
IEEE SIGNAL PROCESSING MAGAZINE [50] MAY 2010 1053-5888/10/$26.00©2010IEEE

C onvex optimization has been used in signal processing for a
long time to choose coefficients for use in fast (linear)
algorithms, such as in filter or array design; more
recently, it has been used to carry out (nonlinear)
processing on the signal itself. Examples of the

latter case include total variation denoising, compressed
sensing, fault detection, and image classification. In both
scenarios, the optimization is carried out on time scales of
seconds or minutes and without strict time constraints.
Convex optimization has traditionally been considered
computationally expensive, so its use has been limited
to applications where plenty of time is available. Such
restrictions are no longer justified. The combination of
dramatically increased computing power, modern algo-
rithms, and new coding approaches has delivered an
enormous speed increase, which makes it possible to
solve modest-sized convex optimization problems on
microsecond or millisecond time scales and with strict
deadlines. This enables real-time convex optimization
in signal processing.

INTRODUCTION
Convex optimization [1] refers to a broad class of optimiza-
tion problems, which includes, for example, least-squares lin-
ear programming (LP); quadratic programming (QP) and the
more modern second-order cone programming (SOCP); semi-
definite programming (SDP); and the ,1 minimization at the core
of compressed sensing [2], [3]. Unlike many generic optimization
problems, convex optimization problems can be efficiently solved, both
in theory (i.e., via algorithms with worst-case polynomial complexity) [4]
and in practice [1], [5]. It is widely used in application areas like control

[Jacob Mattingley and Stephen Boyd]

[Recent advances that make it easier

 to design and implement algorithms]

© BRAND X PICTURES

 Digital Object Identifier 10.1109/MSP.2010.936020

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [51] MAY 2010

[6]–[8], circuit design [9]–[11],
economics and finance [12],
[13], networking [14]–[16], sta-
tistics and machine learning
[17], [18], quantum informa-
tion theory [19] , [20] , and
combinatorial optimization
[21], to name just a few.

Convex optimization has a
long history in signal process-
ing, dating back to the 1960s. The history is described below in
a little more detail; for some more recent applications, see, for
example, the special issue of IEEE Journal on Selected Topics
in Signal Processing [22].

Signal processing applications may be split into two categories.
In the first, optimization is used for design, i.e., to choose the
weights or algorithm parameters for later use in a (typically linear)
signal processing algorithm. A classical example is the design of
finite impulse response (FIR) filter coefficients via LP [23], [24]
(see also the review article by Davidson et al. in this issue). In these
design applications, the optimization must merely be fast enough
to not slow the designer; thus, optimization times measured in
seconds, or even minutes, are usually sufficient. In the second cat-
egory, convex optimization is used to process the signal itself,
which (generally) yields a nonlinear algorithm; an early example is
,1 regularization for sparse reconstruction in geophysics [25],
[26]. Most applications in this category are (currently) offline, as in
geophysics reconstruction, so while faster is better, the optimiza-
tion is not subject to the strict real-time deadlines that would arise
in an online application. There are some exceptions; an early
example is [27], which describes the use of convex optimization in
online adaptive filtering.

Recent advances in algorithms for solving convex optimiza-
tion problems, along with great advances in processor power,
have dramatically reduced solution times. Another significant
reduction in solution time may be obtained by using a solver
customized for a particular problem family. (This is described in
the section “Code Generation.”) As a result, convex optimization
problems that 20 years ago might have taken minutes to solve
can now be solved in microseconds.

This opens up several new possibilities. In the design con-
text, algorithm weights can be redesigned or updated on fast
time scales (say, kilohertz). Perhaps more exciting is the possi-
bility that convex optimization can be embedded directly in sig-
nal processing algorithms that run online, with strict real-time
deadlines, even at rates of tens of kilohertz. We will see that
solving 10,000 modest-sized convex optimization problems per
second is entirely possible on a generic processor. This is quite
remarkable, since solving an optimization problem is generally
considered a computationally challenging task, and few engi-
neers would consider an online algorithm, which requires the
solution of an optimization problem at each step, to be feasible
for signal rates measured in kilohertz.

Of course, for high-throughput or fast signal processing (say,
an equalizer running at gigahertz rates) it is not feasible to solve

an optimization problem in
each step, and it may never be.
But a large number of applica-
tions are now potentially within
reach of new algorithms, in
which an optimization problem
is solved in each step or every
few steps. We imagine that, in
the future, more and more sig-
nal processing algorithms will

involve embedded optimization, running at rates up to or
exceeding tens of kilohertz. (We believe the same trend will take
place in automatic control; see, e.g., [28] and [29].)

In this article, we briefly describe two recent advances that
make it easier to design and implement algorithms for such
applications. The first is disciplined convex programming,
which simplifies problem specification and allows the transfor-
mation to a standard form to be automated. This makes it
 possible to rapidly prototype applications based on convex opti-
mization. The second advance is convex optimization code gen-
eration, in which (source code for) a custom solver that runs at
the required high speed is automatically generated from a high
level description of the problem family.

In the final three sections, we illustrate the idea of real-time
embedded convex optimization with three simple examples. In
the first example (in the section “Linearizing Pre-Equalization”),
we show how to implement a nonlinear pre-equalizer for a sys-
tem with input saturation. It predistorts the input signal so that
the output signal approximately matches the output of a refer-
ence linear system. Our equalizer is based on a method called
model predictive control [30], which has been widely used in
the process control industry for more than a decade. It requires
the solution of a QP at each step. It would not surprise anyone
to know that such an algorithm could be run at, say, 1 Hz (pro-
cess control applications typically run with sample times mea-
sured in minutes); but we will show that it can easily be run at
1 kHz. This example illustrates how our ability to solve QPs with
extreme reliability and speed has made new signal processing
methods possible.

In the second example (in the section “Robust Kalman
Filtering”), we show how a standard Kalman filter can be modi-
fied to handle occasional large sensor noises (such as those due
to sensor failure or intentional jamming), using now-standard
,1-based methods. Those familiar with the ideas behind com-
pressed sensing (or several other related techniques) will not be
surprised at the effectiveness of these methods, which require
the solution of a QP at each time step. What is surprising is that
such an algorithm can be run at tens of kilohertz.

Our final example (in the section “Online Array Weight
Design”) is one from the design category: a standard array signal
processing weight selection problem in which, however, the
sensor positions drift with time. Here the problem reduces to
the solution of an SOCP at each time step; the surprise is that
this can be carried out in a few milliseconds, which means that
the weights can be reoptimized at hundreds of hertz.

UNLIKE MANY GENERIC OPTIMIZATION
PROBLEMS, CONVEX OPTIMIZATION

PROBLEMS CAN BE EFFICIENTLY
SOLVED, BOTH IN THEORY (I.E., VIA
ALGORITHMS WITH WORST-CASE

 POLYNOMIAL COMPLEXITY)
AND IN PRACTICE.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [52] MAY 2010

In the next two subsections
we describe some previous and
current applications of convex
optimization, in the two just-
described categories of weight
design and direct signal pro-
cessing. Before proceeding, we
note that the distinction
between the two categories—
optimization for algorithm weight design versus optimization
directly in the algorithm itself—is not sharp. For example,
widely used adaptive signal processing techniques [31], [32]
adjust parameters in an algorithm (i.e., carry out re design)
online, based on the data or signals themselves. (Indeed, many
adaptive signal processing algorithms can be interpreted as
stochastic approximation or stochastic subgradient methods
for solving an underlying convex optimization problem.)

WEIGHT DESIGN VIA CONVEX OPTIMIZATION
Convex optimization was first used in signal processing in
design, i.e., selecting weights or coefficients for use in simple,
fast, typically linear, signal processing algorithms. In 1969, [23]
showed how to use LP to design symmetric linear phase FIR
filters. This was later extended to the design of weights for two-
dimensional (2-D) filters [33] and filter banks [34]. Using spec-
tral factorization, LP and SOCP can be used to design filters
with magnitude specifications [35], [36].

Weight design via convex optimization can also be carried
out for (some) nonlinear signal processing algorithms, for
example, in a decision-feedback equalizer [37]. Convex opti-
mization can also be used to choose the weights in array sig-
nal processing, in which multiple sensor outputs are
combined linearly to form a composite array output. Here the
weights are chosen to give a desirable response pattern [38].
More recently, convex optimization has been used to design
array weights that are robust to variations in the signal statis-
tics or array response [39]–[42]. For another example of
weight design, see the beamforming article in this issue by
Gershman et al.

Many classification algorithms from machine learning
involve what is essentially weight design via convex optimiza-
tion [43]. For example, objects x (say, images or e-mail mes-
sages) might be classified into two groups by first computing
a vector of features f 1x 2 [Rn, then, in real time, using a
simple linear threshold to classify the objects: we assign x to
one group if wTf 1x 2 $ v, and to the other group if not. Here
w [Rn and v [R are weights, chosen by training from
objects whose true classification is known. This offline train-
ing step often involves convex optimization. One widely used
method is the support vector machine (SVM), in which the
weights are found by solving a large QP [17], [18]. While this
involves solving a (possibly large) optimization problem to
determine the weights, only minimal computation is required
at run time to compute the features and form the inner prod-
uct that classifies any given object.

SIGNAL PROCESSING VIA
CONVEX OPTIMIZATION
Recently introduced applica-
tions use convex optimization
to carry out (nonlinear) pro-
cessing of the signal itself. The
crucial difference from the pre-
vious category is that speed is
now of critical importance.

Convex optimization problems are now solved in the main loop
of the processing algorithm, and the total processing time
depends on how fast these problems can be solved.

With some of these applications, processing time again mat-
ters only in the sense that “faster is better.” These are offline
applications where data is being analyzed without strict time
constraints. More challenging applications involve online solu-
tions, with strict real-time deadlines. Only recently has the last
category become possible, with the development of reliable, effi-
cient solvers, and the recent increase in computing power.

One of the first applications where convex optimization was
used directly on the signal is in geophysics [25], [26], where ,1
minimization was used for sparse reconstruction of signals.
Similar ,1-techniques are widely used in total variation noise
removal in image processing [44]–[46]. Other image processing
applications include deblurring [47] and, recently, automatic
face recognition [48]. Other signal identification algorithms use
,1 minimization or regularization to recover signals from
incomplete or noisy measurements [49], [50], [2]. Within sta-
tistics, feature selection via the Lasso algorithm [51] uses sim-
ilar techniques. The same ideas are applied to reconstructing
signals with sparse derivative (or gradient, more generally) in
total variation denoising, and in signals with sparse second
derivative (or Laplacian) [52]. A related problem is parameter
estimation, where we fit a model to data. One example of this
is fitting moving average (MA) or autoregressive moving aver-
age (ARMA) models; here parameter estimation can be carried
out with convex optimization [53]–[55].

Convex optimization is also used as a relaxation technique
for problems that are essentially Boolean, as in the detection of
faults [56], [57], or in decoding a bit string from a received
noisy signal. In these applications a convex problem is solved,
after which some kind of rounding takes place to guess the fault
pattern or transmitted bit string [58]–[60]. For more on convex
optimization for nonconvex problems, see the article by Luo
et al. in this issue.

Many methods of state estimation can be interpreted as
involving convex optimization. (Basic Kalman filtering and
least-squares fall in this category, but since the objectives are
quadratic, the optimization problems can be solved analytically
using linear algebra.) In the 1970s, ellipsoidal calculus was used
to develop a state estimator less sensitive to statistical assump-
tions than the Kalman filter, by propagating ellipsoids that con-
tain the state [61], [62]. The standard approach here is to work
out a conservative update for the ellipsoid, but the most sophis-
ticated methods for ellipsoidal approximation rely on convex

RECENT ADVANCES IN ALGORITHMS
FOR SOLVING CONVEX OPTIMIZATION

PROBLEMS, ALONG WITH GREAT
ADVANCES IN PROCESSOR POWER,

HAVE DRAMATICALLY REDUCED
SOLUTION TIMES.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [53] MAY 2010

optimization [1, §8.4]. Another
recently developed estimation
method is minimax regret esti-
mation [63], which relies on
convex optimization.

Convex optimization algo-
rithms have also been used in
wireless systems. Some exam-
ples here include online pulse
shape design for reducing the peak or average power of a signal
[64], receive antenna selection in MIMO systems [65], and per-
forming demodulation by solving convex problems [66].

DISCIPLINED CONVEX PROGRAMMING
A standard trick in convex optimization, used since the origins
of LP [67], is to transform the problem that must be solved into
an equivalent problem, which is in a standard form that can be
solved by a generic solver. A good example of this is the reduc-
tion of an ,1 minimization problem to an LP; see [1, Ch. 4] for
many more examples. Recently developed parser-solvers, such
as YALMIP [68], CVX [69], CVXMOD [70], and Pyomo [71]
automate this reduction process. The user specifies the prob-
lem in a natural form by declaring optimization variables,
defining an objective, and specifying constraints. A general
approach called disciplined convex programming (DCP) [72],
[73] has emerged as an effective methodology for organizing
and implementing parser-solvers for convex optimization. In
DCP, the user combines built-in functions in specific, convexity-
preserving ways. The constraints and objective must also follow
certain rules. As long as the user conforms to these require-
ments, the parser can easily verify convexity of the problem and
automatically transform it to a standard form, for transfer to the
solver. The parser-solvers CVX (which runs in MATLAB) and
CVXMOD (Python) use the DCP approach.

A very simple example of such a scheme is the CVX code
shown in Figure 1, which shows the required CVX code for
specifying the convex optimization problem

minimize xTQx
subject to |x| # 1, a

i
xi5 10, Ax $ 0, (1)

with variable x [R5, where Q [R535 satisfies Q5QT $ 0
(i.e., is symmetric positive semidefinite) and A [R335. Here
both inequalities are element-wise, so the problem requires that
|xi| # 1, and 1Ax 2 i $ 0. This simple problem could be trans-
formed to standard QP form by hand; CVX and CVXMOD do it
automatically. The advantage of a parser-solver like CVX would
be much clearer for a larger, more complicated problem. Adding
further (convex) constraints to this problem, or additional (con-
vex) terms to the objective, is easy in CVX; but quite a task when
the reduction to standard form is done by hand.

CODE GENERATION
Designing and prototyping a convex optimization-based algo-
rithm requires choosing a suitable problem format and then

testing and adjusting it for good
application performance. In
this prototyping stage, the
speed of the solver is often
nearly irrelevant; simulations
can usually take place at signifi-
cantly reduced speeds. In proto-
typing and algorithm design,
the key is the ability to rapidly

change the problem formulation and test the application perfor-
mance, often using real data. The parser- solvers described in the
previous section are ideal for such use and reduce development
time by freeing the user from the need to translate their prob-
lem into the restricted standard form required by the solver.

Once prototyping is complete, however, the final code must
often run much faster. Thus, a serious challenge in using real-time
convex optimization is the creation of a fast, reliable solver for a
particular application. It is possible to hand-code solvers that take
advantage of the special structure of a problem family, but such
work is tedious and difficult to get exactly right. Given the success
of parser-solvers for offline applications, one option is to apply a
similar approach to the problem of generating fast custom solvers.

It is sometimes possible to use the (slow) code from the proto-
typing stage in the final algorithm. For example, the acceptable
time frame for a fault detection algorithm may be measured in
minutes, in which case the above prototype is likely adequate.
Often, though, there are still advantages in having code that is

1 A = [...]; b = [...]; Q = [...];
2 cvx_begin
3 variable x(5)
4 minimize (quad_form(x, Q))
5 subjectto
6
7 cvx_end
8 cvx_status

1) Problem data is specified within MATLAB as ordinary
 matrices and vectors. Here A is a 3 × 5 matrix, b is
 a 3-vector, and Q is a 5 × 5 matrix.
2) Changes from ordinary MATLAB mode to CVX model
 specification mode.
3) x ∈R5 is an optimization variable object. After solution,
 x is replaced with a solution (numerical vector).
4) Recognized as convex objective xT Qx (provided Q ≥ 0).
5) Does nothing, but enhances readability.
6) In CVX model specification mode, equalities and in-
 equalities specify constraints.
7) Completes model specification, initiates transformation
 to standard form, and calls solver; solution is written to x.
8) Reports status, e.g., Solved or Infeasible.

abs(x) <= 1; sum(x) == 10; A*x >= 0

(a)

(b)

[FIG1] (a) CVX code segment and (b) explanations.

A GENERAL APPROACH CALLED
DISCIPLINED CONVEX PROGRAMMING

HAS EMERGED AS AN EFFECTIVE
METHODOLOGY FOR ORGANIZING

AND IMPLEMENTING PARSER-SOLVERS
FOR CONVEX OPTIMIZATION.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [54] MAY 2010

independent of the particular
modeling framework. On the
other hand (and as previously
mentioned), some applications
require time scales that are fast-
er than those achievable even
with a very good generic solver;
here explicit methods may be
the only option. We are left with
a large category of problems where a fast, automatically generated
solver would be extremely useful.

This introduces automatic code generation, where a user,
who is not necessarily an expert in algorithms for convex opti-
mization, can formulate and test a convex optimization prob-
lem within a familiar high-level environment and then request
a custom solver. An automatic code generation system analyz-
es and processes the problem, (possibly) spending a significant
amount of time testing or analyzing various methods. Then it
produces code highly optimized for the particular problem
family, including auxiliary code and files. This code may then
be embedded in the user’s signal processing algorithm.

There are several good reasons why a code generator should
start from a high-level DCP specification of the problem family
and not from some standard or canonical (mathematical) form
for the problem. The first is that such a high-level description

presumably was written when
the method was prototyped, so
if the description accepted by
the code generator is the same
as (or similar to) that used by
the parser-solver during proto-
typing, little additional effort is
required. The second reason
has to do with exploitable prob-

lem structure. The more problem structure the code generator
can use, the more efficient the resulting generated code. A high-
level DCP specification is not only convenient and readable, it
also contains all the original problem structure. Reducing the
problem to some canonical form can obscure or destroy prob-
lem structure that could otherwise have been exploited.

We have developed an early, preliminary version of an auto-
matic code generator. It is built on top of CVXMOD, a convex
optimization modeling layer written in Python. After defining a
problem (family), CVXMOD analyzes the problem’s structure,
and creates C code for a fast solver. Figure 2 shows how the
problem family (1) can be specified in CVXMOD. Note, in partic-
ular, that no parameter values are given at this time; they are
specified at solve time, when the problem family has been
instantiated and a particular problem instance is available.

CVXMOD produces a variety of output files. These include
solver.h, which includes prototypes for all necessary func-
tions and structures; initsolver.c, which allocates memory
and initializes variables; and solver.c, which actually solves
an instance of the problem. Figure 3 shows some of the key
lines of code that would be used within a user’s signal process-
ing algorithm. In an embedded application, the initializations
(lines 3–5) are called when the application is starting up; the
solver (line 8) is called each time a problem instance is to be
solved, for example in a real-time loop.

Generating and then compiling code for a modest-sized
convex optimization problem can take far longer than it would
take to solve a problem instance using a parser-solver. But
once we have the compiled code, we can solve instances of this
 specific problem at extremely high speeds. This compiled code
is perfectly suited for inclusion in a real-time signal process-
ing algorithm.

Technical details of how CVXMOD carries out code genera-
tion, as well as timing results for code generated for a variety
of problems, can be found in [74]. Here we briefly describe the
basic idea. The code generated by CVXMOD uses a primal-dual
interior-point method, which typically converges in a small
number of iterations. The main computational effort in each
iteration is solving a set of linear equations to determine the
search direction. The coefficient matrix for these linear equa-
tions changes at each step of the interior-point algorithm (and
also depends on the problem data), but its sparsity pattern
does not. It can be determined at code generation time.
CVXMOD analyzes the sparsity structure of these linear equa-
tions at code generation time, selects a good (low fill-in) elim-
ination ordering and then generates flat, almost branch-free

1 A = param('A', 3, 5)
2 B = param('b', 3, 1)
3 Q = param('Q', 5, 5, psd=True)
4 x = optvar('x', 5, 1)
5 objv = quadform(x, Q)
6 constr = [abs(x) <= 1, sum(x) == 10, A*x >= 0]
7 prob = problem(minimize(objv), constr)
8 codegen(prob).gen()

1) A is specified in CVXMOD as a 3 × 5 parameter. No values
 are (typically) assigned at problem specification time;
 here A is acting as a placeholder for later replacement
 with problem instance data.
2) b is specified as a 3-vector parameter.
3) Q is specified as a symmetric, positive semidefinite
 5 × 5 parameter.
4) x ∈R5 is an optimization variable.
5) Recognized as a convex objective, since CVXMOD has
 been told that Q ≥ 0 in line 3.
6) Saves the affine equalities and convex inequalities to a
 list.
7) Builds the (convex) minimization problem from the
 convex objective and list of convex constraints.
8) Creates a code generator object based on the given
 problem, which then generates code.

(a)

(b)

[FIG2] (a) CVXMOD code segment and (b) explanations.

IN PROTOTYPING AND ALGORITHM
DESIGN, THE KEY IS THE ABILITY

TO RAPIDLY CHANGE THE PROBLEM
FORMULATION AND TEST THE

APPLICATION PERFORMANCE, OFTEN
USING REAL DATA.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [55] MAY 2010

code that carries out the fac-
torization and solve steps
needed to solve the linear
equations. Of course, a gener-
al-purpose solver (for example,
one used in a parser-solver)
also exploits sparsity, but it
discovers and exploits the spar-
sity on a problem instance-by-
instance basis. CVXMOD, in contrast, discovers the sparsity,
and calculates how to exploit it, at code-generation time.

The current version of CVXMOD exploits only sparsity; several
other types of exploitable structure include, for example, DFT,
Toeplitz, or Hankel matrix structure (see, e.g., [75] and the refer-
ences therein). Future code generators could presumably recog-
nize and exploit these types of structure. What is suprising is the
run-time efficiency we obtain by exploiting only sparsity.

LINEARIZING PRE-EQUALIZATION
Many types of nonlinear pre- and post-equalizers can be imple-
mented using convex optimization. In this section, we focus on one
example, a nonlinear pre-equalizer for a nonlinear system with a

Hammerstein [76] structure: a
unit saturation nonlinearity, fol-
lowed by a stable linear time-in-
variant system. It is shown in
Figure 4. Our equalizer, shown
in Figure 5, has access to the sca-
lar input signal u, with a look-
ahead of T samples (or,
equivalently, with an additional

delay of T samples), and will generate the equalized input signal v.
This signal v is then applied to the system, and results in the out-
put signal y. The goal is to choose v so that the actual output sig-
nal y matches the reference output yref, which is the output signal
that would have resulted without the saturation nonlinearity. This
is shown in the block diagram in Figure 6, which includes the error
signal e5 y2 yref. If the error signal is small, then our pre-equal-
izer, followed by the system, gives nearly the same output as the
reference system. Since the reference system is linear, our pre-
equalizer thus linearizes the system.

When the input peak is smaller than the saturation level
of one, the error signal is zero; our equalizer only comes into
play when the input signal peak exceeds one. A baseline choice of

1 #include "solver.h"
2 int main(int argc, char **argv) {
3 Params params = init_params();
4 Vars vars = init_vars();
5 Workspace work = init_work(vars);
6 for (;;) {
7 update_params(params);
8 status = solve(params, vars, work);
9 export_vars(vars); }}

1) Loads the automatically-generated data structures.
2) CVXMOD generates standard C code for use on a range
 of platforms.
3) The params structure holds problem parameters.
4) After solution, the vars structure holds optimal values
 for each of the original optimization variables.
5) An additional work structure is used for working mem-
 ory. Its size is fixed, and known at compilation time. This
 means that all memory requirements and structures are
 known at compile time.
6) Once the initialization is complete, we enter the real-
 time loop.
7) Parameter values are updated from the signal processing
 system.
8) Actual solution requires just one function. It executes in
 a bounded amount of time.
9) After solution, the resulting variable values are used in
 the signal processing system.

(a)

(b)

[FIG3] (a) C code generated by CVXMOD and (b) explanations.

∗h
yu

[FIG4] Nonlinear system, consisting of unit saturation, followed
by a linear time-invariant system.

∗h
y

Equalizer
vu

[FIG5] Our pre-equalizer processes the incoming signal u (with
a look-ahead of T samples), to produce the input, v, applied to
the system.

Equalizer
v

u e

∗h

∗h

Reference System

System

–

[FIG6] The top signal path is the reference system, a copy of the
system but without the saturation. The bottom signal path is the
equalized system, the pre-equalizer followed by the system,
shown in the dashed box. Our goal is to make the error e small.

AUTOMATIC CODE GENERATION
MAKES IT EASIER TO CREATE CONVEX

OPTIMIZATION SOLVERS THAT
ARE MADE MUCH FASTER BY

BEING DESIGNED FOR A SPECIFIC
PROBLEM FAMILY.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [56] MAY 2010

pre-equalizer is none: We simply
take v5 u. We use this simple
equalizer as a basis for compari-
son with the nonlinear equalizer
we describe here. We’ll refer to
the output produced without
pre-equalization as ynone and
the corresponding error as enone.

We now describe the system,
and the pre-equalizer, in more detail. We use a state-space model
for the linear system

 xt115 Axt1 Bsat 1vt 2 , yt5 Cxt,

with state xt [Rn, where the unit saturation function is given by
sat 1z 2 5 z for |z| # 1, sat 1z 2 5 1 for z . 1, and sat 1z 2 521
for z , 21. The reference system is

 xt11
ref 5 Axt

ref1 But, yt
ref5 Cxt

ref,

with state xt
ref [Rn. Subtracting these two equations, we can

express the error signal e5 y2 yref via the system

 x|t115 Ax|t1 B 1sat 1vt 2 2 ut 2 , et5 Cx|t,

where x|t5 xt2 xt
ref [Rn is the state tracking error.

We now come to the main (and simple) trick: We will assume that
(or more accurately, our pre-equalizer will guarantee that) |vt| # 1.
In this case sat 1vt 2 can be replaced by vt above, and we have

 x|t115 Ax|t1 B 1vt2 ut 2 , et5 Cx|t.

We can assume that x|t is available to the equalizer; indeed, by
stability of A, the simple estimator

 x̂t115 Ax̂t1 B 1vt2 ut 2
will satisfy x̂t S x|t as t S `, so we can use x̂t in place of x|t. In
addition to x|t, our equalizer will use a look-ahead of T samples on
the input signal, i.e., vt will be formed with knowledge of
ut, c, ut1T.

We will use a standard technique from control, called model
predictive control [30], in which at time t we solve an optimiza-
tion problem to “plan” our input signal over the next T steps, and
use only the first sample of our plan as the actual equalizer output.
At time t we solve the optimization problem

minimize at1T

t5t
et21 x|t1T11

T Px|t1T11

subject to x
&
t115 Ax

&
t 1 B 1nt 2 ut 2 et 5 C x

&
t,

t 5 t,c, t1 T0 nt 0 # 1, t 5 t, c, t1 T,

(2)

with variables vt, c, vt1T [R and x|t11, c, x|t1T11 [Rn.
The initial (error) state in this planning problem, x|t, is known.

The matrix P, which is a
parameter, is symmetric and
positive semidefinite.

The first term in the objec-
tive is the sum of squares of the
tracking errors over the time
horizon t, c, t1 T; the sec-
ond term is a penalty for the
final state error; it serves as a

surrogate for the tracking error past our horizon, which we
cannot know since we do not know the input beyond the hori-
zon. One reasonable choice for P is the output Gramian of the
linear system

 P5 a`
i50
1Ai 2TCTCAi,

in which case we have

 x|t1T11
T Pxt1T115 a`

t5t1T11
et2,

provided vt 5 ut for t $ t1 T1 1.
The problem above is a QP. It can be modified in several

ways; for example, we can add a (regularization) term such as

 r aT11

t5t11
1vt112 vt 2 2,

where r . 0 is a parameter, to give a smoother post-equalized
signal.

Our pre-equalizer works as follows: At time step t, we solve
the QP above. We then use vt, which is one of the variables from
the QP, as our pre-equalizer output. We then update the error
state as x|t115 Ax|t1 B 1vt2 ut 2 .
EXAMPLE
We illustrate the linearizing pre-equalization method with an
example in which the linear system is a third-order low-pass
system with bandwidth 0.1p, with impulse response that lasts
for about 35 samples. Our pre-equalizer uses a look-ahead hori-
zon T5 15 samples, and we choose P as the output Gramian.
We use smoothing regularization with r5 0.01. The input u a
is low-pass filtered random signal, which saturates (i.e., has
|ut| . 1) around 20% of the time.

The unequalized and equalized inputs are shown in Figure 7.
We can see that the pre-equalized input signal is quite similar to
the unequalized input when there is no saturation but differs
considerably when there is. The corresponding outputs, includ-
ing the reference output, are shown in Figure 8, along with the
associated output tracking errors.

The QP (2), after transformation, has 96 variables, 63
equality constraints, and 48 inequality constraints. Using
Linux on an Intel Core Duo 1.7 GHz, it takes approximately
500 ms to solve using CVXMOD-generated code, which com-
pares well with the standard SOCP solvers SDPT3 [77], [78]
and SeDuMi [79], whose solve times are approximately 430 ms
and 160 ms, respectively.

KALMAN FILTERING IS A WELL-
KNOWN AND WIDELY USED

METHOD FOR ESTIMATING THE
STATE OF A LINEAR DYNAMICAL

SYSTEM DRIVEN BY NOISE.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [57] MAY 2010

ROBUST KALMAN FILTERING
Kalman filtering is a well-known and widely used method for
estimating the state of a linear dynamical system driven by
noise. When the process and measurement noises are indepen-
dent identically distributed (IID) Gaussian, the Kalman filter
recursively computes the posterior distribution of the state,
given the measurements.

In this section, we consider a variation on the Kalman fil-
ter, designed to handle an additional measurement noise
term that is sparse, i.e., whose components are often zero.
This term can be used to model (unknown) sensor failures,
measurement outliers, or even intentional jamming. Our
goal is to design a filter that is robust to such disturbances,
i.e., whose performance does not degrade rapidly when dis-
turbances are introduced. (This robustness is to additive
measurement noise; see, e.g., [80] for a discussion of filtering
that is robust to model parameter variation.) Here we create
a robust Kalman filter by replacing the standard measure-
ment update—which can be interpreted as the result of solv-
ing a quadratic minimization problem—with the solution of
a similar convex minimization problem, that includes an ,1
term to handle the sparse noise. Thus the robust Kalman fil-
ter requires the solution of a convex optimization problem in
each time step. Compare this to the standard Kalman filter,
which requires the solution of a quadratic optimization prob-
lem at each step, and has an analytical solution expressible
using basic linear algebra operations.

We will work with the system

 xt115 Axt1wt, yt5 Cxt1 vt1 zt,

where xt [Rn is the state (to be estimated) and yt [Rm is the
measurement available to us at time step t. As in the standard
setup for Kalman filtering, the process noise wt is IID N 10, W 2 ,
and the measurement noise term vt is IID N 10, V 2 . The term
zt is an additional noise term, which we assume is sparse
(meaning, most of its entries are zero) and centered around
zero. Without the additional sparse noise term zt, our system is
identical to the standard one used in Kalman filtering.

We will use the standard notation from the Kalman filter: x̂t|t
and x̂t|t21 denote the estimates of the state xt, given the mea-
surements up to yt or yt21, and S denotes the steady-state
error covariance associated with predicting the next state. In the
standard Kalman filter (i.e., without the additional noise term
zt), all variables are jointly Gaussian, so the (conditional) mean
and covariance specify the conditional distributions of xt, condi-
tioned on the measurements up to yt and yt21, respectively.

The standard Kalman filter consists of alternating time and
measurement updates. The time update

 x̂t|t215 Ax̂t21|t21 (3)

propagates forward the state estimate at time t2 1, after the
measurement yt21, to the state estimate at time t, but before
the measurement yt is known. The measurement update

 x̂t|t5 x̂t|t211SC T 1CSC T1 V 221 1yt2 Cx̂t|t21 2 (4)

then gives the state estimate at time t, given the measurement
yt, starting from the state estimate at time t, before the mea-
surement is known. In the standard Kalman filter, x̂t|t21 and x̂t|t
are the conditional means, and so can be interpreted as the
minimum mean-square error estimates of xt, given the mea-
surements up to yt21 and yt, respectively.

To (approximately) handle the additional sparse noise term
zt, we will modify the Kalman filter measurement update (4). To
motivate the modification, we first note that x̂t|t can be
expressed as the solution of a quadratic optimization problem

−2.5

0

2.5

[FIG7] Input without pre-equalization (red, ut), and with
linearizing pre-equalization (blue, vt).

−2.5

0

2.5

−0.75

0

0.75

(a)

(b)

[FIG8] (a) Output y without pre-equalization (red), and with
nonlinear pre-equalization (blue). The reference output yref
is shown as the dashed curve (black). (b) Tracking error
e with no pre-equalization (red) and with nonlinear pre-
equalization (blue).

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [58] MAY 2010

minimize vt

TV21vt1 1x2 x̂t|t21 2TS21 1x2 x̂t|t21 2
subject to yt5 Cx1 vt,

 (5)

with variables x and vt. We can interpret vt as our estimate of
the sensor noise; the first term in the objective is a loss term
corresponding to the sensor noise, and the second is a loss term
associated with our estimate deviating from the prior.

In the robust Kalman filter, we take x̂t|t to be the solution x
of the convex optimization problem

minimize vt

TV 21vt1 1x2 x̂t|t21 2TS21 1x2 x̂t|t21 2
 1l||zt||1

subject to yt5 Cx1 vt1 zt

with variables x, vt, and zt. A computationally more efficient,
but equivalent method [81] is to precompute L5SCT1CSCT1 V 221 and Q5 1I2 CL 2TV21 1I2 CL 2 1 LTS21L, and
then at each time-step set et5 yt2 Cx̂t|t21 and solve

 minimize 1et2 zt 2TQ 1et2 zt 2 1l||zt||1 (6)

with variable zt [Rm. (Standard methods can be used to
transform this problem into an equivalent QP.) We may then
recover x5 x̂t|t211 L 1et2 zt 2 .

Here we interpret vt and zt as our estimates of the Gaussian
and the sparse-measurement noises, respectively. The parameter
l $ 0 is adjusted so that the sparsity of our estimate coincides
with our assumed sparsity of zt. For l large enough, the solu-
tion of this optimization problem has zt5 0, and so is exactly
the same as the solution of (5); in this case, the robust Kalman
filter measurement update coincides with the standard Kalman
filter measurement update.

In the robust Kalman filter, we use the standard time
update (3), and the modified measurement update, which
requires the explicit solution of the convex optimization prob-
lem (6). With this time update, the estimation error is not
Gaussian, so the estimates x̂t|t and x̂t|t21 are no longer condi-
tional means (and S is not the steady-state state estimation
error covariance). Instead we interpret them as merely (robust)
state estimates.

EXAMPLE
For this example, we randomly generate matrices A [R50350
and C [R15350. We scale A so its spectral radius is 0.98. We
generate a random matrix B [R5035 with entries ,N 10, 1 2 ,
and use W5 BBT and V5 I. The sparse noise zt was generated
as follows: with probability 0.05, component 1yt 2 i is set to 1vt 2 i;
i.e., the signal component is removed. This means that z 2 0
with probability 0.54, or, roughly, one in two measurement vec-
tors contains at least one bogus element. We compare the per-
formance of a traditional Kalman filter tuned to W and V, with
the robust Kalman filter described above, and show example
traces of the errors in Figure 9. In this example, the root-mean-
square (RMS) error of the robust Kalman filter is approximately
one quarter that of the Kalman filter.

For this example, the measurement update (6) is transformed
into a QP with 45 variables, 15 equality, and 30 inequality con-
straints. Code generated by CVXMOD solves this problem in
approximately 120 ms, which allows measurement updates at
rates better than 5 kHz. Solution with SDPT3 or SeDuMi takes
120 or 80 ms, while a standard Kalman filter update takes 10 ms.

ONLINE ARRAY WEIGHT DESIGN
In this example, fast optimization is used to adapt the weights
to changes in the transmission model, target signal character-
istics, or objective. Thus, the optimization is used to adapt or
re configure the array. In traditional adaptive array signal pro-
cessing [82], the weights are adapted directly from the com-
bined signal output; here we consider the case when this is
not possible.

We consider a generic array of n sensors, each of which
produces as output a complex number (baseband response)
that depends on a parameter u [Q (which can be a vector in
the general case) that characterizes the signal. In the simplest
case, u is a scalar that specifies the angle of arrival of a signal
in 2-D, but it can include other parameters that give the range

0

0.1

0.2

0.3

0.4

0.5

0.6
R

M
S

 E
rr

or
 M

ag
ni

tu
de

[FIG9] The robust Kalman filter (blue) exhibits significantly lower
error than the standard Kalman filter (red). The state has RMS
magnitude one.

[FIG10] Tracks of sensor positions, each of which is
a random walk.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [59] MAY 2010

or position of the signal source, polarization, wavelength, and
so on. The sensor outputs are combined linearly with a set of
array weights w [Cn to produce the (complex scalar) com-
bined output signal

 y 1u 2 5 a 1u 2 *w.

Here a : Q S Cn is called the array response function or array
manifold.

The weight vector w is to be chosen, subject to some con-
straints expressed as w [W, so that the combined signal out-
put signal (also called the array response) has desired
characteristics. These might include directivity, pattern, or
robustness constraints. A generic form for this problem is to
guarantee unit array response for some target signal parame-
ter, while giving uniform rejection for signal parameters in
some set of values Qrej. We formulate this as the optimization
problem, with variable w [Cn,

minimize maxu[Qrej

|a 1u 2 *w|
subject to a 1utar 2 *w5 1, w [W.

If the weight constraint set W is convex, this is a convex opti-
mization problem [38], [83].

In some cases, the objective, which involves a maximum over
an infinite set of signal parameter values, can be handled exactly,
but we will take a simple discretization approach. We find appro-
priate points u1, c, uN [Qrej, and replace the maximum over
all values in Qrej with the maximum over these values to obtain
the problem

minimize maxi51, c, N|a 1ui 2 *w|
subject to a 1utar 2 *w5 1, w [W.

(The appropriate N may be determined by simulation.)
When W is convex, this is a (tractable) constrained complex

,` norm minimization problem

minimize ||Aw||`
subject to a 1utar 2 *w5 1, w [W,

 (7)

where A [CN3n, with ith row a 1ui 2 *, and || # ||` is the complex
,` norm. It is common to add some regularization to the weight
design problem, by adding l||w||2 to the objective, where l is a
(typically small) positive weight. This can be interpreted as a term
related to noise power in the combined array output, or as a regu-
larization term that keeps the weights small, which makes the
combined array response less sensitive to small changes in the
array manifold.

With or without regularization, (7) can be transformed to
an SOCP. Standard SOCP methods can be used to determine w
when the array manifold or target parameter utar do not
change, or change slowly or infrequently. We are interested
here in the case when they change frequently, which requires
solving (7) rapidly.

EXAMPLE
We consider an example of an array in 2-D with n5 15 sensors
with positions p1, c, pn [R2 that change or drift over time.
The signal model is a harmonic plane wave with wavelength l
arriving from angle u, with Q5 3 2p, p 2 . The array manifold
has the simple form (with j5"2 1)

 a 1u 2 i5 exp 1 2 2pj 1cosu, sinu 2Tpi/l 2 .
We take utar5 0 as our (constant) target look (or transmit)
direction, and the rejection set as

 Qrej5 3 2p, 2p/9 4 h 3p/9, p 2 ,
(which corresponds to a beamwidth of 408). We discretize
arrival angles uniformly over urej with N5 100 points.

The initial sensor positions are a 5 3 3 grid with l/2
 spacing. Each of these undergoes a random walk, with
pi 1t112 2 pi 1t 2 ,N10, l/10 2 , for t5 0, 1, c, 99. Tracks of
the sensor positions over t5 0, c, 100 are shown in
Figure 10.

1

0.8

0.6

0.4

0.2

0
150

100 50 0
–50

–100
–150 0

20
40

60
80 100

1

0.8

0.6

0.4

0.2

0
150

100 50 0
–50

–100
–150 0

20
40

60
80 100

(a)

(b)

[FIG11] Array response as sensors move, with (a) optimized
weights and (b) using weights for initial sensor positions.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [60] MAY 2010

For each sensor position we
solve the weight design prob-
lem, which results in a rejec-
tion ratio (relative gain of
target direction to rejected
directions) ranging from 7.4
dB to 11.9 dB. The resulting
array response, i.e., |y 1u 2| ver-
sus t, is shown in Figure 11(a).
The same figure shows the array responses obtained using
the optimal weights for the initial sensor positions, i.e., with-
out redesigning the weights as the sensor positions drift. In
this case the rejection ratio goes up to 1.3 dB, i.e., the gain in
a rejection direction is almost the same as the gain in the tar-
get direction.

This problem can be transformed to an SOCP with 30 vari-
ables and approximately 200 constraints. The current version
of CVXMOD does not handle SOCPs, but a simple implemen-
tation coded by hand solves this problem in approximately
2 ms, which means that we can (in principle, and neglecting
other considerations) update our weights at 500 Hz.

CONCLUSION
This article shows the potential for convex optimization
methods to be much more widely used in signal processing.
In particular, automatic code generation makes it easier to
create convex optimization solvers that are made much faster
by being designed for a specific problem family. The disci-
plined convex programming framework that has been shown
useful in transforming problems to a standard form may be
extended to create solvers themselves. Much work remains to
be done in exploring the capabilities and limitations of auto-
matic code generation. As computing power increases, and as
automatic code generation improves, the authors expect
 convex optimization solvers to be found more and more often
in real-time signal processing applications.

ACKNOWLEDGMENTS
The research reported here was supported in part by AFOSR
grant FA9550-09-1-0704 and by NASA grant NNX07AEIIA. Jacob
Mattingley was supported in part by a Lucent Technologies
Stanford Graduate Fellowship.

AUTHORS
Jacob Mattingley (jacobm@stanford.edu) is an electrical engi-
neering Ph.D. student at the Information Systems Laboratory
at Stanford University. He received the B.E. (Hons.) degree in
electrical and computer engineering from the University of
Canterbury in 2005 and the M.S. degree in electrical engineer-
ing at Stanford University in 2007. He is currently working on
automatic code generation and computer modeling and engi-
neering applications of convex optimization.

Stephen Boyd (boyd@stanford.edu) is the Samsung Professor
of Engineering and professor of electrical engineering in the
Information Systems Laboratory at Stanford University. He

received the A.B. degree in
mathematics from Harvard
University in 1980 and the Ph.D.
degree in electrical engineering
and computer science from the
University of Cali fornia,
Berkeley, in 1985 and then
joined the faculty at Stanford.
His current research focus is on

convex optimization applications in control, signal processing,
and circuit design.

REFERENCES
[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4,
pp. 1289–1306, 2006.

[3] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Mag., vol. 25, no. 2, pp. 21–30, 2008.

[4] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in
Convex Programming, vol. 13. Philadelphia, PA: SIAM, 1994.

[5] S. J. Wright, Primal-Dual Interior-Point Methods. Philadelphia, PA: SIAM,
1997.

[6] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance.
Englewood Cliffs, NJ: Prentice-Hall, 1991.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.

[8] M. A. Dahleh and I. J. Diaz-Bobillo, Control of Uncertain Systems: A Linear
Programming Approach. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[9] M. Hershenson, S. Boyd, and T. H. Lee, “Optimal design of a CMOS op-amp
via geometric programming,” IEEE Trans. Computer-Aided Design, vol. 20, no.
1, pp. 1–21, 2001.

[10] M. Hershenson, S. S. Mohan, S. Boyd, and T. H. Lee, “Optimization of in-
ductor circuits via geometric programming,” in Proc. Design Automation Conf.
IEEE Computer Soc., 1999, pp. 994–998.

[11] S. Boyd, S.-J. Kim, D. Patil, and M. A. Horowitz, “Digital circuit optimization
via geometric programming,” Oper. Res., vol. 53, no. 6, pp. 899–932, 2005.

[12] H. Markowitz, “Portfolio selection,” J. Finance, vol. 7, no. 1, pp. 77–91, 1952.

[13] G. Cornuejols and R. Tütüncü, Optimization Methods in Finance.
Cambridge, U.K.: Cambridge Univ. Press, 2007.

[14] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” J. Oper. Res. Soc., vol.
49, no. 3, pp. 237–252, 1998.

[15] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, architec-
ture, algorithms, performance,” IEEE/ACM Trans. Networking, vol. 14, no. 6, pp.
1246–1259, 2006.

[16] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as opti-
mization decomposition: A mathematical theory of network architectures,” Proc.
IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[17] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York: Springer,
2000.

[18] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[19] Y. C. Eldar, A. Megretski, and G. C. Verghese, “Designing optimal quantum
detectors via semidefinite programming,” IEEE Trans. Inform. Theory, vol. 49, no.
4, pp. 1007–1012, 2003.

[20] Y. C. Eldar, “A semidefinite programming approach to optimal unambiguous
discrimination of quantum states,” IEEE Trans. Inform. Theory, vol. 49, no. 2, pp.
446–456, 2003.

[21] R. Graham, M. Grötschel, and L. Lovász, “Combinatorial optimization” in
Handbook of Combinatorics, vol. 2. Cambridge, MA: MIT Press, 1996, ch. 28.

[22] Special Issue on Convex Optimization Methods for Signal Processing, IEEE J.
Select. Topics Signal Processing, vol. 1, no. 4, pp. 537–617, Dec. 2007.

[23] R. Calvin, C. Ray, and V. Rhyne, “The design of optimal convolutional filters
via linear programming,” IEEE Trans. Geosci. Electron., vol. 7, no. 3, pp. 142–145,
July 1969.

[24] L. Rabiner, “Linear program design of finite impulse response (FIR) digi-
tal filters,” IEEE Trans. Audio Electroacoust., vol. 20, no. 4, pp. 280–288, Oct.
1972.

THE DISCIPLINED CONVEX
PROGRAMMING FRAMEWORK

THAT HAS BEEN SHOWN USEFUL IN
TRANSFORMING PROBLEMS TO A

STANDARD FORM MAY BE EXTENDED
TO CREATE SOLVERS THEMSELVES.

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [61] MAY 2010

[25] J. Claerbout and F. Muir, “Robust modeling with erratic data,” Geophys., vol.
38, no. 826, p. 826, 1973.

[26] H. Taylor, S. Banks, and J. McCoy, “Deconvolution with the ,1 norm,” Geo-
physics, vol. 44, no. 1, pp. 39–52, 1979.

[27] K. H. Afkhamie, Z. Q. Luo, and K. M. Wong, “Adaptive linear filtering using
interior point optimization techniques,” IEEE Trans. Signal Processing, vol. 48,
no. 6, pp. 1637–1648, 2000.

[28] Y. Wang and S. Boyd, “Fast model predictive control using online optimiza-
tion,” in Proc. IFAC World Congr., July 2008, pp. 6974–6997.

[29] Y. Wang and S. Boyd. (2009, July). Fast evaluation of quadratic control-Ly-
apunov policy [Online]. Available: http://stanford.edu/~boyd/papers/fast_clf.html

[30] J. M. Maciejowski, Predictive Control With Constraints. Englewood Cliffs,
NJ: Prentice-Hall, 2002.

[31] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ: IEEE Press,
2003.

[32] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[33] X. Lai, “Design of smallest size two-dimensional linear-phase FIR filters with
magnitude error constraint,” Multidimensional Syst. Signal Processing, vol. 18,
no. 4, pp. 341–349, 2007.

[34] T. Q. Nguyen and R. D. Koilpillai, “The theory and design of arbitrary-length
cosine-modulated filter banks and wavelets, satisfying perfect reconstruction,”
IEEE Trans. Signal Processing, vol. 44, no. 3, pp. 473–483, 1996.

[35] B. Alkire and L. Vandenberghe, “Convex optimization problems involving finite
autocorrelation sequences,” Math. Program., vol. 93, no. 3, pp. 331–359, 2002.

[36] S. P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via semidefinite
programming and spectral factorization,” in Proc. IEEE Conf. Decision and Con-
trol, 1996, vol. 1, pp. 271–276.

[37] R. L. Kosut, C. R. Johnson, and S. Boyd, “On achieving reduced error propa-
gation sensitivity in DFE design via convex optimization (I),” in Proc. IEEE Conf.
Decision and Control, 2000, vol. 5, pp. 4320–4323.

[38] H. Lebret and S. Boyd, “Antenna array pattern synthesis via convex optimiza-
tion,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp. 526–532, 1997.

[39] S. A. Vorobyov, A. B. Gershman, and Z. Q. Luo, “Robust adaptive beam-
forming using worst-case performance optimization: A solution to the signal
mismatch problem,” IEEE Trans. Signal Processing, vol. 51, no. 2, pp. 313–324,
2003.

[40] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beam-
forming,” in Handbook of Antennas in Wireless Communications. Lal Chand
Godara, Ed. Boca Raton, FL: CRC, 2001, ch. 18.

[41] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal
loading,” IEEE Trans. Signal Processing, vol. 51, no. 7, pp. 1702–1715, 2003.

[42] R. G. Lorenz and S. Boyd, “Robust minimum variance beamforming,” IEEE
Trans. Signal Processing, vol. 53, no. 5, pp. 1684–1696, 2005.

[43] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York: Springer, 2001.

[44] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise re-
moval algorithms,” Physica D, vol. 60, no. 1–4, pp. 259–268, 1992.

[45] E. J. Candès and F. Guo, “New multiscale transforms, minimum total variation
synthesis: Applications to edge-preserving image reconstruction,” Signal Process.,
vol. 82, no. 11, pp. 1519–1543, 2002.

[46] A. Chambolle, “An algorithm for total variation minimization and applica-
tions,” J. Math. Imaging Vision, vol. 20, no. 1, pp. 89–97, 2004.

[47] A. Beck, A. Ben-Tal, and C. Kanzow, “A fast method for finding the global solu-
tion of the regularized structured total least squares problem for image deblurring,”
SIAM J. Matrix Anal. Appl., vol. 30, no. 1, pp. 419–443, 2008.

[48] K. L. Kroeker, “Face recognition breakthrough,” Commun. ACM, vol. 52, no.
8, pp. 18–19, 2009.

[49] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete
and inaccurate measurements,” Commun. Pure Appl. Math., vol. 59, no. 8, pp.
1207–1223, 2005.

[50] J. Tropp, “Just relax: Convex programming methods for identifying sparse sig-
nals in noise,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1030–1051, 2006.

[51] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat.
Soc., vol. 58, no. 1, pp. 267–288, 1996.

[52] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “,1 trend filtering,” SIAM Rev.,
vol. 51, no. 2, pp. 339–360, 2009.

[53] P. Stoica, T. McKelvey, and J. Mari, “MA estimation in polynomial time,” in
Proc. IEEE Conf. Decision and Control, 1999, vol. 4, pp. 1999–2012.

[54] B. Dumitrescu, I. Tabus, and P. Stoica, “On the parameterization of positive
real sequences and MA parameter estimation,” IEEE Trans. Signal Processing, vol.
49, no. 11, pp. 2630–2639, 2001.

[55] B. Alkire and L. Vandenberghe, “Handling nonnegative constraints in spec-
tral estimation,” in Proc. 34th Asilomar Conf. Signals, Systems and Computers,
2000, vol. 1, pp. 202–206.

[56] A. Zymnis, S. Boyd, and D. Gorinevsky, “Relaxed maximum a posteriori fault
identification,” Signal Process., vol. 89, no. 6, pp. 989–999, June 2009.

[57] A. Zymnis, S. Boyd, and D. Gorinevsky, “Mixed state estimation for a linear
Gaussian Markov model,” in Proc. IEEE Conf. Decision and Control, Dec. 2008,
pp. 3219–3226.

[58] J. Feldman, D. R. Karger, and M. J. Wainwright, “LP decoding,” in Proc.
Annu. Allerton Conf. Communication Control and Computing, 2003, vol. 41,
no. 2, pp. 951–960.

[59] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Trans. In-
form. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[60] E. J. Candes and P. A. Randall, “Highly robust error correction by convex pro-
gramming,” IEEE Trans. Inform. Theory, vol. 54, no. 7, pp. 2829–2840, 2008.

[61] F. Schlaepfer and F. Schweppe, “Continuous-time state estimation under dis-
turbances bounded by convex sets,” IEEE Trans. Automat. Contr., vol. 17, no. 2,
pp. 197–205, 1972.

[62] A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and
Control. Cambridge, MA: Birkhäuser, 1996.

[63] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax regret estimation
of deterministic parameters with bounded data uncertainties,” IEEE Trans. Signal
Processing, vol. 52, no. 8, pp. 2177–2188, 2004.

[64] T. N. Davidson, Z. Q. Luo, and K. M. Wong, “Design of orthogonal pulse shapes
for communications via semidefinite programming,” IEEE Trans. Signal Process-
ing, vol. 48, no. 5, pp. 1433–1445, 2000.

[65] A. Dua, K. Medepalli, and A. J. Paulraj, “Receive antenna selection in MIMO
systems using convex optimization,” IEEE Trans. Wireless Commun., vol. 5, no.
9, pp. 2353–2357, 2006.

[66] G. Sell and M. Slaney, “Solving demodulation as an optimization problem,”
IEEE Trans. Audio, Speech Language Processing, to be published.

[67] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ:
Princeton Univ. Press, 1963.

[68] J. Löfberg. (2004). YALMIP: A toolbox for modeling and optimization in
MATLAB. Proc. CACSD Conf., Taipei, Taiwan [Online]. Available: http://control.
ee.ethz.ch/~joloef/yalmip.php

[69] M. Grant and S. Boyd. (2008, July). CVX: Matlab software for disciplined
convex programming (web page and software) [Online]. Available: http://www.
stanford.edu/~boyd/cvx/

[70] J. E. Mattingley and S. Boyd. (2008, Aug.). CVXMOD: Convex optimization
software in Python (web page and software) [Online]. Available: http://cvxmod.net/

[71] N. L. Benavides, R. D. Carr, and W. E. Hart, “Python optimization model-
ing objects (Pyomo),” in Proc. INFORMS Computing Society Conf., 2009 [On-
line]. Available: https://software.sandia.gov/trac/pyutilib/export/30/trunk/doc/
pyomo.pdf

[72] M. Grant, “Disciplined convex programming,” Ph.D. dissertation, Dept.
Elect. Eng., Palo Alto, CA, Stanford Univ., Dec. 2004.

[73] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in Global
Optimization: From Theory to Implementation (Nonconvex Optimization and
Its Applications), L. Liberti and N. Maculan, Eds. New York: Springer Science
and Business Media, 2006, pp. 155–210.

[74] J. E. Mattingley and S. Boyd, “Automatic code generation for real-time con-
vex optimization,” in Convex Optimization in Signal Processing and
Communications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge, U.K.:
Cambridge Univ. Press, 2009, pp. 1–41.

[75] M. Gu, “Stable and efficient algorithms for structured systems of linear equa-
tions,” SIAM J. Matrix Anal. Appl., vol. 19, pp. 279–306, 1998.

[76] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear biological
systems: Wiener and Hammerstein cascade models,” Biol. Cybern., vol. 55, no. 2,
pp. 135–144, 1986.

[77] K. C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3—A Matlab software package
for semidefinite programming, version 1.3,” Optim. Methods Software, vol. 11, no.
1, pp. 545–581, 1999.

[78] R. Tütüncü, K. Toh, and M. J. Todd, “Solving semidefinite-quadratic-linear
programs using SDPT3,” Math. Program., vol. 95, no. 2, pp. 189–217, 2003.

[79] J. Sturm. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optim. Methods Software, vol. 11, pp. 625–653. [On-
line]. Available: http://sedumi.ie.lehigh.edu/

[80] J. C. Geromel, “Optimal linear filtering under parameter uncertainty,” IEEE
Trans. Signal Processing, vol. 47, no. 1, pp. 168–175, 1999.

[81] J. E. Mattingley and S. Boyd. (2010). Fast robust Kalman filtering. Working
manuscript [Online]. Available: http://stanford.edu/~boyd/papers/fast_rkf.html

[82] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and
Techniques. New York: Simon and Schuster, 1992.

[83] L. El Ghaoui and H. Lebret, “Robust solutions to least-squares problems
with uncertain data,” SIAM J. Matrix Anal. Appl., vol. 18, no. 4, pp. 1035–1064,
1997. [SP]

Authorized licensed use limited to: Stanford University. Downloaded on May 06,2010 at 18:26:32 UTC from IEEE Xplore. Restrictions apply.

