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Set-Membership Identification of Systems with
Parametric and Nonparametric Uncertainty

Robert L. Kosut, Fellow, IEEE, Ming K. Lau, Student Member, IEEE, and
Stephen P. Boyd, Member, IEEE

Abstract— A method is presented for parameter set estimation
where the system model is assumed to contain both parametric
and nonparametric uncertainty. In the disturbance-free case, the
parameter set estimate is guaranteed to contain the parameter
set of the true plant. In the presence of stochastic disturbances,
the parameter set estimate obtained from finite data records is
shown to have the property that it contains the true-plant
parameter set with probability one as the data length tends to
infinity.

1. INTRODUCTION

N the traditional adaptive control system, the identified

model is used for on-line controller design without any
regard for errors between this model and the true system
which generated the data. The identified model is usually
selected out of a model set with unknown parameters as
depicted in Fig. 1. The controller is designed as if the
parameter estimates were in fact the correct parameters for
describing the plant. This is known as applying the certainty
equivalence principle. In the ideal case, it is assumed that
there exist parameters, which if known, would precisely
account for the measured data. Even in this ideal case, the
transient errors between the identified model and the true
system can be so large as to completely disrupt the perfor-
mance. In the usual (nonideal) case, the true system is not in
the model set, therefore, both unacceptable transient or
asymptotic behavior can occur, e.g., [1].

Following the ancient Greek adage,' *“Well begun, half
done,”” one ought to construct, at the outset, an adaptive
control system which specifically accounts for the inevitable
model error, i.e., an adaptive robust control. Depicted in
Fig. 2 is our proposed scheme where the traditional parame-
ter estimator is replaced with an estimator that produces a
model set. Thus, point estimation of a single model is
replaced with set-membership identification. The estimated

Manuscript received December 15, 1990; revised November 15, 1991.
Paper recommended by Associate Editor at Large, M. P. Polis. The work of
R. L. Kosut was supported by AFOSR, Directorate of Mathematical and
Information Sciences, under Contract F49620-89-C-0119. The work of M.
K. Lau was supported by a doctoral study program at Sandia National
Laboratories. The work of S. P. Boyd was supported by NSF under Grant
ECS-85-52465 and from AFOSR, Directorate of Mathematical and Informa-
tional Sciences, under Contract 89-0228.

R. L. Kosut is with Integrated Systems, Inc., Santa Clara, CA 95054 and
with the Information Systems Laboratory, Stanford University, Stanford, CA
94305.

M. K. Lau and S. P. Boyd are with the Information Systems Laboratory,
Stanford University, Stanford, CA 94305.

IEEE Log Number 9200616.

lApfn’v/,uiouwocgmwu. Literally translated: (The) beginning (is the)
half of all [16].

Estimated Parameters

Controller Parameter
Design Estimator
r —_—
Control " Plant y
T
Fig. 1. Traditional adaptive control system with parameter estimator.
Model Set
Robust
Controller Set
Design Estimator
r —
Control Plant v
u
re

Fig. 2. Adaptive control with set estimator.

model set can contain both parametric and nonparametric
descriptions of uncertainty arrived at from both measured and
prior data.

We also replace the traditional controller design algorithm
with a robust controller design algorithm which accepts the
model set format. By referring to a robust controller we
mean a controller that achieves some specific set of specifica-
tions for any plant model in the model set. The robust
controller design thus takes a set of models as input and
produces a controller that is guaranteed to meet the specifica-
tions for all models in this set. The robust controller design
can also report the worst-case performance with respect to
the model set. It is also true that if the model set is too large,
or the specifications are too tight, then no robust controller
will exist.

During the transient or learning phase, the estimated model
set could be a poor representation of the true system as it
could be quite large. However, if the system which generated
the measured data is contained in the estimated set, the robust
controller will be stabilizing, though may be of low author-
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ity. Conversely, if the model set becomes smaller after some
time, this will be reflected in a higher authority controller
with more desirable performance characteristics.

It is important to point out, and even emphasize, that
although this approach is inspired by a separation principle,
it is not optimal. Roughly speaking, set estimation and
robust controller design might benefit from being coupled.
For example, the input # might be temporarily manipulated
in such a way so that the set estimator could rapidly learn and
therefore improve future performance at the expense of cur-
rent performance. In a purely Bayesian framework, notions
of optimality along this line are made precise in [9].

Although not guaranteed to be optimal, the scheme shown
in Fig. 2 is at least less heuristic than the traditional scheme
of Fig. 1. For example, if the set estimator is consistent,
that is, the true plant is in the estimated model set, and
moreover, if we stop adapting at any given point, then we are
guaranteed a worst-case performance as reported by the
robust controller design.

In this paper, we address the problem of parameter set
estimation where the system model contains both parametric
and nonparametric uncertainty. In our formulation, we use
the measured data to delineate a parametric set which ac-
counts for a priori knowledge of nonparametric dynamics
and disturbances. Observe that if measured data is not used,
then the identified model set consists of a constant model set
and the ‘‘adaptive’’ controller reduces to a single robust
design. We can also recover the traditional adaptive scheme
by replacing the robust design with a heuristic design which
uses a typical model in the set, e.g., the ‘‘center’’ or
‘‘average’’ model.

We will not address the robust control design issues as
different methodologies for robust control design, particu-
larly for plants with uncertain nonparametric linear dynam-
ics, can be found in [26], [8], and [12]. Methods for robust
control design of plants with parametric uncertainty are de-
scribed in [2], [5] and the references therein. In the case of
parametric set-membership uncertainty, minimax controllers
are considered in [22] and [21].

At present, there are several competing and complemen-
tary methodologies for the design of set estimators, e.g.,
[29], [20], [17], [14], [18], and [32]. Related work on the
limitations of identification of linear-time invariant systems
can be found in [13], [15], [24], and [28]. Our work here
follows closely to that described in [31], [32], and [18] for
the disturbance-free case with nonparametric uncertainty, and
in [23] for the disturbance case. The parameter sets devel-
oped here are similar in form to those developed in [10],
[11]}, [25], and [3] for the case with no nonparametric
uncertainty but with bounded disturbances. The foundation
and impetus for much of the work in parameter set-member-
ship identification can be traced back to [27], and [4] for the
state-estimation problem.

The paper is organized as follows. After introducing some
notation and standard definitions in the next section, the
problem is formulated in Section III. Parameter set estimates
for the disturbance-free equation-error case are developed in
Section IV. In the presence of stochastic disturbances, equa-

(

tion-error parameter set estimates computable from finite data
records are presented in Section V. Extensions to the output-
error case and deterministic disturbances are discussed in
Section VI. The paper concludes with some remarks in
Section VII.

II. NOTATION AND PRELIMINARIES
Transfer Functions: In this paper, we consider sampled-
data systems with transfer functions in the complex variable
z. If the system is denoted by G, then its transfer function is
denoted by G(z). Typically, G(z) is obtained as the zero-
order hold equivalent of a continuous-time transfer function
P(s). Thus,

G(z) = 204 {P(s))} (1)

a-znz{sre) 0

where Z0#{-} and Z{-} denote the zero-order hold and
the usual z-transform operations, respectively.

A transfer function G(z) is stable if all its poles are
strictly inside the unit circle | z| = 1. The frequency re-
sponse of G(z) is the function G(e’) restricted to the
domain |w| =< 7, where w is the frequency variable nor-
malized with respect to the sampling frequency. For a stable
transfer function G(z), the /., and #, norms are defined
as

Gl , & sup | G(e*) | (3)
1 T B ) 1/2
Gl », £ (E/_ |G(efw)|2dw) . (4)

Sequences: A sequence x is a function of discrete-time
points, i.e., x: N~ R” where N = {1,2, --- } is the set of
positive integers. We write x(f) to mean the value of the
sequence at a particular time f, normalized with respect to
the sampling interval. Hence, time takes on integer values
with initial time defined as ¢ = 1.

Following [24], a sequence x is quasi-stationary if
& (x(?)) is bounded for all ¢ and its autocorrelation

lim %f s(x()x(t-1) (5

rXX(T) = Nooo =1

exists for all integers 7, where & (-) denotes the expectation
operator. If x is a deterministic sequence, the expectation is
without effect and quasi-stationary then means that x is a
bounded sequence such that the limits

N

im %zx(z)x(z- 7) (6)

rxx(T) = l\l/—mo =

exist. For easy notation, we introduce the symbol & by
£(x) £ lim if; & (x(2)). (7)
N-o N 1T
The power spectrum of x is defined as

reg(7)e 7" (8)

>
M

Sxx(@)

7= —00
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This leads to the power in x given by

lim — }Af £(x(1)).

1
N—x N t=1
©)

Similar definitions apply to the cross spectrum S, () of the
sequences x and Y.
The sample-mean operator &,(-) is defined to be

1 T

rxx(O) =57

- I _Tsxx(w)dw =

£ 2 3 A0, (10)

We use || X|| ¢, to denote the truncated /,-norm of a sequence

I *l e (éx(r)z); (11)

hence,

(12)

1
£(x?) = 71 xlke-

Linear Operators: The notation Gx means the sequence
obtained when the system G operates on the sequence X. We
write (Gx)(f) to mean the value at time ! of the sequence
Gx.

When we say that G is a linear-time invariant system, we
mean that Gx is the convolution operation

t—1

(Gx)(1) = 2 g(k)x(1 - k)

k=0

(13)

where the sequence g is the pulse response of G. Thus, G
has the transfer function

(14)

s

G(z) = X g(k)z™"

k

0

The above definition restricts the sequence Gx to ¢ = L.
Hence, the system G can be regarded as having no memory
of events prior to # = 1, the initial time. Roughly, this means
all initial conditions are zero.

To reduce notation, we use the transform variable z to
denote the shift operator, so zx(f) = x(t + k), 27 x(1)
= x(t — k), and z%x shifts each member of the sequence X.

III. PROBLEM FORMULATION
The problem is to use the measured sampled data

{y,u:t=1,'--,N}

(15)

to identify a model set suitable for robust control design. The
system which produced the data is assumed to be a linear-
time invariant system of the form

(16)

where G is a linear-time invariant system with transfer func-
tion G(z), u is an applied input, y is the measured output,
and v is a disturbance as seen at the output. It is also assumed

y=Gu+v

that both y and u have finite power, that is, r,,(0) < @ and
ro0) < o2

A. Model Set Assumptions
The model set .# is defined as follows:

ML {y=GCu+v:Ge Y, ve?} (17)

where @ is the set of linear-time invariant systems and ¥ is
the set of disturbances. It is assumed that the true system (16)
is a member of the model set .#. The reader should be
cautioned that G defined in the model set M is not the
same as G in (16). To avoid adding more subscripts Girye>
etc., unless otherwise stated as part of some set, e.g.,
Ge %, the symbols G, y, u, and v refer to the true system
(16).

We first concentrate on the disturbance-free case, i.e.,
v = 0, in the next section. The disturbance set ¥ is dis-
cussed later in Section V.

The set of linear-time invariant systems is defined by

e {G,(1 + BAGWe): 0 € Opior» laGle = 1} (18)

where G,(z) is a parametric transfer function with parame-
ters 0 € Opyiors referred to as the prior parameter set. The
system AgWj is referred to as the multiplicative nonpara-
metric uncertainty. It is a dynamic uncertainty characterized
by an uncertain but unity bounded stable-transfer function
Ag(z) and a known stable-transfer function Wg(z). Note
that Wg(z) acts as a frequency weighting function, whose
frequency response magnitude | W(e/*) | reflects the size of
the nonparametric uncertainty. Since a parametric model of a
system is never complete unless we have some idea on its
limitations and accuracies, we assume that the uncertainty
weighting function Wg(z) is known. Having knowledge of
W, is precisely the assumption made in robust control
design, e.g., [8]. However, the center of the model set is
fixed in robust control design, here it is parametric, i.e., Gy.

Suppose the true system G is in % and we are interested
in all the possible representations of G in 4. Solving for Ag
in (18) in terms of G and 6, we get

G -G,
Ag= —— . (19)
W5Go
We define
G-G
o* & {0: — 2| = 1} (20)
WGy A

and refer to ©* as the parametric limit set because it does
not depend on the data set but rather on the true but unknown
system G. As a result, ©* N ©,, is the set of all possible
parameter values consistent with the assumption that the true
system G is in ¥. Consequently, it is not possible to
consider a ‘‘true’’ parameter value because any member of

2 Input and output sequences with finite power occur, for example, when
G is stable and u has finite power, or when G, not necessarily stable is
stabilized by an appropriate feedback and the exogeneous inputs to the
feedback system have finite power.
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©* N ©,,, is a possibility since the decomposition of G
into G, and A is not unique. Thus, the goal is to obtain an
estimate of the set © from the measured data.

Throughout the remainder of the paper we further charac-
terize the parametric transfer function G,(z) by using the
standard ARX form [24]

Gy(z) = By(z)/ Ap(2)
By(z)=bz7 '+ - +b,z7"
Ag(z) =1+az" '+ +a,27"
0 =[a - a,b, e b (21)

Thus, the parameters are the coefficients in the parametric
transfer function. With this parametrization, the limit set

becomes
< 1} |
Hoo

The problem we are addressing in this paper is to find an
estimate of ©*. We should also point out that other than
what is assumed for the transfer function A;(z), we do not
estimate it from the data. We first give an example of ©%,
and then in the next section, describe a set estimator in the
disturbance-free case.

o* = (22)

A,G - B,
WGBB

B. Example of Limit Set
Suppose that the true transfer function is

(z)—.@"ﬁ)f{( ‘fl)
10?
s% + 2(0.005)(10)s + 102

} . (@)

The sampling frequency is chosen to be 27 (10) rad/s or 10
Hz. Observe that the system has a simple pole at 1 rad/s, and
a very lightly damped resonance at 10 rad/s. Suppose we are
interested in obtaining a good low-frequency model by ne-
glecting the resonance, but accounting for it as one realiza-
tion of some nonparametric dynamics. Thus, select the para-
metric transfer function as

bz™! a
G, =—7,0= [ ] 24
() =t 0= [ (24)
Consider the following weights:
s+1)7*
W, =65\ Z0H{ —— 25
O E e e

We.2(2) = Wo,.(2) - 65(1)4.

. (26)

Either of these weights can account for the resonance, but
they reflect different prior low-frequency uncertainties. The
weight W, | reflects a low-frequency multiplicative uncer-
tainty of about 10% where it has a dc gain of about 0.1, and
it anticipates a rather large resonance at frequencies beyond

LB

about 10 rad/s where the magnitude of W , is greater than
100. W, is essentially the same but has a zero dc gain.
Shown in Fig. 3 are the frequency response magnitudes and
the multiplicative error with respect to 2 ‘‘nominal’’ paramet-
ric transfer function

10
= %0H 27
()= zox{ =) @)
With the sampling frequency of 10 Hz,
_ | @nom | _ —0.9048]
brom = [bm} - [ 0.9516 | (28)

This transfer function can be viewed as an approximation of
G(z) obtained by neglecting the resonance in (23). Remem-
ber, there is no true parameter value, rather, there is a true
set ©* one element of which is this nominal parameter
value.

Points in the limit set corresponding to the above weights
are shown in Fig. 4. These points are obtained by testing 6 in
(19) over a set of pomts If a point’s corresponding Ag
satisfies |[Agll = 1, then it belongs to ©*. Since
W, 2(e"") is zero at w = 0, i.e., the dc gain of G(z) is
assumed known, and the two parameters in 6 are constrained
to lie on a line in the parameter space. The line becomes
“‘blurred’’ in the limit set corresponding to W, , because
there is no frequency where the frequency response of W
is identically zero.

IV. DisTURBANCE-FREE EQUATION-ERROR SET
ESTIMATION

In the disturbance-free case, we have v = 0. Thus, the
model set in (17) reduces to
M={y=Gu:Ge ¥} (29)
with & given by (18).
Theorem 1: Suppose the measured data {y,u: t=
-, N} is generated from y = Gu with Ge %. Then the
following holds:

©*c O[N] = ©,, Vke[l,N],vNelN (30)

where O[N] and ©, are given by
= {9 | Agy — Byu H k2 = (31)

n o,. (32)

Remarks: We refer to ©, or O[N] as equation-error
parameter sets because the equation-error term A,y — Byu
appears in the definition [24]. Observe that the equation-error
sets depend only on the measured data and the known bound-
ing transfer function W;(z). Because ©* is a subset, it
follows that ©, for any ke[l, N} or O[N] is an estimate
of ©*. These sets are easy to compute as will be shown in
Section IV-C. First we prove the theorem.

Proof: First, recall the following fact from [7]. If T is
a stable linear-time invariant operator with transfer function

< | W5 Byt 2}

O[N] &
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T(z), then
IT) = sup |T(e)] (33)
IPIEXS
17l 42

sup
I| x|l k2 %0 I xll ez
ke

sup {v: | Tx|l 2 < v %l 42>
V| x| g < o, Yk N},

As a direct consequence, we also have

sup | x4z = vl Xl
170 p =y
To show that
©*c O, VvkelN
let 6* € ©%, ie.,
G- (1 + AW)

6*

Sl

(37

~—

(38)
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with || A%]| . = 1. Note that §* and A% must agree with the
measured data, so

Agey — Byt = NGWgBys. (39)
Taking the /,-norm, we have

| Agey — Bysttll i = |l AGWeBpatt]| i -
Since || A% | ., = 1, (36) implies that 0* must satisfy

|| Agey — Bp.u] 42 = || W Byt || 42 -

(40)

(41)
Therefore,

0*e{0: || Agy — Bpullin = | Wo Byt 2} = O (42)
for ©* € ©,. From this, it follows immediately that e* c
O[N]. O
A. Frequency-Domain Expressions

Define the asymptotic equation-error set as

A 1
0, = lim 6,.

k—o

(43)

The limit set ©* and the asymptotic equation-error set O,
are expressed in the frequency domain in the following
theorem.

Theorem 2:

i) The limit set has the following decomposition:

0% = 84, N Ofg (44)
where
A,G - B
F b = {0: 20 stable (45)
G

Ofq = {0: | Ag(e’)G(e™) ~ B,(e’®) |
< | Wy(e®)By(e/*) |, V] w| = x}. (46)

ii) If y = Gu and u has spectrum S,,(w), then

1o .
o, = 0:5;/ (1 44G - B, |

—|W.B,|%)S,, do<0}. (47
G~ uu

Proof: The decomposition of ©* follows directly from
the definition of the #, norm. The asymptotic set descrip-
tion is a direct application of the spectral expressions in
9. O

Theorem 1 states that ©* € ©, for all k. It is clear from
the frequency-domain expression for ©* that ©* € O, also
because § € ©* implies that the integrand in the frequency-
domain expression for ©,, is negative. Note also that the
definition of ©* describes a parameter set via an #, norm.
By comparison, 8, is described via an s, norm when u is
white noise with S,,(w) = 1, i.e.,

[ AG = Billr,

< . 48
WaBly (48)

0, =
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B. Use of Data Filtering

The effect of data filtering is to replace (y,u) with
(Fy, Fu), where F is a filter with transfer function F(z).
Hence

O = {0: | AgFy — ByFu| ;n =

The effect of the filter is seen more clearly in the frequency-
domain expression

1 d
— [ (laG-BP?

27

| ByWg Ful 2} - (49)

0, = {9:

~ |WgBy|?)| F|%S,,dw <0}. (50)
The filter and the input spectrum form the frequency-depen-
dent weight | F(e/®)|%S,,(w) which also appears in stan-
dard equation-error minimization methods [24].

C. Computing the Equation-Error Set

Ideally, it is desirable to compute ©[N]. This involves
intersecting the N sets

{6 k=1,-+,N}.

We start with the following result which presents a conve-
nient form for computing ©,.

Theorem 3: Define the following vectors whose elements
are sequences:

¢

o2 | 51
2] 1)

-1 —-n T
A (52)
b 227w z7mu]. (53)

Then,
i) ©, can be expressed in the quadratic form

O,=1{6:0"T,6 - 28460 + a, < 0} (54)

where o, €R, B, € RP*P (with p=m + n)

are given by

R”, and T, e

e = &(y?) (55)
B = € (o) (56)

T, = 6(o07) - 0 0 . (57)
0 gk((WG(bu)(WGd’u) )

ii) Provided T, ! exists, another expression is

O,={6:(6-0)T(0-8) =V} (5%

6, =T;'8, (59)

Vi = Bﬂ‘['ﬂk - e

iii) All the eigenvalues of I', are real and some of them
can be negative. When T, > 0, ©, is an ellipsoid in R”.
When T, is indefinite, ©, is an hyperboloid in R .

Remarks: In part ii), the center of the set 6 « is identical

(60)

I
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to the ordinary least-squares estimate when Wg = 0. This
occurs only when nonparametric dynamics are neglected.
Proof: Using the definitions in the theorem, we have

- 679 (61)

(62)

Agy — Bpu=y
WgByu = BTWG[;) ]

Hence, substituting into (31), we have

6 WG[(;)“] kz}. (63)

Using (12), the quadratic form of ©, follows immediately,
which proves part i).
Part ii) is obtained by direct substitution when I ! exists.
To prove iii), observe that I'; can be expressed as follows:

0= {oemri |y -], =

Ten Tenz
= [I‘kT 12 Fk,ZZ] ()
where
Ten = ‘g)k(d’yd’;) (65)
Tyn= gk(¢y¢£) (66)
Ty =96 (¢ by~ (Wo¢u)(WG¢u)T)- (67)

The T, ,, matrix subblock can obviously cause I, to have
negative eigenvalues. The square roots of the eigenvalues of
I, ! are the lengths of the semiaxes of the ellipsoid. There-
fore, as ', becomes singular, some directions of the ellipsoid
become unbounded. A hyperboloid results when one or more
eigenvalues of T', become negative. O
Note that if the spectrum of u is concentrated at those
frequencies where | Ws(e’)| is large, the T ,, matrix
subblock can have negative eigenvalues. This tends to make
T, become indefinite, so that ©, becomes an hyperboloid.
This will be illustrated in an example in the next section.

D. Example of 6,

The true system was selected, as in the previous example
in Section III-B using the weight W, , defined in (25). The
input was a log-spaced sinesweep from 0.1 to 31 rad /s over
102.3 s, thus, N = 1024 data samples. Two filtered data sets
were generated using eighth-order low-pass Butterworth fil-
ters; one with a bandpass of w, = 2 rad/s, and the other with
w;= 1rad/s.

Fig. 5 shows ©,4,, processed with the two data filters. An
hyperboloid is obtained with w, = 2 rad/s and an ellipsoid
with w ;= 1 rad/s. (Note that only one branch of the hyper-
boloid is shown in the figure.) This confirms the earlier point
that when u is concentrated at those frequencies where
| WG(ej“’)| is large, ©, can become unbounded. Points in
the limit set ©* are shown and, as predicted by the theory,
are all contained in the equation-error sets.

E. Computing Intersecting Ellipsoids

To compute O[N] requires computing the intersection of
the sets {©,: k = 1,---, N}. Since all the ©, are convex, it
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Fig. 5. O, for each data filter; points in limit set are also shown.
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parameter b
&
T

051
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The equation-error sets {O: k = 200,300, -, 1024} using the
filtered data with wp=1 rad/s; ©* is also shown.

Fig. 6.

follows that ©[ N] is convex. In general, it is not, however,
an ellipsoid. To see this, we plotted some of the bounding
ellipsoid sets in Fig. 6. Specifically, it shows

{©: k = 200,300, --,1024}

corresponding to the previous example using the data filter
with cutoff at 1 rad/s. Observe that the intersection of the
sets produces a smaller (convex) set. Several approaches are
possible. One approach is to compute the smallest volume
ellipsoid that contains the intersection of the ellipsoids. This
is discussed in [6] and [3].

F. Effect of Initial Conditions

As defined in Section II, the sequence Gu evaluated at
time f €N is defined by
=1

(Gu)(1) = 2 g(r)ult = 7). (68)

To account for initial conditions, let # denote a bounded
input applied for ¢ < 0. Thus, the system with initial condi-

tions can be expressed as

y=Gu+}y (69)

with

3() = Y e(na(t-1), vien.  (70)
T=t¢
If G is stable or is in a stabilizing feedback, then 3(f) =0
exponentially as # — oo. Thus, the effect of initial conditions
dies out exponentially fast, or slow, depending on the slowest
modes in G or the closed-loop system. Hence, for suffi-
ciently large N, we have O, = ©O,. More precisely, for
each 6 €0,,
lim inf |6 - f5] =0
N—-o ey

(71)

where || - || is a norm on R”. In words, the estimator will
eventually report possible parameter values that are close to
the asymptotic set, and hence, asymptotically bound the limit
set © as the data length N increases.

Another way to account for the effect of initial condition is
to assume bounds on # and the tail of g

i:zl g(r)] =«
|a(t)| (73)

Then | j(¢)| < x,k,, and it can be treated as a bounded
disturbance in (69), see e.g., [30]. ~

(72)

< K,, t<0.

G. Other Forms of Nonparametric Uncertainty

The equation-error sets we have developed so far assume a
multiplicative form of nonparametric uncertainty. This is not
a necessary restriction as they could also have been devel-
oped for other forms. The requisite modifications are shown
below for some other typical forms.

Theorem 4:

i) Multiplicative: If

By
G= A—(l + A W), [Agll. =1 (74)
9
then
O, =1{0: | Agy = Byull s, < [WsBpull 2} (75)
ii)y Additive: If
B,
G= A_"'AGWG» ”AG“,&Sl (76)
0
then
O, ={0: | Agy — Byull po < | W5 Agttllia} - (77)
iii) Inverse Multiplicative: If
G- 2o : A 1 (18
= —|— <
e I T PR
then
O ={0: | Agy — Byullpa < | W5 Agy |4} (79)
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iv) Feedback: If

lAgll =1 (80)

then
O, =1{0: A4y — Byulsa = | We By » |l k2} - (81)
v) Coprime Factored (Coupled): If

B, + Ag W, A
- 0 T"BTE , B =1 (82)
A, + A, W, Aallle
then
Wgu
6, =1(0:||A;y — Byu = . (83
k " ] 0 "kZ I:WAy] kz} ( )
vi) Coprime Factored (Uncoupled): If
B, + Ap Wy
= A <1, A ll, =1 (84
pes A LY PN LIPSy
then
O, = {0: | Agy — Bott] o < | Wptt] 4o + Wiy lliat-

(85)

vii) All the above set estimates ©, have the property that
©* < O[N] € 6,. (86)

Proof: The proof of the property ©* = ©, for all the

cases above is similar to the proof for Theorem 1. We will
show it for case vi) only. Let §* € ©F, i.e.,
By + AL W,
b A2 (87)
A,. + A, W,
with
“Ai;”f;pSland “Aﬂ:clngi‘;s 1. (88)
Since 6%, A%, and A% must agree with the measured data
Agey — Bptt = Ny Wyu — A Wy, (89)

Now take the /,-norm and apply the triangle inequality with
(88), 8* must also satisfy

| Agey — Byett]| 2 < [| Wl s + |l Wiyl (90)
Therefore,
0*e{6: || Agy — Byul o = |l Wit iz
| Waylliz} = O (91)
and ©* € O. O
From these forms it is straightforward to generate the
corresponding quadratic forms for computing the sets. In
those cases, when the right-hand side of any of the above
inequalities does not depend on the parameter §, the center of

the parametric set is the usual least-squares estimate, e.g.,
[32].

V. EQUATION-ERROR SET ESTIMATION WITH
DISTURBANCES

There are many ways to characterize the disturbance envi-
ronment both in terms of the location and the type of
disturbance. To simplify the discussion, we assume that the
disturbance is located additively at the output, as given by
(16)

y = Gu +v.
The most common type is the stochastic disturbance which

we consider in this section. Deterministic ‘‘ worst-case’” types
of disturbances are discussed briefly in Section VI.

A. Stochastic Additive Disturbance

Suppose that the disturbance v is a zero-mean quasi-sta-
tionary sequence in the set

¥={v: S,(w) s 0”| wy(e™) |7,
' S, («)=0,V]w|= x} (92)

where Wp,(z) is a stable and stably invertible transfer func-
tion. Equivalently, we can think of v as the output of a stable
uncertain linear-time invariant system H with a white-noise

input e. Hence,
v = He (93)

where H is in the set of linear-time-invariant systems J and
e is in the set of stochastic sequences ¥, defined as
follows:

(94)

HE [Ny Wy stable: [|Ay ]|, =< 1}

W 2 fwhite noise e: S,,(w) = 62 < 02, S, (w) =0,
ee € e

stoch =
¥ |w| = 7, bounded fourth moment} . (95)
The disturbance set then becomes
¥={v=He: He X, e€ W} (96)

Assuming that W, and o are known, the disturbance set
defined above is otherwise parameter-free. One can compare
this set description to % which contains the parametric
transfer function G,(z). As it is, the disturbance set is
perfectly adequate for describing a sensor noise. However, in
the case of a general disturbance reflected to the output, the
set merely serves to provide an upper bound. For small
disturbances this is adequate, but the set is potentially conser-
vative otherwise. For a more complete discussion on this
matter, see [19].

We now have the following.

Theorem 5: Suppose that the true plant which generated

{y,u: t=1,---, N} has the structure described above.
Then
i)
Oy~ 6, w.p.lasN-—oo. (97)
i)
0" c o, (98)
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where the equation-error sets are now defined as follows:
oy 2 {00 &u([Wia' (4,7 - Byu)]’)

< 6 (W' WoB,u)') + 02(1 + 058,)}  (99)
0,2 {0: &([Wi' (4 - Bw)])

< E((W,;‘WGBou)z) +o2(1+ 0§0A)} (100)

with

0, = [a - an]T' (101)

iii) In the frequency domain

_ L B fo(w)
%= {9‘ 3 | e

do < 0} (102)

with
fs(“’) = (| AyG - Bo|2 — | WsBy| 2)Suu(‘-’-’)

+ |A0|2('H|2See(w)_ lWH|202)' (103)

Observe that both the finite-data set Op, as well as the
infinite-data set ©,,, depend on the noise intensity ¢ and the
disturbance weighting transfer function W, whose inverse
acts as a data filter. The theorem is analogous to the many
prediction-error based parameter estimators in the sense that
for a sufficiently long data length N, the estimate is equal to
the true value with high probability [24]. In our case, the
finite-data set ©,, will contain ©* with high probability. Part
i) of the theorem means that for each § € ©,, there is a
8, €Oy close to it as N increases. More precisely,

inf |0 —6y]| >0  w.p.las N—>oo (104)
ONEON
where || + || is 2 norm on R?.

The integrand in the frequency-domain expression for O,
is always negative provided that for all |w| <7

1
< o (1Wy |2 = | HI’S..).

uu

(105)

We can now see the usual effects of signal-to-noise ratio. As
the noise power ¢ increases, the ‘‘volume’ in O, will
increase. Conversely, if S,,,(w) is large at many frequencies,
©,, will shrink. In addition, in the frequency ranges where
| Wy(e/®)| > Hi (e’®), an indication of poor prior informa-
tion, very large-input power at these frequencies is required
to keep ©,, small.

Proof: Under the assumptions, the true system can be
expressed as

B
y= A—"(1 + AWy u+ Ay Wye (106
[

for some [Agll, =1, [[Agll =1, and e€ ¥

stoch*

Rear-

ranging terms and filtering by W;t gives
W;'(Ayy — Byu) = Mg Wi WgByu + Ay Age. (107)
Squaring both sides and taking autocorrelation at 7 = 0, we
get
F([Wi'(Aey - Bu)]') = &((6 W' WoB,u)’)

+ &((Ay Age)’) (108)

where the cross terms (between e and u) are zero because e
and u are independent. Now take the supremum of the
right-hand side to obtain the infinite-data parameter set

e, = {0: E([wa'(Agy - B,u)]’)

< sup [a?((AG W,}‘WGBou)z)

Ag,Ay, e

+£«AHA¢fﬂ} (109)
To evaluate the right-hand side above, we now use the
assumptions [|Agll, <1, [Agylle =1, and e€ ¥, to
obtain

S E((a6 W' WoByu)') = &((Wi' WeByu)’)
Aglle st

(110)

sup  sup  E((Ag Age)’) = sup £((Ag€))
e€Wyoen 1811w, =1 €€ Hgiocn
(111)
= o*[ 44ll%, (112)

02(1 + k‘zijlai) (113)

o?(1+0%6,). (114)

This yields the set ©,, as defined in the theorem.

Observe that ©, has precisely the same form as ©,
except that the operator ¢ () is replaced everywhere with the
sample mean &y(-). To show (97), recall from [24, pp.
34-35] that if the stochastic part of x can be described as
filtered white noise, then the spectrum of an observed single
realization of x, computed as for a deterministic signal,
coincides, with probability 1, with that of the process, i.e.,

. . 1 X 2 z

lim &y(x2) - lim — > &(x(¢)) = £(x?). (115)

N—-oo N-oo =1
The conditions for this convergence are that x is a quasi-sta-
tionary sequence and the white noise has bounded fourth
moment. Note that since # and y are assumed to have finite
power, W;'(A,y — Byu) and Wy 'W;Byu are quasi-sta-
tionary. Thus, the convergence in (97) holds.

To show that ©* € ©_, we use the frequency-domain
expressions in iii). Observe that the frequency-domain ex-
pression for ©,, can be obtained by substituting y = Gu +
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He in (100) to get
0, = {a: Z([Wi' (446G - By)u + Wy'A,He]’)
< E((Wa'WoBu)') + *[ 4,13} (116)

Now use the fact that u and e are independent to simplify,
then apply Parseval’s theorem. In the frequency-domain ex-
pression, the assumption H € s means that

| H(e)|2S,e(w) — | Wy(e’*)|?0® <0,
and 6 € ©F means that

| A,G — B,y |* — | W5By|*<0, Vo.

vo (117)

(118)

Thus, 8 € ©* guarantees that fy(w) is negative for all fre-
quencies, and hence, ©* € .. O

1) Example of Bias Estimation: As an illustrative exam-
ple, consider estimating a constant in noise

y(1) = by + e(t). (119)

In this case, W5(z) = O to reflect the absence of nonpara-
metric uncertainty, and H(z) = 1. In addition, Wy(z) = 1,
and He # is satisfied. If e€ ¥, then the set estimate
for b, is

Oy ={b: (b-b)" =0~ &y((r - b)’)} (120)

where b = &x( ). For large N, the right-hand side behaves
as o2 — o2, where o is the true noise variance. Note that
the limit set ©%, in this case, is the point b,. Since b = by
as N — oo, we see that ©* S ©_ as stated in the theorem.
Furthermore, as the bounding variance o approaches o, the
set ©,, becomes a point. Observe that ©,, does not shrink to
a point when there is nonparametric uncertainty, i.e., W5(z)
# 0.

B. Computing the Equation-Error Set

For computing ©,,, we have the following result
Theorem 6: As in Theorem 3, define the vector sequences
¢, ¢,, and ¢,. Then:
i) ©, can be expressed in the quadratic form
Oy = {0:07Ty6 — 2810 + ay < 0} (121)

where oy €R, ByER?, and Ty e R?™7 are given by

an = by((Wa'y)) - o? (122)
Bn = Ex((Wi'e)(Wa')) (123)
Ty = & ((Wa'9)(Wi's)")
o2, 0
- (124)

0 @k]N((WI:IlWGd)u)(WI;IWG(bu)T)

ii) Provided I‘g‘ exists, another expression is
A \T

Oy = {6: (6 - 6y) Tn(6 — 0y) < v (129)

= Tx'Bn (126)

Vn = 51(/F§16N - aN- (127)

iii) When Ty > 0, Oy, is an ellipsoid in R” and when 'y
is indefinite, ©, is a hyperboloid in R .

The proof of the above proceeds along the same lines as
that of Theorem 3, and is omitted.

The infinite-data parameter set estimate can also be ex-
pressed in a form identical to that for the finite-data set

O, = {6:a—2870 +07T0 <0} (128)
where a €R, BeR?, and T e R?*7 are given by
a=E((Wg'y)) -0’ (129)
B=2E((Wn'e)(Wu'y)) (130)
r= &((wi'e)(Wi's)")
0%, 0
- (131)

0 E((Wa'Wet) (Wi Wos.))

C. Example of ©,, with Disturbance

The example system is as before with G given by (23),
and W, given by (25). The disturbance dynamics is

H 01 132)
()= 2755 (
and the disturbance weight is
1
W(z) = —H(2) (133)
6H

where 6, € (0, 1) is a parameter chosen by the user.

The disturbance v is simulated as the output of H driven
by e, a sequence of independently distributed Gaussian vari-
ables with zero mean and variance o2. Three series of
experiments are carried out to study the effects of noise
power (choice of o), mismatch between H and W, (choice
of 68;), and length of data record (choice of N). In the first
two experiments, the input u is a linearly-spaced sinesweep
from 0.01 to 0.5 rad/s over 102.3 s, giving N = 1024 data
samples. In the third experiment, N is varied.

To study the effects of noise power, ¢ is varied in this
experiment. As suggested by Theorem 5, the parameter set
estimate should expand as ¢ increases. This is supported by
Fig. 7, where ©,, is plotted for ¢ = 0.1,0.2, and 0.4. Note
that in all cases shown here, ©* € O,,.

In Fig. 8, the value of 6, is varied from 0.6 to 1.0.
Again, as suggested by Theorem 5, as the mismatch between
H and W, becomes larger, i.e., | 8,; | becomes smaller, Oy
ZrOws.

The effects of different data record lengths are studied in
the last experiment. For the cases of N = 1024 and 2048
with ¢ = 0.5, and &, = 1.0, ©* is not in ©,,. This is still in
agreement with our results because in the stochastic distur-
bance case ©* is only guaranted to be in ©,, as N tends to
infinity. As shown in Fig. 9, ©* is in ©,, for N = 4096.
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2.5F

parameter b
-
in
T

0.5

H

0.7 -0.6

parameter a
Oy for different values of o (N = 1024, 5 = 0.8).

Fig. 7.

T
2.5¢ -
ol 4
£
8
§ 1.5t 4
(=%
s J
0.5 B

parameter a
Fig. 8. O, for different values of 8, (o = 0.2, N = 1024).

VI. SoME EXTENSIONS

In this section, we first consider the extension of our
results for the equation-error set estimates to the output-error
set. We then consider disturbances which are deterministic in
nature rather than stochastic, as considered in the previous
section.

A. Disturbance-Free Output-Error Set Estimation

The results obtained for the equation-error set in Section
IV can be repeated mutatis mutandis for the output-error
set, but for the notable exception of forming a quadratic set
for computational purposes none exists for output-error iden-
tification [24].

Theorem 7: Suppose the measured data {y,u: ¢ =
1,-+-, N} is generated from y = Gu with Ge€ ¥. Then the
following holds:

O*c O[N] € ©g°, vVke[l,N],¥vNeN (134)

where ©%°[N] and ©g¢ are the output-error set estimates

251 ml

parameter b
-
%)
T

4096
0.5t ; ‘ . i

0 " H
-1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6

parameter a

Fig. 9. ©, for different values of N (0 = 0.5, 65 = 1.0).
given by

=

BO
We—u
k2 A

[}

ewzbﬁy_ﬁm }um
“ A k2

[

N
0°[N] = N ez (136)
k=1
Remark: We refer to ©7° and ©°°[ N] as output-error
parameter sets because the output-error term y —
(B, / Ag)u appears in their descriptions.
Proof: The proof of ©* € ©°¢[N] € ©¢ is identical
to the one for Theorem 1. O
The sets ©, and ©7° are both worst-case estimates, both
contain ©*, but they are not necessarily the same sets for
identical input sequences. Another major difference is that
both sides of the inequality in ©, are affine in 6, whereas in
©p¢ they are linear fractional in 8. The former property
makes it very easy to compute ©,, as has been shown,
whereas the latter makes it difficult to compute the output-er-
ror sets, as usual.

B. Deterministic Additive Disturbances

So far, we have only considered stochastic disturbances.
We now briefly examine the effect of deterministic distur-
bances.

Suppose, as before, that the true system is

y = Gu + He (137)

with Ge ¥ and He # as previously described. We now
consider the following deterministic set which describes
quasi-stationary sequences with bounded spectra:

Wee = (1)1 Soe(®) < O, V| 0| = w}. (138)

spec spec *
We then obtain the following.

Theorem 8: If e€ #,,, then

O = {0: M[Wﬁl(Aoy - Bou)]z) k
< \/é”k((W,;lWGB,,u)z) + 0 V1 + 910,,} (139)
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and
©* ¢ lim ©,.

k— o0

(140)
Proof: The proof of (140) proceeds the same as Theo-
rems 1 and 4. Let 6% € ©, then

Wi (Agey — Bptt) = AWy WoBguu + Ay Apee.
(141)

After squaring both sides and taking the sample averages, the
Schwarz’s inequality, | A%, <1, and [|Ag|, =<1 are
applied to obtain

\/Ek([WFII(Aa*J’ - Ba*”)]z) = \/‘”pk((Wf_IlWGBa*”)z)

+VE((Age)’) . (142)

Now let k — oo, we have

0*e {93 \/@@f([ Wia'(Ayy - Bou)]z)

< V[J((W,;IWGBBu)Z) + Opec V1 + 050, } (143)

and ©* € lim, __©,. O

In both cases of stochastic and deterministic disturbances,
the limit set ©* is contained in the set estimate as the data
length tends to infinity. However, in the deterministic case
here, the probabilistic convergence need not be considered.
The reason that both cases can be handled in the same way is
because a common framework is used for deterministic and
stochastic signals, [see (5) and (6)]. Note that instead of using

Wpec to describe the deterministic disturbance e, we can
also use
N 2
¥, = {e(t): lim — > e(s) =ol; (144)
N-e N ;21

to describe e and obtain results similar to Theorem 8.

VII. CoNCLUDING REMARKS

The set-membership approach to system identification starts
with the assumption that the underlying true system which
generated the measured data is in a known set characterized
by some unknown parameters and unknown but bounded
nonparametric dynamics. We then derived set estimates for
these unknown parameters. In the disturbance-free case, the
set estimate has the property that it always contains the limit
set. In the presence of stochastic disturbances, the set esti-
mate is shown to have the property that it contains the limit
set with probability one as the data length tends to infinity.

The set estimates derived in this paper also have some nice
properties for computation. For the equation-error estimates,
the set expressions are quadratic in the parameters. Thus, the
set estimates are either ellipsoids or hyperboloids in the
parameter space. Furthermore, these sets are easily obtained
by computing averages of the filtered input-output data.
However, when the output-error form is used in the set
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estimate, these nice properties are lost, which is typical with
output-error identification.

The next step is to use these set estimates with a robust
on-line control design procedure. One approach would be to
bury the parameter uncertainty in another nonparametric
uncertainty by finding an overbounding frequency-dependent
weighting function. This is a potentially very conservative
approach. Alternatively, the minimax approach in [22] and
[21] presents a robust control-design procedure to handle the
specific type of parameter uncertainty as represented by the
ellipsoidal sets. This is a current topic of our research.
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