherwise, it is increased. Notice that the subgradient
information can be obtained locally at link based on its
own traffic and available capacity . This property facil-
itates distributed implementation of subgradient methods. Each
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Fig. 3. Convergence of the subgradient method and ACCPM. (a) Progress
of dual function value (linear scale). (b) Progress of dual optimality gap
(semilogarithmic scale).

link can update its own link price (dual variable) independently,
without a central coordinator.

In [27], we discuss another method for solving the dual
problem, the analytic center cutting-plane method (ACCPM),
and compare its performance with the subgradient method. The
progress of the dual objective function, as well as the lower
bound obtained by ACCPM for the numerical example, are
shown in Fig. 3. Although ACCPM converges faster (fewer
iterations) than the subgradient method, it is computationally
more demanding (per iteration), and does not allow for a
distributed implementation.

D. Hierarchical Dual Decomposition

The dual-decomposition method can be applied hierarchi-
cally to exploit the structure of the SRRA problem at several
different levels, illustrated in Fig. 4. At the first level, we de-
compose the SRRA problem into a network flow problem (15)
and a resource allocation problem (16), and coordinate them by
the master dual problem (14). At the second level, the network
flow problem is naturally decomposed into single-commodity

Fig. 4. Hierarchical dual decomposition for the SRRA problem.

network flow problems for each destination; the resource allo-
cation problem can be further decomposed into subproblems at
each node, involving only local communications variables of the
outgoing links. These local resource allocation subproblems are
possibly coordinated through the price for globally shared re-
sources (e.g., bandwidths), as in the classical waterfilling solu-
tion. In this paper, we have focused on the first level: vertical
decomposition of two networking layers.

VII. CONCLUSION

We have considered the problem of SRRA in wireless
data networks. Our model captures the interplay between the
resource allocation problem and the routing problem in two
different networking layers, and our solution introduces a
pricing mechanism on the capacities of communication links to
optimally coordinate the operation of the two layers.

We have concentrated on a theoretical model that describes the
average behavior of the network and disregards many detailed
aspects, such as packet loss and retransmissions, time-varying
fading of wireless channels, and topology changes in the
network. The model appears to be very useful for network pro-
visioning, planning, and high-level management of the network.
Whilemuchneeds tobedone toextend thiswork to joint real-time
power control and dynamic routing in wireless networks, we
believe that the model and methodology presented in this paper
opens the door toward this direction. One promising approach is
to investigate the possibility of combining distributed algorithms
for the master dual problem (e.g., subgradient methods), with
those for the routing and resource allocation subproblems under
the hierarchical dual-decomposition framework.

It is important to notice that we assume fixed technology (e.g.,
coding and modulation schemes) and find the system parameters
that attain the optimal performance within the specified infra-
structure.AlthoughtheSRRAformulationoftengivessignificant
performance improvements over classical (noncoordinated) ap-
proaches, it does not address the information-theoretic question
about the ultimate capacity of a wireless network (see, e.g., [17],
[28], and [29]). In addition, this paper does not directly address
someimportantpractical issues inwirelessdatanetworks, suchas
quality of service. An extension of the SRRA formulation in this
direction seems very attractive and needs further investigation.

Finally, the communications model in this paper does not
include some important wireless systems, e.g., systems using
code-division multiple access (CDMA), and random access
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protocols such as carrier-sense multiple access with collision
avoidance (CSMA/CA). In recent work, we have extended
the SRRA framework to CDMA wireless networks [30], and
joint link scheduling, routing, and power allocation in wireless
networks [31].
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