sdpsol: A Parser/Solver for Semidefinite
Programs with Matrix Structure

Shao-Po Wu and Stephen Boyd

Information Systems Laboratory
Stanford University, Stanford CA 94305, USA

Abstract. A variety of analysis and design problems in control, com-
munication and information theory, statistics, combinatorial optimiza-
tion, computational geometry, circuit design, and other fields can be
expressed as semidefinite programming problems (SDPs) or determinant
mazimization problems (max-det problems). These problems often have
matrix structure, i.e., some of the optimization variables are matrices.
This matrix structure has two important practical ramifications: first, it
makes the job of translating the problem into a standard SDP or max-
det format tedious, and, second, it opens the possibility of exploiting the
structure to speed up the computation.

In this paper we describe the design and implementation of sdpsol, a
parser/solver for SDPs and max-det problems. sdpsol allows problems
with matrix structure to be described in a simple, natural, and convenient
way. Although the current implementation of sdpsol does not exploit
matrix structure in the solution algorithm, the language and parser were
designed with this goal in mind.

1 Introduction
1.1 Maxdet-problems and SDPs
A determinant mazimization (max-det) problem has the form

minimize Tz + Y1 logdet GO ()~

subject to G (z) =0, i=1,...,K 1)
FO(z) =0, i=1,...,L
Az =b,

where the optimization variable is the vector z € R™. The matrix functions
G®W :R™ - RY¥*l and FO : R™ — R™*™ are affine:

GO (@) =G + 5GP + - +2,GY, i=1,.. K
FO(g) = F\) + o F) 4 4 0, B, i=1,...,L

where G;i) and Fj(i) are symmetric for j = 0, ..., m. The inequality signs in (1)
denote matrix inequalities. We call G®(z) > 0 and F9(z) > 0 linear matriz
inequalities (LMIs) in the variable z. Of course the LMI constraints in (1) can

be combined into one large block-diagonal LMI with diagonal blocks G (z) and
FO)(z).

When K = 1 and G (z) = 1, the max-det problem (1) reduces to the
semidefinite programming (SDP) problem:

minimize ¢’z
subject to FO(z) =0, i=1,...,L (2)
Ax =b.

The max-det problem (1) and the SDP (2) are convex optimization prob-
lems. In fact, LMI constraints can represent many common convex constraints,
including linear inequalities, convex quadratic inequalities, and matrix norm and
eigenvalue constraints. SDPs and max-det problems arise in many applications;
wee Alizadeh [1], Boyd, El Ghaoui, Feron and Balakrishnan [2], Lewis and Over-
ton [10], Nesterov and Nemirovsky [11, §6.4], Vandenberghe and Boyd [15] and
Vandenberghe, Boyd and Wu [16] for many examples.

SDPs and max-det problems can be solved very efficiently, both in worst-
case complexity theory and in practice, using interior-point methods (see [15] and
[16]). Current general purpose solvers such as SP [13], LMITOOL [5], SDPT3 [12],
SDPA [8], and SDPMATH [4] use the standard format (2), or a simple variation
(e.g., its dual form).

1.2 Matrix structure

In many SDPs and max-det problems the optimization variables are matrices of
various dimensions and structure, e.g., row or column vectors, or symmetric or
diagonal matrices. In general, the optimization variables can be collected and
expressed as (X(U,..., X)) where X)) € R**% and X ¥ may have structure
(e.g., symmetric, diagonal, upper traingular, etc.). These matrix variables can be
vectorized into the single vector variable x that appears in the standard format
problems (1) and (2). To vectorize X, we find a basis Efi), ... ,E,(,’l) such that

m;

(i) _ (4) (@)

X\ = E T; Ej
j=1

with () € R™ denotes the vectorized X#. For example, if X(9) ¢ RPi*4
has no structure, we have z(9) = vec(X®) and m; = pig; if X € RPi*%
is diagonal (p; = ¢;), we have () = diag(X®) and m; = p;. Doing this for
i =1,..., M, we obtain the vectorized variable z € R™,m = my + --- + myy,
and

T
z = [xu)T T

Note that each variable X (9 of the problem corresponds to part of the vectorized
variable z. With this correspondence, we can convert the problem to the standard
form (1) or (2), and vice versa.

The following example illustrates this vectorization process. We consider the
problem
minimize Tr P
—-ATP—-PA -PB
B™p R |7V (3)
P=PT >0
R > 0, R diagonal, Tr R =1,

subject to

where A, B are given matrices (i.e., problem data), and the symmetric P € R™*"
and diagonal R € R**¥ are the optimization variables.
We vectorize P and R as

P=Y"Y 20, (4)

i=1 j=i
k
i=1

where P;; denotes an n x n zero matrix except the (¢,7) and (j,¢) entries are
1, R; denotes a k x k zero matrix except the (i,4) entry is 1. Substituting (4)
and (5) for P and R everywhere in the SDP (3), we obtain the problem of the
form (2) in the optimization variable

T
z= [xﬁ) oz D xﬁz)] c RMn+D/2+k

1.3 Implications of the matrix structure

Clearly it is straightforward but inconvenient to convert an SDP or a max-det
problem with matrix structure into the standard form (2) or (1). This conversion
obscures the problem structure and the correspondence between the variables
X and the vectorized variable z, which makes it hard to interpret the results
after the problem is solved.

Moreover, the problem structure can be exploited by interior-point methods
for substantial efficiency gain (see [14] and [3] for examples). To illustrate the
idea with a simple example, consider the operation

L(P)=-ATP - PA

that evaluates the —A”T P — PA term in the first matrix inequality of (3). £(P) is
an O(n®) operation because it involves matrix multiplications of n X n matrices.
However, if we vectorize P as shown in (4), then £(P) becomes

L(P)=3"% 1P (-ATP; - P;A),

i=1 j=i

which is an O(n*) operation.

1.4 sdpsol and related work

In this paper, we describe the design and implementation of sdpsol, a parser/solver
for SDPs and max-det problems with matrix structure. Problems can be speci-
fied in the sdpsol language in a form very close to their natural mathematical
descriptions. As an example, the SDP (3) can be specified as

variable P(n,n) symmetric;
variable R(k,k) diagonal;
[-A’xP-P*A, -PxB;

-B’ %P, R 1 > 0;
P> 0;
R>0; Tr(R) ==1;
minimize objective = Tr(P);

There exist several similar tools that use a specification language to describe
and solve certain mathematical programming problems. A well-known example
is AMPL [6], which handles linear and integer programming problems.

LMITOOL [5] and the LMI Control Toolbox [7] provide convenient Matlab-
interfaces that allow the user to specify SDPs with matrix structure (specifically
the ones arising in control), using a different approach from the parser/solver
described in this paper.

In §2, we describe the design of the specification language. A preliminary
implementation of sdpsol (version beta), is described in §3. In §4, we give several
examples to illustrate various features of sdpsol.

2 Language design

2.1 Matrix variables and affine expressions

The fundamental data structure of the sdpsol language is, as in Matlab [19],
the matrix. The language provides a Matlab-like grammar, including various
facilities to manipulate matrix expressions. For example, it provides commands
that construct matrices, operations such as matrix multiplication and transpose,
and matrix functions such as trace and inner-product. The language also sup-
ports assignments, i.e., expressions can be assigned to internal variables that
can later be used in the problem specification. Various algorithm parameters,
such as tolerance or maximum number of iterations, can be initialized using
assignments.

An important extension beyond Matlab is that the sdpsol language provides
matrix variables, and, by extension, matrix expressions formed from matrix vari-
ables and matrix constants. Matrix variables of various dimensions and structure
can be declared using variable declaration statements. For example, the state-
ments

variable P(7,7) symmetric;
variable x(k,1), y;

declare a 7 x 7 symmetric variable P, a k x 1 variable x and a scalar variable y.

Variables can be used to form affine expressions, i.e., expressions that depend
affinely on the optimization variables. For example, the expression (assuming P
is a variable and A, D are constant square matrices)

A’%P + PxA + D

is an affine expression that depends affinely on P. Affine expressions can be used
to construct LMI constraints and the objective function of SDPs and max-det
problems.

As each affine expression is parsed, sdpsol keeps track of its dependence on
the variables, adding the dependency information to an internal table for later
reference, e.g., by a solver.

2.2 Constraints and objective

Various types of (affine) constraints are supported by the language, including
matrix inequalities, component-wise inequalities and equality constraints. Con-
straints are formed with affine expressions and relation operators, as in

A’¥P + PxA + D < -1;
diag(P) .> 0;
Tr(P) == 1;

which specify the matrix inequality ATP + PA + D < —I, the component-wise
inequality diag P > 0, and the equality Tr P = 1.
The objective function is specified via an assignment, as in

maximize objective = Tr(P);

which assigns Tr P to the internal variable objective and makes maximizing it
the objective. A feasibility problem (i.e., a problem that determines whether a
set of constraints is feasible or not) is specified without an objective statement.

2.3 Duality
We associate with the max-det problem (1) the dual problem (see [16] for details):

K L
maximize Y (logdet W —Tr VWO +1;) = 3~ Tr Y 200 447

i=1 i=1

K L
subject to ZT‘I’G?)W“)+Z’I‘I'FJ<(i)Z(i)+(ATZ)j =¢j, j=1,...,m (6)
i=1 i=1
W@ o0, i=1,...,K
ZW =0, i=1,...,L.

where the dual variables are symmetric matrices W € R¥*Y fori=1,..., K,
symmetric matrices Z(9 € R™*™ for i = 1,..., L, and a vector z € R? (assum-
ing A € RP*™ and b € R? in (1)). We will refer to (1) as the primal problem
of (6). Note that (6) is itself an max-det problem.

Similarly, we can associate with the SDP (2) the dual:

L
maximize -— Z Tr Fo(i)Z(i) +bz

i=1
L
subject to Z’I‘I‘FJ.(Z)Z(") + AT =¢j, j=1,....,m
i=1
ZW w0, i=1,...,L,

which is also an SDP.

The dual problem has several practical uses, e.g., the optimal dual variables
give a sensitivity analysis of the primal problem. The most efficient SDP and
max-det solvers are primal-dual, i.e., they simultaneously solve the primal and
dual problems. sdpsol automatically forms the dual from the primal problem
specification. The dual problem is used by the solver, and also, if requested, to
return to the user optimal dual variables.

There is a simple relation between the form (size and structure) of the pri-
mal constraints and the dual variables (and vice versa). Observe that for each
constraint in (1) (or (2)), there is a dual variable of the same dimensions and
structure associated with it. The variables associated with the primal LMI con-
straints are constrained to be positive definite in the dual problem, while the
variables associated with the equality constraints are unconstrained.

Taking the SDP (3) as an example, sdpsol associates the dual variables

7 — zWT ¢ glrtk) x(nth)

7(2) = Z(Z)T e RX"
Z®) e R¥>*k - 7(3) diagonal

with the three matrix inequalities respectively, and z € R with the equality
constraint. After some manipulation (which can be easily performed by sdpsol),
we have the dual problem:

maximize z
—ATPy—PjA —P;B]) 2)
subject to Tr[-BTP; 0 Z\) + Tr P Z'2) = ;4
foralli=1,...,nandj=4,....,n (8
Tr |0 0| Z0 4+ TrRZG) 420, i=1,...,k
0 R;

ZW w0, z3 w0, zG) w0,

where P;;, R; are given by (4) and (5), d;; = 1 if i = j, otherwise zero.

sdpsol provides an alternate form of constraint specifications, in which the
user associates a name with each constraint, which is then used by sdpsol to refer
to the dual variables. For example, the statements (assuming P, A, D € R"*")

constraint lyap A’*P + PxA + D < -1;
constraint equ Tr(P) == 1;

specifies (and names) the constraints ATP+PA+D < —I and Tr P = 1. sdpsol
associates with these constraints the dual variables with names

lyap_dual € R™", lyap_dual symmetric
equ_dual € R.

After the solution phase, sdpsol returns the optimal values of these dual vari-
ables.

3 Implementation

We have implemented a preliminary version of the parser/solver, sdpsol version
beta. The parser is implemented using BISON and FLEX. Two solvers, SP [13]
and MAXDET [18], are used to solve the resulting SDPs and max-det problems.
Both solvers exploit only block-diagonal structure, so the current version of
sdpsol is not particularly efficient.

Both SP and MAXDET are primal-dual methods that require a feasible
starting primal and dual point. sdpsol uses the method described in [15, §6] to
handle the feasibility phase of the problem, that is, sdpsol either finds a feasible
starting point (to start the optimization phase), or proves that the problem is
infeasible. If there is no objective in the problem specification, sdpsol simply
solves the feasibility problem only.

A Matlab interface is provided by sdpsol to import problem data and export
the results. sdpsol can also be invoked from within Matlab interactively.

3.1 Handling equality constraints

Neither SP nor MAXDET handles problems with equality constraints, so the
current implementation of sdpsol eliminates them, uses SP or MAXDET to
solve the resulting problem (which has no equality constraints), and finally re-
assembles the variables before reporting the results.

The equality constraints given in the problem specification can be collected
and put into the form of Az = b (4 € RP*™, b € R?) as given in (1) and (2). We
assume that the rank of A, say r, is strictly less than m (otherwise the problem
has a trivial solution). The matrix A is often not full rank because sdpsol does
not detect and remove redundancy in the equality constraints specified. For
example, a 2 x 2 matrix variable X can be constrained to be symmetric by the
constraint specification

X == ’;
sdpsol interprets the above statement as the following four equality constraints
X1 = Xu1, Xia2=Xo1, Xo1 = X2, Xoo = Xoo.

Evidently one constraint X5, = Xj2 is necessary. This will show up as two zero
rows in A, and two identical rows of A; in particular A will not be full rank.

Instead of keeping track of such situations, sdpsol builds up the matrix
A paying no attention to rank. sdpsol then performs a complete orthogonal
decomposition (see [9]) on A such that

AP =Q [R(}l 8] U, 9)

where P is a column permutation matrix (for column pivoting), R;; € R™*" is
upper-triangular, Q,U € RP*? are orthogonal matrices. All z € R™ satisfying
the equality constraints can be expressed as

R0

m:PU[0 0

0f a 0
]QTb+PU M Sz, +PU M
for all # € R™ with /i = m — r. Defining B € R™*™ by

Isxm

PU [0] =[0B],
we can express the max-det problem (1) as

K
minimize ¢7(z, + BE) + Z log det G (&) !
im1

subject to G (x,) + Z:Ej (Z BijS)> =0, i=1,...,K (10)

j=1 k=1

m m
Fi(z,) + >4 (Z BkjF,§’>> -0, i=1,...,L,

j=1 k=1

where # € R™ is the optimization variables and By; denotes the (k,j) entry
of B. Evidently, the above process reduces the optimization problem (1) in R™
with equality constraints to (10) in R™ without any equality constraint. Similar
methods apply to the SDP (2).

We should add that eliminating variables destroys the matrix structure that
could be exploited in a solver. A future version of sdpsol, would directly pass the
equality constraints to an SDP /max-det solver that handles equality constraints.

4 Examples

In this section, we give several examples to illustrate various features of sdpsol.

4.1 Lyapunov inequality

As a very simple example, consider a linear system described by the differential
equation

#(t) = Az(?) (11)

where A € R™" is given. The linear system is stable (i.e., all solutions of (11)
converge to zero), if and only if there exists a symmetric, positive definite P such
that the Lyapunov inequality

ATP+PA<O

is satisfied. The problem of finding such a P (if one exists) can be specified in
the sdpsol language as follows

% Lyapunov inequality
variable P(n,n) symmetric;

A’%P + PxA < 0;
P > 0;

In the problem specification, an n x n symmetric variable P is declared.
An affine expression ATP + PA is formed and is used to specify the Lyapunov
inequality. Another LMI, P > 0, constrains P to be positive definite. Since
no objective is given, sdpsol solves the feasibility problem that either finds a
feasible P or shows that the problem is infeasible.

Note that this problem can be solved analytically. Indeed, we can solve the
linear equation ATP 4+ PA + I = 0 for the matrix P, which is positive definite
if and only if (11) is stable.

4.2 Popov analysis

Consider the mass-spring-damper system with a vibrating base shown in Fig-
ure 1. The masses are 1kg each, the dampers have the damper constant 0.5nt/m/s,
and the springs are nonlinear: F; = ¢;(x;) where

0.7 < ¢i(@) <13, i=1,2,3.
a

The base vibration is described by

1
1+5/03 "

Whase =

where RMS(w) < 1 but is otherwise unknown. Our goal is to find an upper
bound on RMS(z).

platform

‘ } ———————— $ z = platform position

00 = |1

o)]

Jl

moving base

$ W,... = base position

Fig. 1. The mass-spring-damper system

The mass-spring-damper system can be described by the Lur’e system (see
[2, §8.1]) with 7 states and 3 nonlinearities

& = Ax + Bpp + Byw,
z=C,x,
q= C’]ma

where z € R, p € R? and the functions ¢; satisfy the [0,1] sector condition,
i.€.,

(12)

0 < gdi(w) < q
for i = 1,2, 3. One method to find an upper bound is to find a 42 and a Lyapunov
function of the form

3 Cqz
V(z) =27 Pz +2 Z by / bi(0)do (13)
i=1 0

where C, denotes the ith row of Cy, such that

d 2. T T
— ‘/ < —
m (ZU) Yy w w A

for all w,z satisfying (12). The square root of 72 yields an upper bound on
RMS(z).

The problem of finding 72 and the Lyapunov function (13) can be further
relaxed using the S-procedure to the following SDP (see [2, §8.1.4]):

minimize 2
subject toP >0, L>0, T >0
ATP+PA+CTC, PB,+ATCTL+CIT PB, (14)
BT P+LC,A+TC, LC,B,+BYCTL—9T LC,B, | <0,
BT'P BLCTL —?

where P = PT ¢ R™*", L, T € R**? diagonal, and 7> € R, are the optimization
variables. The optimal 2 of (14) is an upper bound of RMS(z) if there exists
P, L, T that satisfy the constraints.

The SDP (14) can be described using the sdpsol language as follows

% Popov analysis of a mass-spring-damper system
variable P(7,7) symmetric;

variable L(3,3), T(3,3) diagonal;

variable gamma_sqr;

P > 0;

L > 0;

T > 0

[A’>*P+PxA+Cz’*Cz, P*Bp+A’*Cq’*L+Cq’*T, Px*Bw;

Bp’ *P+L*Cq*A+T*Cq, L*xCq*Bp+Bp’*Cq’ *L-2*T ,L*Cq*Bw;
Bw’*P, Bw’*Cq’*L, -gamma_sqr]<0;

minimize RMS_bound_sqr = gamma_sqr;

Again, the specification in the sdpsol language is very close to the mathemat-
ical description (14). The objective of the problem is to minimize RMS_bound_sqr,
the square of the RMS bound, which is equal to the variable gamma_sqr.

Unlike the previous example, this problem of finding an upperbound on
RMS(z) has no analytical solution.

4.3 D-optimal experiment design

Consider the problem of estimating a vector x from a measurement y = Az +
w, where w ~ N(0,I) is the measurement noise. The error covariance of the
minimum-variance estimator is equal to At(AN7 = (AT A)~'. We suppose that
the rows of the matrix A = [a; ... aq]T can be chosen among M possible test
vectors v € RP, i =1,..., M:

ai€ {oM, .. oM}, i=1,... q.

The goal of experiment design is to choose the vectors a; so that the determinant
of the error covariance (AT A)~! is minimized. This is called the D-optimal
experiment design.

We can write ATA = Zf‘il)\iv(")v(")T, where); is the fraction of rows ay,
equal to the vector v(¥. We ignore the fact that the numbers \; are integer
multiples of 1/¢, and instead treat them as continuous variables, which is justified
in practice when ¢ is large.

In D-optimal experiment design, A; are chosen to minimize the determinant
of the error covariance matrix, which can be cast as the max-det problem

M -1
minimize logdet (Z)\iv(i)v(i)T>
i=1

subject to A\; >0,i=1,...,M (15)
M
Y=L
i=1

This problem can be described in the sdpsol language as

% D-optimal experiment design
variable lambda(M,1);

lambda .> 0;
sum(lambda) == 1;

Cov_inv = zeros(p,p);

for i=1:M;

Cov_inv = Cov_inv + lambda(i,1)*v(:,i)*v(:,1i)’;
end;
minimize log_det_Cov = -logdet(Cov_inv);

In the specification, an M-vector lambda is declared to be the optimization
variable. The (component-wise) inequality constraint specifies that each entry of
lambda is positive, and the equality constraint says the summation of all entries
of lambda is 1.

A for-loop is used to construct Cov_inv, the inverse of the covariance matrix,
to be Zgl A0 @v®T . The objective of the optimization problem is to mini-
mize the log-determinant of the inverse of Cov_inv. An implicit LMI constraint,
Cov_inv > 0 is added to the problem as soon as the objective is specified.
This LMI corresponds to the G(x) > 0 term in (1), and it ensures that the
log-determinant term is well-defined.

5 Summary

Using a parser/solver (such as sdpsol described in this paper) for SDPs and
max-det problems has the following advantages:

— Problems with matrix structure can be conveniently specified and solved.
— Problem structure can be fully exploited by sophisticated solvers.

Our first implementation, sdpsol, has the first advantage but does not exploit
the problem structure.

Acknowledgments

This research supported in part by AFOSR (under F49620-95-1-0318), NSF (un-
der ECS-9222391 and EEC-9420565), and MURI (under F49620-95-1-0525). The
authors would also like to thank Lieven Vandenberghe, Laurent El Ghaoui, Paul
Dankoski and Michael Grant for very helpful discussions, comments and sugges-
tions.

References

1. F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal on Optimization, 5(1):13-51, Febru-
ary 1995.

2. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz Inequalities
in System and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM,
Philadelphia, PA; June 1994.

3. S. Boyd, L. Vandenberghe, and M. Grant. Efficient convex optimization for engi-
neering design. In Proceedings IFAC Symposium on Robust Control Design, pages
14-23, September 1994.

4. N. Brixius, F. A. Potra, and R. Sheng. Solving semidefinite programs with Mathe-
matica. Technical Report 97/1996, Department of Mathematics, University of Iowa,
1996.

5. L. El Ghaoui, R. Nikoukha, and F. Delebecque. LMITOOL: a front-end for LMI
optimization, user’s guide, 1995. Available via anonymous ftp to ftp.ensta.fr
under /pub/elghaoui/lmitool.

6. B. K. R. Fourer, D. Gay. AMPL-a modeling language for mathematical program-
ming. Scientific Press, San Francisco, 1993.

7. P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali. The LMI Control Toolbox.
In Proc. IEEE Conf. on Decision and Control, pages 2083—-2041, December 1994.

8. K. Fujisawa and M. Kojima. SDPA (semidefinite programming algorithm) user’s
manual. Technical Report B-308, Department of Mathematical and Computing
Sciences. Tokyo Institute of Technology, 1995.

9. G. Golub and C. Van Loan. Matriz Computations. Johns Hopkins Univ. Press,
Baltimore, second edition, 1989.

10. A. S. Lewis and M. L. Overton. Eigenvalue optimization. Acta Numerica, pages
149-190, 1996.

11. Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex
programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
PA, 1994.

12. K. C. Toh, M. J. Todd, and R. H. Tiitiinci. SDPT3: a MATLAB software package
for semidefinite programming, 1996.

Available at http://www.math.nus.sg/ “mattohkc/index.html.

13. L. Vandenberghe and S. Boyd. SP: Software for Semidefinite Programming. User’s
Guide, Beta Version. K.U. Leuven and Stanford University, Oct. 1994.

14. L. Vandenberghe and S. Boyd. A primal-dual potential reduction method for prob-
lems involving matrix inequalities. Mathematical Programming, 69(1):205-236, July
1995.

15. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49-95, March 1996.

16. L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear
matrix inequality constraints. Submitted to SIMAX, February 1996.

17. S.-P. Wu and S. Boyd. sdpsol: A Parser/Solver for Semidefinite Programming and
Determinant Mazimization Problems with Matriz Structure. User’s Guide, Version
Beta. Stanford University, June 1996.

18. S.-P. Wu, L. Vandenberghe, and S. Boyd. MAXDET: Software for Determinant
Mazimization Problems. User’s Guide, Alpha Version. Stanford University, Apr.
1996.

19. MATLAB: High-performance Numeric Computation and Visualization Software.
Version 4.1, MathWorks Inc., Natlick, MA, 1993.

This article was processed using the IXTEX macro package with LLNCS style

