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Abstract: Chebyshev inequalities provide bounds on the probability of a set based
on known expected values of certain functions, for example, known power moments.
In some important cases these bounds can be efficiently computed via convex
optimization. We discuss one particular type of generalized Chebyshev bound, a
lower bound on the probability of a set defined by strict quadratic inequalities,
given the mean and the covariance of the distribution. We present a semidefinite
programming formulation, give an interpretation of the dual problem, and describe
some applications.

1. INTRODUCTION

The classical Chebyshev inequality states that

Prob(|X| ≥ 1) ≤ σ2

for a zero-mean random variable X ∈ R with vari-
ance σ2. Generalized Chebyshev bounds provide
similar upper or lower bounds on the probability
of a set in Rn based on known expected values
of certain functions, for example, the mean and
covariance. Several such multivariate generaliza-
tions of Chebyshev’s inequality appeared during
the 1950s and 1960s, see Isii (1959), Isii (1963),
Isii (1964), Marshall and Olkin (1960), Karlin and
Studden (1966). Isii (1964), for example, considers
the problem of computing upper and lower bounds
on E f0(X), where X is a random variable on Rn

that satisfies the moment constraints

E fi(X) = ai, i = 1, . . . ,m.

The best lower bound on E f0(X) is given by the
optimal value of the linear optimization problem

minimize E f0(X)
subject to E fi(X) = ai, i = 1, . . . ,m,

(1)

where we optimize over all probability distribu-
tions on Rn. The dual of this problem is

maximize z0 +

m
∑

i=1

aizi

subject to z0 +

m
∑

i=1

zifi(x) ≤ f0(x) for all x,

(2)

and has a finite number of variables zi, i =
0, . . . ,m, but infinitely many constraints. Isii
shows that strong duality holds under appropriate
constraint qualifications, so we can find a sharp
lower bound on E f0(X) by solving (2). Note that
the constraints in (2) can be written as a single
constraint g(z0, . . . , zm) ≤ 0, where



g(z0, . . . , zm) = sup
x

(z0 +

m
∑

i=1

zifi(x) − f0(x)).

This is a convex function of z, but in general
difficult to evaluate. Hence, (2) is usually an
intractable optimization problem.

Bertsimas and Sethuraman (2000), Lasserre (2002),
Bertsimas and Popescu (2005), and Popescu
(2005) have recently shown that various types of
generalized Chebyshev bounds can be computed
via semidefinite programming. In this paper we
discuss one important example: a lower bound on
the probability of a set defined by strict quadratic
inequalities, given the mean and the covariance of
the distribution. The main purpose of the paper
is to outline a proof of the main result from
semidefinite programming duality (see Vanden-
berghe et al. (2006)), give a geometric interpre-
tation, and describe some applications.

2. PROBABILITY OF A SET DEFINED BY
QUADRATIC INEQUALITIES

Let C ⊆ Rn be defined by m strict quadratic
inequalities

xT Aix + 2bT
i x + ci < 0, i = 1, . . . ,m, (3)

with Ai ∈ Sn (not necessarily positive semidefi-
nite), bi ∈ Rn, ci ∈ R. It is easily verified that
the optimal value of the following semidefinite
program (SDP) is a lower bound on Prob(X ∈ C)
for distributions with EX = x̄ and EXXT = S:

maximize 1 − tr(SP ) − 2qT x̄ − r

subject to

[

P q

qT r

]

º 0

[

P − τiAi q − τibi

(q − τibi)
T r − 1 − τici

]

º 0,

i = 1, . . . ,m
τi ≥ 0, i = 1, . . . ,m.

(4)

The variables in this SDP are P ∈ Sn, q ∈ Rn,
r ∈ R, and τi ∈ R, for i = 1, . . . ,m.

To verify this, we first note that the constraints
imply that

xT Px + 2qT x + r ≥ 1 + τi(x
T Aix + 2bT

i x + ci)

and xT Px + 2qT x + r ≥ 0 for all x. This means
that

xT Px + 2qT x + r ≥ 1 − 1C(x)

where 1C is the 0-1 indicator function of C (i.e.,
1C(x) = 1 if x ∈ C and 1C(x) = 0 otherwise).
Hence, if EX = x̄, and EXXT = S, then

tr(SP ) + 2qT x̄ + r = E(XT PX + 2qT X + r)

≥ 1 − E1C(X)

= 1 − Prob(X ∈ C).

This simple argument shows that 1 − tr(SP ) −
2qT x̄ − r is a lower bound on Prob(X ∈ C). In
the SDP (4) we compute the best lower bound
that can be constructed this way.

The proof does not establish that the bound is
actually achieved by a distribution with the spec-
ified moments. This stronger result can be proved
by combining Isii’s semi-infinite linear program-
ming bounds with the S-procedure (Boyd et al.,
1994, page 23). It can also be proved directly
from semidefnite programming duality. The dual
problem of (4) is

minimize 1 −
m
∑

i=1

λi

subject to

[

Zi zi

zT
i λi

]

º 0, i = 1, . . . ,m

m
∑

i=1

[

Zi zi

zT
i λi

]

¹

[

S x̄

x̄T 1

]

tr(AiZi) + 2bT
i zi + ciλi ≥ 0,

i = 1, . . . ,m,

(5)

which is an SDP with variables Zi ∈ Sn, zi ∈ Rn,
and λi ∈ R. It can be shown that from every
feasible solution in (5) a discrete distribution can
be constructed with EX = x̄, EXXT = S and
Prob(X ∈ C) ≤ 1 −

∑

i λi (Vandenberghe et al.
(2006)). Tightness of the generalized Chebyshev
inequality (4) then follows from the fact that the
two SDPs are duals and have the same optimal
value.

3. GEOMETRIC INTERPRETATION

Figure 1 shows an example in R2. The set C
is defined by three linear inequalities and two
concave quadratic inequalities. The mean x̄ =
EX is shown as a small circle, and the set

{x | (x − x̄)T (S − x̄x̄T )−1(x − x̄) = 1}

is shown as the dashed ellipse. The optimal Cheby-
shev lower bound on Prob(X ∈ C) for this exam-
ple is 0.3992. The six solid dots are the possible
values of the discrete distribution computed from
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Fig. 1. The distribution that achieves the lower
bound on Prob(X ∈ C) for a given mean
and covariance.

the optimal solution of the SDP (5). The numbers
next to the dots give the probability of the six
values. (Since C is defined as an open set, the
five points on the boundary are not in C itself, so
Prob(X ∈ C) = 0.3992 for this distribution.)

The solid ellipse is the level curve

{x | xT Px + 2qT x + r = 1}

where P , q, and r are the optimal solution of the
lower bound SDP (4). We notice that the optimal
distribution allocates nonzero probability to the
points where the ellipse touches the boundary of
C, and to its center. This relation between the so-
lutions of the upper and lower bound SDPs holds
in general, and is a consequence of the optimality
conditions of semidefinite programming.

4. EXAMPLES

In the simplest cases, the two SDPs can be solved
analytically. As an example, we derive an exten-
sion of the Chebyshev inequality known as Sel-
berg’s inequality (Karlin and Studden, 1966, page
475). We take C = (−1, 1) = {x ∈ R | x2 < 1}.
We show that if EX = x̄ and EX2 = s, then

Prob(|X| < 1) ≥















0 1 ≤ s
1 − s |x̄| ≤ s < 1
(1 − |x̄|)2

s − 2|x̄| + 1
s < |x̄|

(6)

and that there is a distribution that achieves the
bound. We will assume that x̄ ≥ 0.

The SDP (4) is

maximize 1 − sP − 2x̄q − r

subject to

[

P q
q r − 1

]

º τ

[

1 0
0 −1

]

τ ≥ 0
[

P q
q r

]

º 0,

with variables P, q, r, τ ∈ R. The values P = q =
τ = 0, r = 1 are obviously feasible, with objective
value zero. The values P = τ = 1, r = q = 0 are
also feasible, with objective value 1−s. The values

[

P q
q r

]

=
1

(s − 2x̄ + 1)2

[

1 − x̄
s − x̄

] [

1 − x̄
s − x̄

]T

τ =
1 − x̄

s − 2x̄ + 1

are feasible if s < x̄, with objective value

1 − sP − 2x̄q − r =
(1 − x̄)2

s − 2x̄ + 1
.

This proves (6). To show that the inequality is
tight, we use the dual SDP (5):

minimize 1 − λ
subject to Z ≥ λ

0 ¹

[

Z z
z λ

]

¹

[

s x̄
x̄ 1

]

with variables λ,Z, z ∈ R. If x̄ > s, the values

Z = z = λ =
s − x̄2

s − 2x̄ + 1
=

s − x̄2

s − x̄2 + (x̄ − 1)2
,

are feasible with objective function

1 − λ =
(1 − x̄)2

s − 2x̄ + 1
.

If x̄ ≤ s < 1, we can also take Z = s, z = x̄,
λ = s, which provides a feasible point with a
smaller objective value, 1− s. Finally, if s ≥ 1, we
can take Z = s, z = x̄, λ = 1, which has objective
value zero. This shows that there are distributions
with the specified mean and variance for which the
righthand side of (6) is equal to Prob(X ∈ C).

For example, if x̄ = EX = 0.4 and s = EX2 =
0.2 we get Prob(|X| < 1) ≥ 0.9, and the bound
is achieved by the distribution

X =

{

1 with probability 0.1
1/3 with probability 0.9.

This is illustrated in figure 2.
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Fig. 2. Primal and dual SDP solution for C =
{x | x2 < 1}, EX = 0.4 and EX2 = 0.2.
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Fig. 3. Geometrical interpretation of the Cheby-
shev bound for C = {x ∈ R2 | xT x < 1}.

Figure 3 illustrates the extension of the bound (6)
to a unit ball C = {x ∈ Rn | xT x < 1}, for

x̄ =

[

0.2
0.3

]

, S =

[

0.20 0.06
0.06 0.11

]

The optimal bound is Prob(X ∈ C) ≥ 0.73 and
is achieved by the discrete distribution with three
possible values shown in the figure.

5. BOUNDING MANUFACTURING YIELD

The yield of a manufacturing process can be
expressed as

Y (x) = Prob(x + w ∈ C),

where x denotes the nominal or target values
of a set of design parameters, w ∈ Rn is a
random vector that represents variations in the
manufacturing process, and C ⊆ Rn denotes the
set of acceptable parameter values for the product.
If the set C is defined by quadratic inequalities,
we can compute a lower bound on the yield Y (x),
valid for all distributions of w with given mean
and covariance, by solving the SDPs (4) and (5).
Figure 4 shows an example for a polyhedral set C
(shown with a dashed line).
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Fig. 4. A few contour lines of the Chebyshev lower
bound on Y (x) = Prob(x + w) ∈ C for
Ew = 0, EwwT = I.

6. PROBABILITY OF DETECTION ERROR

Consider a signal constellation of m possible sym-
bols or signals s ∈ {s1, s2, . . . , sm}. One of the
symbols is transmitted over a noisy channel. The
received signal is x = s + v, where v is a noise
vector with E v = 0 and E vvT = σ2I. The
receiver then estimates s based on the received x.

The minimum distance detector chooses the sym-
bol sk closest (in Euclidean norm) to x, so sk is
detected correctly if x = sk + v is closer to sk

than to any of the other symbols. The set of values
of the random variable x for which symbol sk is
correctly detected, is therefore a polyhedron Ck

(the Voronoi region of sk in the constellation).
Generalized Chebyshev bounds can be used to
provide lower bounds on the probability of correct
detection Prob(sk + v ∈ Ck), valid for any noise
distribution with zero mean and covariance σ2I.
An example is given in (Boyd and Vandenberghe,
2004, page 381).

As an extension we can consider constellations
with unequal noise covariances, i.e., situations in
which the noise covariance is E vvT = Σk when
symbol sk is transmitted. Suppose the detector
chooses the symbol sk with the minimum Maha-
lanobis distance

(

(x − sk)T Σ−1

k (x − sk)
)1/2

.

(This is also the maximum likelihood detector if
the noise is Gaussian.) Then the region of correct
detection of symbol signal sk is a set defined by
the m − 1 quadratic inequalities

(x − sk)T Σ−1

k (x − sk)

< (x − sj)
T Σ−1

j (x − sj), j 6= k. (7)
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Fig. 5. Detection example.

Tight lower bounds on the probability of cor-
rect detection can be computed by solving the
SDP (4).

Figure 5 shows an example with m = 7 symbols
in R2, shown as circles. The dashed ellipses are
defined as {x | (x − sk)T Σ−1

k (x − sk) = 1}. The
solid lines show the boundaries of the regions
of correct detection for each symbol, as defined
by the quadratic inequalities (7). The figure also
illustrates the optimal SDP solution for s1. The
solid ellipse is defined by xT Px + qT x + r = 1,
for the optimal values P , q, r in (4). From the
dual SDP we can construct the worst-case distri-
bution (i.e., with the highest probability of error)
that matches the specified noise covariance. The
worst-case distribution is the discrete distribution
indicated by the six solid dots.

7. CONCLUSION

We have discussed a multivariate extension of
Chebyshev’s inequality that can be efficiently
computed via semidefinite programming. The re-
sult follows from more general results of Isii (1964)
and Bertsimas and Popescu (2005), and can also
be proved directly from semidefinite programming
duality. The bounds obtained are the best pos-
sible, over all distributions with given first and
second order moments. From the optimal solution
of the SDPs, the worst-case distribution can be
established. We have also described some applica-
tions in detection theory and design centering.
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