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C onvex optimization has been used in signal processing for a 
long time to choose coefficients for use in fast (linear) 
algorithms, such as in filter or array design; more 
recently, it has been used to carry out (nonlinear) 
processing on the signal itself. Examples of the 

latter case include total variation denoising, compressed 
sensing, fault detection, and image classification. In both 
scenarios, the optimization is carried out on time scales of 
seconds or minutes and without strict time constraints. 
Convex optimization has traditionally been considered 
computationally expensive, so its use has been limited 
to applications where plenty of time is available. Such 
restrictions are no longer justified. The combination of 
dramatically increased computing power, modern algo-
rithms, and new coding approaches has delivered an 
enormous speed increase, which makes it possible to 
solve modest-sized convex optimization problems on 
microsecond or millisecond time scales and with strict 
deadlines. This enables real-time convex optimization 
in signal processing. 

INTRODUCTION
Convex optimization [1] refers to a broad class of optimiza-
tion problems, which includes, for example, least-squares lin-
ear programming (LP); quadratic programming (QP) and the 
more modern second-order cone programming (SOCP); semi-
definite programming (SDP); and the ,1 minimization at the core 
of compressed sensing [2], [3]. Unlike many generic optimization 
problems, convex optimization problems can be efficiently solved, both 
in theory (i.e., via algorithms with worst-case  polynomial complexity) [4]
and in practice [1], [5]. It is widely used in application areas like control 
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[6]–[8], circuit design [9]–[11], 
economics and finance [12], 
[13], networking [14]–[16], sta-
tistics and machine learning 
[17], [18], quantum informa-
tion theory [19] , [20] , and 
combinatorial optimization 
[21], to name just a few. 

Convex optimization has a 
long history in signal process-
ing, dating back to the 1960s. The history is described below in 
a little more detail; for some more recent applications, see, for 
example, the special issue of IEEE Journal on Selected Topics 
in Signal Processing [22]. 

Signal processing applications may be split into two categories. 
In the first, optimization is used for design, i.e., to choose the 
weights or algorithm parameters for later use in a (typically linear) 
signal processing algorithm. A classical example is the design of 
finite impulse response (FIR) filter coefficients via LP [23], [24] 
(see also the review article by Davidson et al. in this issue). In these 
design applications, the optimization must merely be fast enough 
to not slow the designer; thus, optimization times measured in 
seconds, or even minutes, are usually sufficient. In the second cat-
egory, convex optimization is used to process the signal itself, 
which (generally) yields a nonlinear algorithm; an early example is 
,1 regularization for sparse reconstruction in geophysics [25], 
[26]. Most applications in this category are (currently) offline, as in 
geophysics reconstruction, so while faster is better, the optimiza-
tion is not subject to the strict real-time deadlines that would arise 
in an online application. There are some exceptions; an early 
example is [27], which describes the use of convex optimization in 
online  adaptive filtering. 

Recent advances in algorithms for solving convex optimiza-
tion problems, along with great advances in processor power, 
have dramatically reduced solution times. Another significant 
reduction in solution time may be obtained by using a solver 
customized for a particular problem family. (This is described in 
the section “Code Generation.”) As a result, convex optimization 
problems that 20 years ago might have taken minutes to solve 
can now be solved in microseconds. 

This opens up several new possibilities. In the design con-
text, algorithm weights can be redesigned or updated on fast 
time scales (say, kilohertz). Perhaps more exciting is the possi-
bility that convex optimization can be embedded directly in sig-
nal processing algorithms that run online, with strict real-time 
deadlines, even at rates of tens of kilohertz. We will see that 
solving 10,000 modest-sized convex optimization problems per 
second is entirely possible on a generic processor. This is quite 
remarkable, since solving an optimization problem is generally 
considered a computationally challenging task, and few engi-
neers would consider an online algorithm, which requires the 
solution of an optimization problem at each step, to be feasible 
for signal rates measured in kilohertz. 

Of course, for high-throughput or fast signal processing (say, 
an equalizer running at gigahertz rates) it is not feasible to solve 

an optimization problem in 
each step, and it may never be. 
But a large number of applica-
tions are now potentially within 
reach of new algorithms, in 
which an optimization problem 
is solved in each step or every 
few steps. We imagine that, in 
the future, more and more sig-
nal processing algorithms will 

involve embedded optimization, running at rates up to or 
exceeding tens of kilohertz. (We believe the same trend will take 
place in automatic control; see, e.g., [28] and [29].) 

In this article, we briefly describe two recent advances that 
make it easier to design and implement algorithms for such 
applications. The first is disciplined convex programming, 
which simplifies problem specification and allows the transfor-
mation to a standard form to be automated. This makes it 
 possible to rapidly prototype applications based on convex opti-
mization. The second advance is convex optimization code gen-
eration, in which (source code for) a custom solver that runs at 
the required high speed is automatically generated from a high 
level description of the problem family. 

In the final three sections, we illustrate the idea of real-time 
embedded convex optimization with three simple examples. In 
the first example (in the section “Linearizing Pre-Equalization”), 
we show how to implement a nonlinear pre-equalizer for a sys-
tem with input saturation. It predistorts the input signal so that 
the output signal approximately matches the output of a refer-
ence linear system. Our equalizer is based on a method called 
model predictive control [30], which has been widely used in 
the process control industry for more than a decade. It requires 
the solution of a QP at each step. It would not surprise anyone 
to know that such an algorithm could be run at, say, 1 Hz (pro-
cess control applications typically run with sample times mea-
sured in minutes); but we will show that it can easily be run at 
1 kHz. This example illustrates how our ability to solve QPs with 
extreme reliability and speed has made new signal processing 
methods possible. 

In the second example (in the section “Robust Kalman 
Filtering”), we show how a standard Kalman filter can be modi-
fied to handle occasional large sensor noises (such as those due 
to sensor failure or intentional jamming), using now-standard 
,1-based methods. Those familiar with the ideas behind com-
pressed sensing (or several other related techniques) will not be 
surprised at the effectiveness of these methods, which require 
the solution of a QP at each time step. What is surprising is that 
such an algorithm can be run at tens of kilohertz. 

Our final example (in the section “Online Array Weight 
Design”) is one from the design category: a standard array signal 
processing weight selection problem in which, however, the 
sensor positions drift with time. Here the problem reduces to 
the solution of an SOCP at each time step; the surprise is that 
this can be carried out in a few milliseconds, which means that 
the weights can be reoptimized at hundreds of hertz. 

UNLIKE MANY GENERIC OPTIMIZATION 
PROBLEMS, CONVEX OPTIMIZATION 
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In the next two subsections 
we describe some previous and 
current applications of convex 
optimization, in the two just- 
described categories of weight 
design and direct signal pro-
cessing. Before proceeding, we 
note that the distinction 
between the two categories—
optimization for algorithm weight design versus optimization 
directly in the algorithm itself—is not sharp. For example, 
widely used adaptive signal processing techniques [31], [32] 
adjust parameters in an algorithm (i.e., carry out re design) 
online, based on the data or signals themselves. (Indeed, many 
adaptive signal processing algorithms can be interpreted as 
stochastic approximation or stochastic subgradient methods 
for solving an underlying convex optimization problem.) 

WEIGHT DESIGN VIA CONVEX OPTIMIZATION
Convex optimization was first used in signal processing in 
design, i.e., selecting weights or coefficients for use in simple, 
fast, typically linear, signal processing algorithms. In 1969, [23] 
showed how to use LP to design symmetric linear phase FIR 
filters. This was later extended to the design of weights for two-
dimensional (2-D) filters [33] and filter banks [34]. Using spec-
tral factorization, LP and SOCP can be used to design filters 
with magnitude specifications [35], [36]. 

Weight design via convex optimization can also be carried 
out for (some) nonlinear signal processing algorithms, for 
example, in a decision-feedback equalizer [37]. Convex opti-
mization can also be used to choose the weights in array sig-
nal processing, in which multiple sensor outputs are 
combined linearly to form a composite array output. Here the 
weights are chosen to give a desirable response pattern [38]. 
More recently, convex optimization has been used to design 
array weights that are robust to variations in the signal statis-
tics or array response [39]–[42]. For another example of 
weight design, see the beamforming article in this issue by 
Gershman et al. 

Many classification algorithms from machine learning 
involve what is essentially weight design via convex optimiza-
tion [43]. For example, objects x (say, images or e-mail mes-
sages) might be classified into two groups by first computing 
a vector of features f 1x 2 [ Rn, then, in real time, using a 
simple linear threshold to classify the objects: we assign x to 
one group if wTf 1x 2 $ v, and to the other group if not. Here 
w [ Rn  and v [ R  are weights, chosen by training from 
objects whose true classification is known. This offline train-
ing step often involves convex optimization. One widely used 
method is the support vector machine (SVM), in which the 
weights are found by solving a large QP [17], [18]. While this 
involves solving a (possibly large) optimization problem to 
determine the weights, only minimal computation is required 
at run time to compute the features and form the inner prod-
uct that classifies any given object. 

SIGNAL PROCESSING VIA 
CONVEX OPTIMIZATION
Recently introduced applica-
tions use convex optimization 
to carry out (nonlinear) pro-
cessing of the signal itself. The 
crucial difference from the pre-
vious category is that speed is 
now of critical importance. 

Convex optimization problems are now solved in the main loop 
of the processing algorithm, and the total processing time 
depends on how fast these problems can be solved. 

With some of these applications, processing time again mat-
ters only in the sense that “faster is better.” These are offline 
applications where data is being analyzed without strict time 
constraints. More challenging applications involve online solu-
tions, with strict real-time deadlines. Only recently has the last 
category become possible, with the development of reliable, effi-
cient solvers, and the recent increase in computing power. 

One of the first applications where convex optimization was 
used directly on the signal is in geophysics [25], [26], where ,1 
minimization was used for sparse reconstruction of signals. 
Similar ,1-techniques are widely used in total variation noise 
removal in image processing [44]–[46]. Other image processing 
applications include deblurring [47] and, recently, automatic 
face recognition [48]. Other signal identification algorithms use 
,1 minimization or regularization to recover signals from 
incomplete or noisy measurements [49], [50], [2]. Within sta-
tistics, feature selection via the Lasso algorithm [51] uses sim-
ilar techniques. The same ideas are applied to reconstructing 
signals with sparse derivative (or gradient, more generally) in 
total variation denoising, and in signals with sparse second 
derivative (or Laplacian) [52]. A related problem is parameter 
estimation, where we fit a model to data. One example of this 
is fitting moving average (MA) or autoregressive moving aver-
age (ARMA) models; here parameter estimation can be carried 
out with convex optimization [53]–[55]. 

Convex optimization is also used as a relaxation technique 
for problems that are essentially Boolean, as in the detection of 
faults [56], [57], or in decoding a bit string from a received 
noisy signal. In these applications a convex problem is solved, 
after which some kind of rounding takes place to guess the fault 
pattern or transmitted bit string [58]–[60]. For more on convex 
optimization for nonconvex problems, see the article by Luo 
et al. in this issue. 

Many methods of state estimation can be interpreted as 
involving convex optimization. (Basic Kalman filtering and 
least-squares fall in this category, but since the objectives are 
quadratic, the optimization problems can be solved analytically 
using linear algebra.) In the 1970s, ellipsoidal calculus was used 
to develop a state estimator less sensitive to statistical assump-
tions than the Kalman filter, by propagating ellipsoids that con-
tain the state [61], [62]. The standard approach here is to work 
out a conservative update for the ellipsoid, but the most sophis-
ticated methods for ellipsoidal approximation rely on convex 

RECENT ADVANCES IN ALGORITHMS 
FOR SOLVING CONVEX OPTIMIZATION 
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HAVE DRAMATICALLY REDUCED 
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optimization [1, §8.4]. Another 
recently developed estimation 
method is minimax regret esti-
mation [63], which relies on 
convex optimization. 

Convex optimization algo-
rithms have also been used in 
wireless systems. Some exam-
ples here include online pulse 
shape design for reducing the peak or average power of a signal 
[64], receive antenna selection in MIMO systems [65], and per-
forming demodulation by solving convex problems [66]. 

DISCIPLINED CONVEX PROGRAMMING
A standard trick in convex optimization, used since the origins 
of LP [67], is to transform the problem that must be solved into 
an equivalent problem, which is in a standard form that can be 
solved by a generic solver. A good example of this is the reduc-
tion of an ,1 minimization problem to an LP; see [1, Ch. 4] for 
many more examples. Recently developed parser-solvers, such 
as YALMIP [68], CVX [69], CVXMOD [70], and Pyomo [71] 
automate this reduction process. The user specifies the prob-
lem in a natural form by declaring optimization variables, 
defining an objective, and specifying constraints. A general 
approach called disciplined convex programming (DCP) [72], 
[73] has emerged as an effective methodology for organizing 
and implementing parser-solvers for convex optimization. In 
DCP, the user combines built-in functions in specific, convexity-
preserving ways. The constraints and objective must also follow 
certain rules. As long as the user conforms to these require-
ments, the parser can easily verify convexity of the problem and 
automatically transform it to a standard form, for transfer to the 
solver. The parser-solvers CVX (which runs in MATLAB) and 
CVXMOD (Python) use the DCP approach. 

A very simple example of such a scheme is the CVX code 
shown in Figure 1, which shows the required CVX code for 
specifying the convex optimization problem 

 
minimize xTQx
subject to |x| # 1,   a

i
xi5 10,   Ax $ 0,   (1)

with variable x [ R5, where Q [ R535 satisfies Q5QT $ 0 
(i.e., is symmetric positive semidefinite) and A [ R335. Here 
both inequalities are element-wise, so the problem requires that 
|xi| # 1, and 1Ax 2 i $ 0. This simple problem could be trans-
formed to standard QP form by hand; CVX and CVXMOD do it 
automatically. The advantage of a parser-solver like CVX would 
be much clearer for a larger, more complicated problem. Adding 
further (convex) constraints to this problem, or additional (con-
vex) terms to the objective, is easy in CVX; but quite a task when 
the reduction to standard form is done by hand. 

CODE GENERATION
Designing and prototyping a convex optimization-based algo-
rithm requires choosing a suitable problem format and then 

testing and adjusting it for good 
application performance. In 
this prototyping stage, the 
speed of the solver is often 
nearly irrelevant; simulations 
can usually take place at signifi-
cantly reduced speeds. In proto-
typing and algorithm design, 
the key is the ability to rapidly 

change the problem formulation and test the application perfor-
mance, often using real data. The parser- solvers described in the 
previous section are ideal for such use and reduce development 
time by freeing the user from the need to translate their prob-
lem into the restricted standard form required by the solver. 

Once prototyping is complete, however, the final code must 
often run much faster. Thus, a serious challenge in using real-time 
convex optimization is the creation of a fast, reliable solver for a 
particular application. It is possible to hand-code solvers that take 
advantage of the special structure of a problem family, but such 
work is tedious and difficult to get exactly right. Given the success 
of parser-solvers for offline applications, one option is to apply a 
similar approach to the problem of generating fast custom solvers. 

It is sometimes possible to use the (slow) code from the proto-
typing stage in the final algorithm. For example, the acceptable 
time frame for a fault detection algorithm may be measured in 
minutes, in which case the above prototype is likely adequate. 
Often, though, there are still advantages in having code that is 

1 A = [...]; b = [...]; Q = [...];
2 cvx_begin
3  variable x(5)
4  minimize (quad_form(x, Q))
5  subjectto
6       
7 cvx_end
8 cvx_status

1) Problem data is specified within MATLAB as ordinary
 matrices and vectors. Here A is a 3 × 5 matrix, b is
 a 3-vector, and Q is a 5 × 5 matrix.
2) Changes from ordinary MATLAB mode to CVX model
 specification mode.
3) x ∈R5 is an optimization variable object. After solution,
 x is replaced with a solution (numerical vector).
4) Recognized as convex objective xT Qx (provided Q ≥ 0).
5) Does nothing, but enhances readability.
6) In CVX model specification mode, equalities and in-
 equalities specify constraints.
7) Completes model specification, initiates transformation
 to standard form, and calls solver; solution is written to x.
8) Reports status, e.g., Solved or Infeasible.

abs(x) <= 1; sum(x) == 10; A*x >= 0

(a)

(b)

[FIG1] (a) CVX code segment and (b) explanations.
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independent of the particular 
modeling framework. On the 
other hand (and as previously 
mentioned), some applications 
require time scales that are fast-
er than those achievable even 
with a very good generic solver; 
here explicit methods may be 
the only option. We are left with 
a large category of problems where a fast, automatically generated 
solver would be extremely useful. 

This introduces automatic code generation, where a user, 
who is not necessarily an expert in algorithms for convex opti-
mization, can formulate and test a convex optimization prob-
lem within a familiar high-level environment and then request 
a custom solver. An automatic code generation system analyz-
es and processes the problem, (possibly) spending a significant 
amount of time testing or analyzing various methods. Then it 
produces code highly optimized for the particular problem 
family, including auxiliary code and files. This code may then 
be embedded in the user’s signal processing algorithm. 

There are several good reasons why a code generator should 
start from a high-level DCP specification of the problem family 
and not from some standard or canonical (mathematical) form 
for the problem. The first is that such a high-level description 

presumably was written when 
the method was prototyped, so 
if the description accepted by 
the code generator is the same 
as (or similar to) that used by 
the parser-solver during proto-
typing, little additional effort is 
required. The second reason 
has to do with exploitable prob-

lem structure. The more problem structure the code generator 
can use, the more efficient the resulting generated code. A high-
level DCP specification is not only  convenient and readable, it 
also contains all the original problem structure. Reducing the 
problem to some canonical form can obscure or destroy prob-
lem structure that could  otherwise have been exploited. 

We have developed an early, preliminary version of an auto-
matic code generator. It is built on top of CVXMOD, a convex 
optimization modeling layer written in Python. After defining a 
problem (family), CVXMOD analyzes the problem’s structure, 
and creates C code for a fast solver. Figure 2 shows how the 
problem family (1) can be specified in CVXMOD. Note, in partic-
ular, that no parameter values are given at this time; they are 
specified at solve time, when the problem family has been 
instantiated and a particular problem instance is available. 

CVXMOD produces a variety of output files. These include 
solver.h, which includes prototypes for all necessary func-
tions and structures; initsolver.c, which allocates memory 
and initializes variables; and solver.c, which actually solves 
an instance of the problem. Figure 3 shows some of the key 
lines of code that would be used within a user’s signal process-
ing algorithm. In an embedded application, the initializations 
(lines 3–5) are called when the application is starting up; the 
solver (line 8) is called each time a problem instance is to be 
solved, for example in a real-time loop. 

Generating and then compiling code for a modest-sized 
convex optimization problem can take far longer than it would 
take to solve a problem instance using a parser-solver. But 
once we have the compiled code, we can solve instances of this 
 specific problem at extremely high speeds. This compiled code 
is perfectly suited for inclusion in a real-time signal process-
ing algorithm. 

Technical details of how CVXMOD carries out code genera-
tion, as well as timing results for code generated for a variety 
of problems, can be found in [74]. Here we briefly describe the 
basic idea. The code generated by CVXMOD uses a primal-dual 
interior-point method, which typically converges in a small 
number of iterations. The main computational effort in each 
iteration is solving a set of linear equations to determine the 
search direction. The coefficient matrix for these linear equa-
tions changes at each step of the interior-point algorithm (and 
also depends on the problem data), but its sparsity pattern 
does not. It can be determined at code generation time. 
CVXMOD analyzes the sparsity structure of these linear equa-
tions at code generation time, selects a good (low fill-in) elim-
ination ordering and then generates flat, almost branch-free 

1 A = param('A', 3, 5)
2 B = param('b', 3, 1)
3 Q = param('Q', 5, 5, psd=True)
4 x = optvar('x', 5, 1)
5 objv = quadform(x, Q)
6 constr = [abs(x) <= 1, sum(x) == 10, A*x >= 0]
7 prob = problem(minimize(objv), constr)
8 codegen(prob).gen()

1) A is specified in CVXMOD as a 3 × 5 parameter. No values
 are (typically) assigned at problem specification time;
 here A is acting as a placeholder for later replacement
 with problem instance data.
2) b is specified as a 3-vector parameter.
3) Q is specified as a symmetric, positive semidefinite
 5 × 5 parameter.
4) x ∈R5 is an optimization variable.
5) Recognized as a convex objective, since CVXMOD has
 been told that Q ≥ 0 in line 3.
6) Saves the affine equalities and convex inequalities to a
 list.
7) Builds the (convex) minimization problem from the
 convex objective and list of convex constraints.
8) Creates a code generator object based on the given
 problem, which then generates code.

(a)

(b)

[FIG2] (a) CVXMOD code segment and (b) explanations.
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code that carries out the fac-
torization and solve steps 
needed to solve the linear 
equations. Of course, a gener-
al-purpose solver (for example, 
one used in a parser-solver) 
also exploits sparsity, but it 
discovers and exploits the spar-
sity on a problem instance-by-
instance basis. CVXMOD, in contrast, discovers the sparsity, 
and calculates how to exploit it, at code-generation time. 

The current version of CVXMOD exploits only sparsity; several 
other types of exploitable structure include, for example, DFT, 
Toeplitz, or Hankel matrix structure (see, e.g., [75] and the refer-
ences therein). Future code generators could presumably recog-
nize and exploit these types of structure. What is suprising is the 
run-time efficiency we obtain by exploiting only sparsity. 

LINEARIZING PRE-EQUALIZATION
Many types of nonlinear pre- and post-equalizers can be imple-
mented using convex optimization. In this section, we focus on one 
example, a nonlinear pre-equalizer for a nonlinear system with a 

Hammerstein [76] structure: a 
unit saturation nonlinearity, fol-
lowed by a stable linear time-in-
variant system. It is shown in 
Figure 4. Our equalizer, shown 
in Figure 5, has access to the sca-
lar input signal u, with a look-
ahead of T  samples (or, 
equivalently, with an additional 

delay of T samples), and will generate the equalized input signal v. 
This signal v is then applied to the system, and results in the out-
put signal y. The goal is to choose v so that the actual output sig-
nal y matches the reference output yref, which is the output signal 
that would have resulted without the saturation nonlinearity. This 
is shown in the block diagram in Figure 6, which includes the error 
signal e5 y2 yref. If the error signal is small, then our pre-equal-
izer, followed by the system, gives nearly the same output as the 
reference system. Since the reference system is linear, our pre-
equalizer thus linearizes the system. 

When the input peak is smaller than the saturation level 
of one, the error signal is zero; our equalizer only comes into 
play when the input signal peak exceeds one. A baseline choice of 

1 #include "solver.h"
2 int main(int argc, char **argv) {
3   Params params = init_params();
4   Vars vars = init_vars();
5   Workspace work = init_work(vars);
6   for (;;) {
7  update_params(params);
8  status = solve(params, vars, work);
9  export_vars(vars); }}

1) Loads the automatically-generated data structures.
2) CVXMOD generates standard C code for use on a range
 of platforms.
3) The params structure holds problem parameters.
4) After solution, the vars structure holds optimal values
 for each of the original optimization variables.
5) An additional work structure is used for working mem-
 ory. Its size is fixed, and known at compilation time. This
 means that all memory requirements and structures are
 known at compile time.
6) Once the initialization is complete, we enter the real-
 time loop.
7) Parameter values are updated from the signal processing
 system.
8) Actual solution requires just one function. It executes in
 a bounded amount of time.
9) After solution, the resulting variable values are used in
 the signal processing system.

(a)

(b)

[FIG3] (a) C code generated by CVXMOD and (b) explanations. 
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[FIG4] Nonlinear system, consisting of unit saturation, followed 
by a linear time-invariant system.
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[FIG5] Our pre-equalizer processes the incoming signal u (with 
a look-ahead of T samples), to produce the input, v, applied to 
the system.
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[FIG6] The top signal path is the reference system, a copy of the 
system but without the saturation. The bottom signal path is the 
equalized system, the pre-equalizer followed by the system, 
shown in the dashed box. Our goal is to make the error e small.
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pre-equalizer is none: We simply 
take v5 u. We use this simple 
equalizer as a basis for compari-
son with the nonlinear equalizer 
we describe here. We’ll refer to 
the output produced without 
pre-equalization as ynone and 
the corresponding error as enone. 

We now describe the system, 
and the pre-equalizer, in more detail. We use a state-space model 
for the linear system 

 xt115 Axt1 Bsat 1vt 2 ,  yt5 Cxt, 

with state xt [ Rn, where the unit saturation function is given by 
sat 1z 2 5 z for |z| # 1, sat 1z 2 5 1 for z . 1, and sat 1z 2 521 
for z , 21. The reference system is 

 xt11
ref 5 Axt

ref1 But,  yt
ref5 Cxt

ref, 

with state xt
ref [ Rn. Subtracting these two equations, we can 

express the error signal e5 y2 yref via the system 

 x|t115 Ax|t1 B 1sat 1vt 2 2 ut 2 ,  et5 Cx|t, 

where x|t5 xt2 xt
ref [ Rn is the state tracking error. 

We now come to the main (and simple) trick: We will assume that 
(or more accurately, our pre-equalizer will guarantee that) |vt| # 1. 
In this case sat 1vt 2  can be replaced by vt above, and we have 

 x|t115 Ax|t1 B 1vt2 ut 2 ,  et5 Cx|t.

We can assume that x|t is available to the equalizer; indeed, by 
stability of A, the simple estimator 

 x̂t115 Ax̂t1 B 1vt2 ut 2
will satisfy x̂t S x|t as t S `, so we can use x̂t in place of x|t. In 
addition to x|t, our equalizer will use a look-ahead of T samples on 
the input signal, i.e., vt will be formed with knowledge of 
ut, c, ut1T. 

We will use a standard technique from control, called model 
predictive control [30], in which at time t we solve an optimiza-
tion problem to “plan” our input signal over the next T steps, and 
use only the first sample of our plan as the actual equalizer output. 
At time t we solve the optimization problem 

minimize at1T

t5t
et21 x|t1T11

T Px|t1T11

subject to x
&
t115 Ax

&
t 1 B 1nt 2 ut 2   et 5 C x

&
t,

t 5 t,c, t1 T0 nt 0 # 1,   t 5 t, c, t1 T,

 

(2)

with variables vt, c, vt1T [ R and x|t11, c, x|t1T11 [ Rn. 
The initial (error) state in this planning problem, x|t, is known. 

The matrix P,  which is a 
parameter, is symmetric and 
positive semidefinite. 

The first term in the objec-
tive is the sum of squares of the 
tracking errors over the time 
horizon t, c, t1 T; the sec-
ond term is a penalty for the 
final state error; it serves as a 

surrogate for the tracking error past our horizon, which we 
cannot know since we do not know the input beyond the hori-
zon. One reasonable choice for P is the output Gramian of the 
linear system 

 P5 a`
i50
1Ai 2TCTCAi, 

in which case we have 

 x|t1T11
T Pxt1T115 a`

t5t1T11
et2, 

provided vt 5 ut for t $ t1 T1 1. 
The problem above is a QP. It can be modified in several 

ways; for example, we can add a (regularization) term such as 

 r aT11

t5t11
1vt112 vt 2 2, 

where r . 0 is a parameter, to give a smoother post-equalized 
signal. 

Our pre-equalizer works as follows: At time step t, we solve 
the QP above. We then use vt, which is one of the variables from 
the QP, as our pre-equalizer output. We then update the error 
state as x|t115 Ax|t1 B 1vt2 ut 2 . 
EXAMPLE
We illustrate the linearizing pre-equalization method with an 
example in which the linear system is a third-order low-pass 
system with bandwidth 0.1p, with impulse response that lasts 
for about 35 samples. Our pre-equalizer uses a look-ahead hori-
zon T5 15 samples, and we choose P as the output Gramian. 
We use smoothing regularization with r5 0.01. The input u a 
is low-pass filtered random signal, which saturates (i.e., has 
|ut| . 1) around 20% of the time. 

The unequalized and equalized inputs are shown in Figure 7. 
We can see that the pre-equalized input signal is quite similar to 
the unequalized input when there is no saturation but differs 
considerably when there is. The corresponding outputs, includ-
ing the reference output, are shown in Figure 8, along with the 
associated output tracking errors. 

The QP (2), after transformation, has 96 variables, 63 
equality constraints, and 48 inequality constraints. Using 
Linux on an Intel Core Duo 1.7 GHz, it takes approximately 
500 ms to solve using CVXMOD-generated code, which com-
pares well with the standard SOCP solvers SDPT3 [77], [78] 
and SeDuMi [79], whose solve times are approximately 430 ms 
and 160 ms, respectively.

KALMAN FILTERING IS A WELL-
KNOWN AND WIDELY USED 

METHOD FOR ESTIMATING THE 
STATE OF A LINEAR DYNAMICAL 

SYSTEM DRIVEN BY NOISE.
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ROBUST KALMAN FILTERING
Kalman filtering is a well-known and widely used method for 
estimating the state of a linear dynamical system driven by 
noise. When the process and measurement noises are indepen-
dent identically distributed (IID) Gaussian, the Kalman filter 
recursively computes the posterior distribution of the state, 
given the measurements. 

In this section, we consider a variation on the Kalman fil-
ter, designed to handle an additional measurement noise 
term that is sparse, i.e., whose components are often zero. 
This term can be used to model (unknown) sensor failures, 
measurement outliers, or even intentional jamming. Our 
goal is to design a filter that is robust to such disturbances, 
i.e., whose performance does not degrade rapidly when dis-
turbances are introduced. (This robustness is to additive 
measurement noise; see, e.g., [80] for a discussion of filtering 
that is robust to model parameter variation.) Here we create 
a robust Kalman filter by replacing the standard measure-
ment update—which can be interpreted as the result of solv-
ing a quadratic minimization problem—with the solution of 
a similar convex minimization problem, that includes an ,1 
term to handle the sparse noise. Thus the robust Kalman fil-
ter requires the solution of a convex optimization problem in 
each time step. Compare this to the standard Kalman filter, 
which requires the solution of a quadratic optimization prob-
lem at each step, and has an analytical solution expressible 
using basic linear algebra operations. 

We will work with the system 

 xt115 Axt1wt,  yt5 Cxt1 vt1 zt, 

where xt [ Rn is the state (to be estimated) and yt [ Rm is the 
measurement available to us at time step t. As in the standard 
setup for Kalman filtering, the process noise wt is IID N 10, W 2 , 
and the measurement noise term vt is IID N 10, V 2 . The term 
zt is an additional noise term, which we assume is sparse 
(meaning, most of its entries are zero) and centered around 
zero. Without the additional sparse noise term zt, our system is 
identical to the standard one used in Kalman filtering. 

We will use the standard notation from the Kalman filter: x̂t|t 
and x̂t|t21 denote the estimates of the state xt, given the mea-
surements up to yt or yt21, and S denotes the steady-state 
error covariance associated with predicting the next state. In the 
standard Kalman filter (i.e., without the additional noise term 
zt), all variables are jointly Gaussian, so the (conditional) mean 
and covariance specify the conditional distributions of xt, condi-
tioned on the measurements up to yt and yt21, respectively. 

The standard Kalman filter consists of alternating time and 
measurement updates. The time update

 x̂t|t215 Ax̂t21|t21  (3)

propagates forward the state estimate at time t2 1, after the 
measurement yt21, to the state estimate at time t, but before 
the measurement yt is known. The measurement update 

 x̂t|t5 x̂t|t211SC T 1CSC T1 V 221 1yt2 Cx̂t|t21 2   (4)

then gives the state estimate at time t, given the measurement 
yt, starting from the state estimate at time t, before the mea-
surement is known. In the standard Kalman filter, x̂t|t21 and x̂t|t 
are the conditional means, and so can be interpreted as the 
minimum mean-square error estimates of xt, given the mea-
surements up to yt21 and yt, respectively. 

To (approximately) handle the additional sparse noise term 
zt, we will modify the Kalman filter measurement update (4). To 
motivate the modification, we first note that x̂t|t  can be 
expressed as the solution of a quadratic optimization problem 

−2.5

0

2.5

[FIG7] Input without pre-equalization (red, ut), and with 
linearizing pre-equalization (blue, vt).
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[FIG8] (a) Output y without pre-equalization (red), and with 
nonlinear pre-equalization (blue). The reference output yref 
is shown as the dashed curve (black). (b) Tracking error 
e with no pre-equalization (red) and with nonlinear pre-
equalization (blue).
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minimize vt

TV21vt1 1x2 x̂t|t21 2TS21 1x2 x̂t|t21 2
subject to yt5 Cx1 vt,  

 (5)

with variables x and vt. We can interpret vt as our estimate of 
the sensor noise; the first term in the objective is a loss term 
corresponding to the sensor noise, and the second is a loss term 
associated with our estimate deviating from the prior. 

In the robust Kalman filter, we take x̂t|t to be the solution x 
of the convex optimization problem 

 
minimize vt

TV 21vt1 1x2 x̂t|t21 2TS21 1x2 x̂t|t21 2
 1l||zt||1

subject to yt5 Cx1 vt1 zt

with variables x, vt, and zt. A computationally more efficient, 
but equivalent method [81] is to precompute L5SCT1CSCT1 V 221 and Q5 1I2 CL 2TV21 1I2 CL 2 1 LTS21L, and 
then at each time-step set et5 yt2 Cx̂t|t21 and solve 

 minimize 1et2 zt 2TQ 1et2 zt 2 1l||zt||1 (6)

with variable zt [ Rm.  (Standard methods can be used to 
transform this problem into an equivalent QP.) We may then 
recover x5 x̂t|t211 L 1et2 zt 2 . 

Here we interpret vt and zt as our estimates of the Gaussian 
and the sparse-measurement noises, respectively. The parameter 
l $ 0 is adjusted so that the sparsity of our estimate coincides 
with our assumed sparsity of zt. For l large enough, the solu-
tion of this optimization problem has zt5 0, and so is exactly 
the same as the solution of (5); in this case, the robust Kalman 
filter measurement update coincides with the standard Kalman 
filter measurement update. 

In the robust Kalman filter, we use the standard time 
update (3), and the modified measurement update, which 
requires the explicit solution of the convex optimization prob-
lem (6). With this time update, the estimation error is not 
Gaussian, so the estimates x̂t|t and x̂t|t21 are no longer condi-
tional means (and S is not the steady-state state estimation 
error covariance). Instead we interpret them as merely (robust) 
state estimates. 

EXAMPLE
For this example, we randomly generate matrices A [ R50350 
and C [ R15350. We scale A so its spectral radius is 0.98. We 
generate a random matrix B [ R5035 with entries ,N 10, 1 2 , 
and use W5 BBT and V5 I. The sparse noise zt was generated 
as follows: with probability 0.05, component 1yt 2 i is set to 1vt 2 i; 
i.e., the signal component is removed. This means that z 2 0 
with probability 0.54, or, roughly, one in two measurement vec-
tors contains at least one bogus element. We compare the per-
formance of a traditional Kalman filter tuned to W  and V, with 
the robust Kalman filter described above, and show example 
traces of the errors in Figure 9. In this example, the root-mean-
square (RMS) error of the robust Kalman filter is approximately 
one quarter that of the Kalman filter.

For this example, the measurement update (6) is transformed 
into a QP with 45 variables, 15 equality, and 30 inequality con-
straints. Code generated by CVXMOD solves this problem in 
approximately 120 ms, which allows measurement updates at 
rates better than 5 kHz. Solution with SDPT3 or SeDuMi takes 
120 or 80 ms, while a standard Kalman filter update takes 10 ms. 

ONLINE ARRAY WEIGHT DESIGN
In this example, fast optimization is used to adapt the weights 
to changes in the transmission model, target signal character-
istics, or objective. Thus, the optimization is used to adapt or 
re configure the array. In traditional adaptive array signal pro-
cessing [82], the weights are adapted directly from the com-
bined signal output; here we consider the case when this is 
not possible. 

We consider a generic array of n sensors, each of which 
produces as output a complex number (baseband response) 
that depends on a parameter u [ Q (which can be a vector in 
the general case) that characterizes the signal. In the simplest 
case, u  is a scalar that specifies the angle of arrival of a signal 
in 2-D, but it can include other parameters that give the range 
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[FIG9] The robust Kalman filter (blue) exhibits significantly lower 
error than the standard Kalman filter (red). The state has RMS 
magnitude one.

[FIG10] Tracks of sensor positions, each of which is 
a random walk.
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or position of the signal source, polarization, wavelength, and 
so on. The sensor outputs are combined linearly with a set of 
array weights w [ Cn to produce the (complex scalar) com-
bined output signal 

 y 1u 2 5 a 1u 2 *w.

Here a : Q S Cn is called the array response function or array 
manifold. 

The weight vector w is to be chosen, subject to some con-
straints expressed as w [W, so that the combined signal out-
put signal (also called the array response) has desired 
characteristics. These might include directivity, pattern, or 
robustness constraints. A generic form for this problem is to 
guarantee unit array response for some target signal parame-
ter, while giving uniform rejection for signal parameters in 
some set of values Qrej. We formulate this as the optimization 
problem, with variable w [ Cn, 

 
minimize maxu[Qrej

|a 1u 2 *w|
subject to a 1utar 2 *w5 1,  w [W.

If the weight constraint set W is convex, this is a convex opti-
mization problem [38], [83]. 

In some cases, the objective, which involves a maximum over 
an infinite set of signal parameter values, can be handled exactly, 
but we will take a simple discretization approach. We find appro-
priate points u1, c, uN [ Qrej, and replace the maximum over 
all values in Qrej with the maximum over these values to obtain 
the problem 

 
minimize maxi51, c, N|a 1ui 2 *w|
subject to a 1utar 2 *w5 1,  w [W.

(The appropriate N  may be determined by simulation.) 
When W is convex, this is a (tractable) constrained complex 

,` norm minimization problem 

 
minimize ||Aw||`
subject to a 1utar 2 *w5 1,   w [W,  

 (7)

where A [ CN3n, with ith row a 1ui 2 *, and || # ||` is the complex 
,` norm. It is common to add some regularization to the weight 
design problem, by adding l||w||2 to the objective, where l is a 
(typically small) positive weight. This can be interpreted as a term 
related to noise power in the combined array output, or as a regu-
larization term that keeps the weights small, which makes the 
combined array response less sensitive to small changes in the 
array manifold. 

With or without regularization, (7) can be transformed to 
an SOCP. Standard SOCP methods can be used to determine w 
when the array manifold or target parameter utar  do not 
change, or change slowly or infrequently. We are interested 
here in the case when they change frequently, which requires 
solving (7) rapidly. 

EXAMPLE
We consider an example of an array in 2-D with n5 15 sensors 
with positions p1, c, pn [ R2 that change or drift over time. 
The signal model is a harmonic plane wave with wavelength l 
arriving from angle u, with Q5 3 2p, p 2 . The array manifold 
has the simple form (with j5"2 1 ) 

 a 1u 2 i5 exp 1 2 2pj 1cosu, sinu 2Tpi/l 2 .
We take utar5 0 as our (constant) target look (or transmit) 
direction, and the rejection set as 

 Qrej5 3 2p, 2p/9 4 h 3p/9, p 2 ,
(which corresponds to a beamwidth of 408). We discretize 
arrival angles uniformly over urej with N5 100 points. 

The initial sensor positions are a 5 3 3 grid with l/2 
 spacing. Each of these undergoes a random walk, with 
pi 1t112 2 pi 1t 2 ,N10, l/10 2 , for t5 0, 1, c, 99. Tracks of 
the sensor positions over t5 0, c, 100  are shown in 
Figure 10. 
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[FIG11] Array response as sensors move, with (a) optimized 
weights and (b) using weights for initial sensor positions.
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For each sensor position we 
solve the weight design prob-
lem, which results in a rejec-
tion ratio (relative gain of 
target direction to rejected 
directions) ranging from 7.4 
dB to 11.9 dB. The resulting 
array response, i.e., |y 1u 2| ver-
sus t, is shown in Figure 11(a). 
The same figure shows the array responses obtained using 
the optimal weights for the initial sensor positions, i.e., with-
out redesigning the weights as the sensor positions drift. In 
this case the rejection ratio goes up to 1.3 dB, i.e., the gain in 
a rejection direction is almost the same as the gain in the tar-
get direction. 

This problem can be transformed to an SOCP with 30 vari-
ables and approximately 200 constraints. The current version 
of CVXMOD does not handle SOCPs, but a simple implemen-
tation coded by hand solves this problem in approximately 
2 ms, which means that we can (in principle, and neglecting 
other considerations) update our weights at 500 Hz. 

CONCLUSION
This article shows the potential for convex optimization 
methods to be much more widely used in signal processing. 
In particular, automatic code generation makes it easier to 
create convex optimization solvers that are made much faster 
by being designed for a specific problem family. The disci-
plined convex programming framework that has been shown 
useful in transforming problems to a standard form may be 
extended to create solvers themselves. Much work remains to 
be done in exploring the capabilities and limitations of auto-
matic code generation. As computing power increases, and as 
automatic code generation improves, the authors expect 
 convex optimization solvers to be found more and more often 
in real-time signal processing applications. 
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