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Conserved quantities

I dynamical system _x = f (x )

I scalar valued function V : Rn ! R

I V is a conserved quantity (or integral of the motion or invariant)
if along every trajectory x , V (x (t)) is constant:

_V (x ) =
d
dt

V (x (t))j _x=f (x) = rV (x )T f (x ) = 0

for all x

I classical examples:
I total energy of a lossless mechanical system
I total angular momentum about an axis of an isolated system
I total fluid in a closed system

I trajectories stay in level sets of V , fz 2 Rn j V (z ) = ag
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Dissipated quantities

I V is dissipated quantity if V (x (t)) is nonincreasing:

_V (x ) = rV (x )T f (x ) � 0

for all x

I examples:
I energy of system with loss
I total fluid in leaky system

I trajectories stay in sublevel sets of V , fz 2 Rn j V (z ) � ag

I if these are bounded, then trajectories are bounded
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Lyapunov’s brilliant idea

I V doesn’t have to come from physics

I let’s search for V that establishes some property we’d like to know

I use V to establish properties of trajectories, even (especially) when we
cannot explicitly write down trajectories

I classic example: if we find V with bounded sublevel sets, _V � 0, then
all trajectories are bounded
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The breadth of Lyapunov’s idea

can be used for a wide variety of problems, way beyond stability

I performance indices

I decay/growth rate, Lyapunov exponent

I uncertain dynamics, stochastic systems

I time delay systems

I reachability

I input/output analysis (passivity, gain)

I state feedback synthesis

I stochastic control

in each case, need to find a V that satisfies some properties, or optimizes
some bound
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The big question: How do you find V (and verify its properties)?

for linear dynamics, quadratic costs, there are analytical methods

I Lyapunov functions typically quadratic

I can be found by solving linear equations

I are typically sharp

traditional sources for finding a suitable Lyapunov function V

I physics (say, kinetic plus potential energy)

I exact Lyapunov function for a related linear system

I graphical methods (circle, Popov criterion)
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How do you find V ?

Lyapunov’s approach (1890s, 00s)

I choose form of V (e.g., quadratic), called Lyapunov function candidate

I find values of parameters for which required properties hold
(typically ‘by hand’)

the modern approach (1990s, 00s)

I choose linearly parametrized Lyapunov function candidate

I find values of parameters for which required properties hold using
(numerical) convex optimization

I first proposed by Pyatnitskii, Skorodinskii

Lyapunov would have understood (and approved)
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Finding V via convex optimization

I for quadratic V = xTPx , many properties can be certified by matrix
inequalities involving P

I for example: bounded sublevel sets () P > 0

I these matrix inequalities are convex in the parameter P

I so searching over P is a convex optimization problem

I hence, readily solved (numerically)
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More sophisticated methods

S-procedure (1940s) (Lur’e, . . . )

I verify quadratic inequality on set defined by quadratics

I S-procedure is simple but powerful sufficient condition

sum-of-squares (2000s) (Parrilo, Lall, . . . )

I use higher-order polynomial Lyapunov function candidates

I certify inequalities by expressing as sum of squares of polynomials

. . . these too reduce to convex optimization problems
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Convex optimization — Classical form

minimize f0(x )
subject to fi (x ) � 0; i = 1; : : : ;m

Ax = b

I variable x 2 Rn

I f0; : : : ; fm are convex: for � 2 [0; 1],

fi (�x + (1� �)y) � �fi (x ) + (1� �)fi (y)

i.e., fi have nonnegative (upward) curvature
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Convex optimization — Cone form

minimize cTx
subject to x 2 K

Ax = b

I variable x 2 Rn

I K � Rn is a proper cone
I K nonnegative orthant �! LP
I K Lorentz cone �! SOCP
I K positive semidefinite matrices �! SDP

I the ‘modern’ canonical form
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Why

I beautiful, nearly complete theory
I duality, optimality conditions, . . .

I effective algorithms, methods (in theory and practice)
I get global solution (and optimality certificate)
I polynomial complexity

I conceptual unification of many methods

I lots of applications (many more than previously thought)
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Application areas

I machine learning, statistics

I finance

I supply chain, revenue management, advertising

I signal and image processing, vision

I networking

I circuit design

I combinatorial optimization

I quantum mechanics

. . . and control (especially, searching for Lyapunov functions)

Convex optimization 16



History

I mathematical basis: convex analysis (1900–)

I simplex method for LP (1948) (Kantorovich, Dantzig, . . . )

I subgradient methods (1960s) (Shor, . . . )

I interior-point methods (1988–) (Dikin, Nemirovski, Nesterov, . . . )

I high level languages for convex optimization (2005–)
(Grant, Boyd, Jalden, . . . )
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Modeling languages

I high level language support for convex optimization
I describe problem in high level language
I description is automatically transformed to cone problem
I solved by standard solver, transformed back to original form

I enables rapid prototyping

I ideal for teaching (can do a lot with short scripts)
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CVX

parser/solver written in Matlab (M. Grant, 2005)

example: a regularized, constrained approximation problem

minimize kAx � bk2 + �kxk1
subject to x � �1

its CVX specification:

cvx_begin
variable x(n)
minimize norm(A*x-b)+lambda*norm(x,1)
subject to x >= -1

cvx_end

Convex optimization 19
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Worst-case performance for time-varying system

I xt+1 = Atxt , At 2 A = fA(1); : : : ;A(K)g,

I quadratic sum performance index: J =
P1

t=0 xT
t Qxt , Q � 0

I given x0, find Jwc = supA0;A1;:::
J

I exact answer when K = 1: solve Lyapunov equation

ATPA + Q = P

for P ; if P � 0, then J = xT
0 Px0
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Lyapunov performance bound

I suppose V � 0 and satisfies Lyapunov inequalities

V (A(i)x ) + xTQx � V (x ) i = 1; : : : ;K

I this implies V (xt+1) + xT
t Qxt � V (xt ), so

TX
t=0

xT
t Qxt � V (x0)�V (xT+1)

I so Jwc � V (x0)

I optimize upper bound: minimize V (x0) over candidate V

I when done over all functions (in principle), bound is tight
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Quadratic candidate

I now take quadratic candidate: V (x ) = xTPx

I reduces to P � 0,

A(i)TPA(i) + Q � P ; i = 1; : : : ;K

I convex constraints on P (LMIs)

I we minimize xT
0 Px0 (a convex problem; an SDP)
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CVX source

cvx_begin sdp
variable P(n,n) symmetric
P >= 0
for i=1:k

A{i}’*P*A{i}+Q <= P
end
minimize x0’*P*x0

cvx_end
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Approximate worst-case simulation

I to get sequence A0;A1; : : : that yields large J , choose

At = argmax
A2A

V (Axt )

I greedily maximizes V

I gives lower bound on Jwc, so we get gap
(difference between upper and lower bounds)
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Numerical example

I n = 10 states, K = 10 dynamics matrices

I random data

I bound gives Jub = 24:7

I approximate worst-case simulation gives J lb = 16:2

I gap could be improved by, e.g.,
I considering all pairs A(i)A(j )

I using quartic or higher order Lyapunov function
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Stochastic control

I xt+1 = f (xt ;ut ;wt )

I wt IID, independent of x0

I state feedback policy: ut = �(xt )

I stage cost function g(x ;u)

I average stage cost

J� = lim
T!1

1
T

TX
t=0

E g(xt ;ut )

I stochastic control problem: find policy � that minimizes J�
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Dynamic programming ‘solution’

I find (value function) V , � that satisfy Bellman equation

V (x ) + � = min
u2U

(g(x ;u) + EV (f (x ;u ;wt )))

(V defined up to constant)

I then optimal policy is

�
?(x ) = argmin

u2U
(g(x ;u) + EV (f (x ;u ;wt )))

with associated average stage cost J ? = �

I a solution in principle only, except for a few special cases
(e.g., f affine, g convex quadratic)
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Approximate dynamic programming

I ADP policy:

�
adp(x ) = argmin

u2U

�
g(x ;u) + EV adp(f (x ;u ;wt ))

�

I V adp is approximate value function, chosen so that
I minimization required to evaluate �adp is tractable
I average cost Jadp attained is near optimal, or at least small

I with well chosen V adp, often works well (judged by simulation)

I but how suboptimal is J adp?
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Bellman inequality

I suppose V , � satisfy Bellman inequality

V (x ) + � � min
u2U

(g(x ;u) + EV (f (x ;u ;wt )))

I then � � J ?, i.e., � is lower bound on optimal control performance

I optimize performance bound: maximize � subject to Bellman inequality

I solution is natural choice for V adp

I yields a performance bound, and a (typically good) suboptimal policy
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Linear-quadratic finite input stochastic control

I linear dynamics xt+1 = Axt + But + wt

I input set U = fu(1); : : : ;u(K)g is finite

I Ewt = 0, EwtwT
t = W

I convex quadratic stage cost g(x ;u) = xTQx + uTRu , Q ; R � 0
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Performance bound via Bellman inequality

I quadratic Lyapunov function candidate V (x ) = xTPx

I Bellman inequality is

xTPx + � � xTQx + uTRu + E(Ax + Bu + wt )
TP(Ax + Bu + wt )

= xTQx + uTRu + (Ax + Bu)TP(Ax + Bu) + Tr(PW )

for all x , u 2 U

I can express as convex constraints (LMIs)�
ATPA + Q � P ATPBu

uTBTPA uT (R + BTPB)u + Tr(PW )� �

�
� 0; u 2 U

I maximize � (gives SDP)
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CVX source

cvx_begin sdp
variable P(n,n) symmetric
variable alpha
P >= 0
for i=1:k

[A’*P*A+Q-P A’*P*B*u{i};
u{i}’*B’*P*A u{i}’*(R+B’*P*B)*u{i}+trace(P*W)-alpha] >= 0

end
maximize alpha

cvx_end
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Numerical example

I n = 10 states, m = 3 inputs, K = 10 input values

I random data

I LQR cost (u 2 R3): 42.5

I lower bound on optimal cost: 68.1

I performance achieved by ADP: 78.2
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Ideas

I Lyapunov’s methods apply to far more than just stability theory

I when Lyapunov’s methods are coupled to convex optimization
I the combination is very powerful and expressive
I it’s also very concrete — you get numerical answers

I modern convex optimization tools make it easy to do

I should be universally taught
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