
Robust linear programming and optimal control

Lieven Vandenberghe∗ Stephen Boyd† Mehrdad Nouralishahi‡

Abstract

We describe an efficient method for solving an optimal control problem that arises
in robust model-predictive control. The problem is to design the input sequence that
minimizes the peak tracking error between the ouput of a linear dynamical system
and a desired target output, subject to inequality constraints on the inputs. The
system is uncertain, with an impulse response that can take arbitrary values in a given
polyhedral set. The method is based on Mehrotra’s interior-point method for linear
programming, and takes advantage of the problem structure to achieve a complexity
that grows linearly with the control horizon, and increases as a cubic polynomial as
a function of the system order, the number of inputs, and the number of uncertainty
parameters.

∗Corresponding author. UCLA Department of Electrical Engineering, 68-119 Engineering IV Building,
Los Angeles, CA 90095-1594. FAX: (310) 206-4685. E-mail: vandenbe@ee.ucla.edu.

†Department of Electrical Engineering, Stanford University (boyd@stanford.edu).
‡Department of Electrical Engineering, University of California Los Angeles (mehrdad@ee.ucla.edu).

1

1 Introduction

We describe an efficient method for solving the optimal control problem

minimize sup‖ρ‖∞≤1 maxt=1,...,N |(c0 +
∑p

i=1 ρici)
Tx(t) − ydes(t)|

subject to x(1) = Ax0 + Bu(0)
x(t + 1) = Ax(t) + Bu(t), t = 1, . . . ,M − 1
x(t + 1) = Ax(t), t = M, . . . , N − 1
−1 � u(t) � 1, t = 0, . . . ,M − 1.

(1)

The problem data are A ∈ Rn×n, B ∈ Rn×m, x0 ∈ Rn, the vectors ck ∈ Rn, k = 0, . . . , p, and
the sequence ydes(t), t = 1, . . . , N . The optimization variables are u(0), . . . , u(M −1) ∈ Rm,
and x(1), . . . , x(N) ∈ Rn (N > M), where u(t) and x(t) are the input and the state of a
discrete-time linear dynamical system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0.

The constraints also include componentwise upper and lower bounds on the inputs. To
motivate the objective function, we first consider the special case with p = 0, i.e., the
problem

minimize maxt=1,...,N |cT
0 x(t) − ydes(t)|

subject to x(1) = Ax0 + Bu(0)
x(t + 1) = Ax(t) + Bu(t), t = 1, . . . ,M − 1
x(t + 1) = Ax(t), t = M, . . . , N − 1
−1 � u(t) � 1, t = 0, . . . ,M − 1.

(2)

We interpret cT
0 x(t) as the output of the system at time t, and ydes(t) as a given desired

output, that we want to follow as closely as possible. The problem is to find the input
sequence u(0), . . . , u(M) that minimizes the peak tracking error maxt |cT

0 x(t) − ydes(t)|,
subject to the constraints −1 � u(t) � 1. We will refer to problem (2) as the output
tracking problem.

Problem (1) is an extension of the output tracking problem in which we include uncer-
tainty in the system parameters. More specifically, we assume that the system output is
given by y(t) = c(ρ)Tx(t), where the vector c(ρ) = c0 +

∑p
i=1 ρici is an affine function of some

parameter ρ ∈ Rp, which is unknown but bounded, with components between −1 and 1.
Alternatively, we can say that the impulse response h(1), h(2), . . . of the system can take
arbitrary values in the polyhedron

{(h(1), h(2), h(3), . . .) | h(t) = h0(t) + ρ1h1(t) + · · · + ρphp(t), ‖ρ‖∞ ≤ 1}, (3)

where hk(t) is defined as hk(t) = cT
k A

t−1B. In problem (1) we minimize the worst-case peak
tracking error, considering all possible values of ρ. We therefore refer to the problem as the
robust output tracking problem.

Example

Figures 1–3 show an example that will illustrate the problem. We consider an FIR system
of order n = 60, with an impulse reponse that can take arbitrary values in a polyhedral set

2

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

t

s(
t)

Figure 1: Stepresponses of an uncertain FIR system of order n = 60.

of the form (3) with p = 10 uncertain parameters. Figure 1 shows the step responses for a
few systems in this set.

The dashed lines in figures 2 and 3 show the desired output sequence ydes. The solid lines
show the worst-case outputs resulting from two input sequences. In the first figure we apply
the input sequence unom that would be optimal if we ignore the uncertainty in the system,
i.e., if we solve (2). The peak tracking error between the desired output and the worst-case
output is 0.99. In figure 3 we consider the input urob computed by solving the robust output
tracking problem (1). Here the peak tracking error between the worst-case output and the
desired output is 0.27.

Algorithms

The robust and nonrobust output tracking problems (1) and (2) are convex optimization
problems: the equality and inequality constraints are linear in the variables x(t), u(t); the
objective functions are nondifferentiable but convex in the variables x(t). In fact both prob-
lems are readily cast as linear programming problems (LPs); see §3.1 and §4.1. We can
therefore use general-purpose LP solvers to compute the global optima of both problems.
However the computational cost of using a general-purpose solver is quite high. We will
see that the LP formulation of the nonrobust problem (2) involves Nn+Mm+ 1 variables,
2(Nn+Mm) inequality constraints, and Nn equality constraints, while the LP formulation
of the robust problem (1) involves N(n+p)+Mm+1 variables, 2(N(n+p)+Mm) inequal-
ities, and Nn equality constraints. We can therefore expect that the computational effort
strongly depends on the control horizons N and M , and in particular, that the cost of solving
the robust problem is much higher than the cost of solving the nonrobust problem. The main
purpose of this paper is to describe an efficient special-purpose algorithm that takes advan-

3

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

t

d
es

ir
ed

an
d

w
or

st
-c
as

e
ou

tp
u
t

Figure 2: Worst case output for the input that minimizes the peak tracking error
of the nominal system. The peak tracking error is 0.99.

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

t

d
es

ir
ed

an
d

w
or

st
-c
as

e
ou

tp
u
t

Figure 3: Worst case output for the input that minimizes the worst-case peak
tracking error. The peak tracking error is 0.27.

4

tage of the structure in both problems. The algorithm is iterative, typically requiring 10–50
iterations. The cost of one iteration is 3Nn3 + M(4mn2 + 4m2n + m3/3) floating-point op-
erations (flops) for the nonrobust problem, and 2Npn2 + 3Nn3 + M(4mn2 + 4m2n + m3/3)
flops for the robust problem. In other words, the computational complexity of both problems
is comparable, and grows linearly with N and M .

Numerical algorithms for linear and quadratic programming have been applied to optimal
control since the 60s [ZW62], and are widely used in model-predictive control [ML99, Raw00].
More recently, it was pointed out in [BCH98] that new interior-point methods for nonlin-
ear convex optimization (for example, for second-order cone programming or semidefinite
programming; see [NN94]) allow us to efficiently solve a much wider class of optimal con-
trol problems, including, for example, problems with uncertain system models, or nonlinear
constraints on inputs and states. It was also noted that the resulting convex optimization
problems are usually quite large, and may require special-purpose interior-point implemen-
tations that take advantage of problem structure.

We find two basic approaches in the literature on numerical implementation of interior-
point methods for control. Both approaches focus on speeding up the solution of the large
sets of linear equations that need to be solved at each iteration, in order to compute the
search directions. A first idea is to use conjugate gradients to solve these linear systems
[BVG94, Han00]. Many different types of structure can be exploited this way, often resulting
in a speedup by several orders of magnitude. Unfortunately, the performance of the conjugate
gradient method is also very sensitive to the problem data, and in general requires good
preconditioners. Moreover, the excellent convergence properties of general-purpose interior-
point implementations (typically 10–50 iterations) often degrade when conjugate gradients
is used to compute search directions. The second approach is less general, but much more
reliable, and is based on direct, non-iterative, methods for solving the linear systems fast.
Wright, Rao, and Rawlings [Wri93, RWR98] and Hansson [Han00] have studied quadratic
programming formulations of optimal control problems with linear constraints. They show
that the Riccati recursion of (unconstrained) linear-quadratic optimal control can be used to
compute the search directions in an interior-point method fast, i.e., at a cost that is linear
in the control horizon, and cubic in the system dimensions. The results of this paper can
be viewed as an extension of the quadratic programming method of [RWR98] to the robust
and nonrobust output tracking problems (1) and (2).

Robust convex optimization

We should also point out the connection with robust convex optimization [BTN98, EL97,
EOL98, HB98]. The idea in robust convex optimization is to explicitly incorporate a model
of data uncertainty in the formulation of a convex optimization problem, and to optimize
for the worst-case scenario under that model. It has been shown that, depending on the
uncertainty description, the robust version of a convex optimization problem may very well
be intractable (nonconvex). Choosing a good model for the uncertainty involves a trade-off
between conservativeness and tractability. Most of the research in the area has therefore
focused on formulating robust convex optimization problems that can be solved via convex
optimization. However, even if the resulting robust optimization problem is convex (hence

5

solvable in polynomial time), it is often much larger and more difficult to solve than the
corresponding nonrobust problem, so the added robustness of the solution comes at a very
high price. Our results for the output tracking problem (2) and its robust counterpart (1)
show that by exploiting problem structure we can solve certain robust convex optimization
problems at a cost that is not much higher than the corresponding nonrobust problem.

Applications

As already mentioned, the main application of our results lies in model-predictive control
(MPC). Problem (1) has been applied in robust model-predictive control by Allwright and
Papavasiliou [AP92] and Zheng and Morari [ZM00]. Both papers use the LP formulation
of §4.1, and solve it using general-purpose linear programming solvers. The main purpose of
this paper is to show that these LPs can be solved much more efficiently if we exploit problem
structure, and that the cost of solving the robust and nonrobust problems are comparable.
Our approach also extends to many variations of problems (1) and (2) that have been studied
in model-predictive control, for example, problems with an �1-objective [RR00], or problems
including other input or state constraints (for example, slew rate constraints). Finally, we
would like to emphasize that the paper focuses on the numerical aspects of solving (1). We
do not address several important questions that arise when applying these results in model-
predictive control, such as, for example, the question of stability (discussed in [ZM00]), or
the question of updating the uncertainty set in between MPC moves.

Outline and notation

The outline of the paper is as follows. In §2 we discuss the classical Riccati recursion
method for solving an unconstrained linear-quadratic optimal control problem. In §3 we
formulate the nonrobust output tracking problem (2) as an LP and describe an efficient
interior-point method for solving it. In §4 we extend this method to the robust output
tracking problem (1). We discuss some extensions and summarize our results in §5. The
appendices contain background material on interior-point methods for linear programming,
and additional proofs.

Most of our notation is standard. We denote by Sn the space of symmetric matrices of
size n × n. The symbols �, �, �, and ≺ denote both componentwise inequality between
vectors, and matrix inequality, depending on the context. For example, if x ∈ Rn, then
x � 0 means xk ≥ 0 for k = 1, . . . , n; if x ∈ Sn, it means x is positive semidefinite. The
symbol 1 denotes a vector with all its components equal to one. If x ∈ Rn and y ∈ Rp, then
(x, y) ∈ Rn+p denotes the vector (x, y) = [xT yT]T .

6

2 Linear-quadratic optimal control

In this section we review the classical method for solving the linear-quadratic (LQ) optimal
control problem

minimize
∑N

t=1(
1
2
x(t)TQ(t)x(t) − q(t)Tx(t)) +

∑M−1
t=0 (1

2
u(t)TR(t)u(t) − r(t)Tu(t))

subject to x(1) = Ax0 + Bu(0)
x(t + 1) = Ax(t) + Bu(t), t = 1, . . . ,M − 1
x(t + 1) = Ax(t), t = M, . . . , N − 1.

The variables are u(t), t = 0, . . . ,M − 1 and x(t), t = 1, . . . , N . The weights Q(t) ∈ Sn

and R(t) ∈ Sm are given and satisfy Q(t) � 0 and R(t) � 0 for all t. We also assume that
N > M . To simplify notation, we will express the problem as

minimize 1
2
xTQx − qTx + 1

2
uTRu − rTu

subject to Ax + Bu = b
(4)

where

x =

x(1)
x(2)

...
x(N)

 , q =

q(1)
q(2)
...

q(N)

 , u =

u(0)
u(1)

...
u(M − 1)

 , r =

r(0)
r(1)
...

r(M − 1)

 , b =

−Ax0

0
...
0

 ,

A =

−I 0 0 · · · 0 0
A −I 0 · · · 0 0
0 A −I · · · 0 0
0 0 A · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · A −I

∈ RNn×Nn, B =

B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∈ RNn×Mm,

Q =

Q(1) 0 · · · 0
0 Q(2) · · · 0
...

...
. . .

...
0 0 · · · Q(N)

 ∈ SNn, R =

R(0) 0 · · · 0
0 R(1) · · · 0
...

...
. . .

...
0 0 · · · R(M − 1)

 ∈ SMm.

2.1 Optimality conditions

The quadratic optimization problem (4) can be solved by introducing a Lagrange multiplier
y = (y(1), y(2), . . . , y(N)) ∈ RNn, associated with the equality constraints. The optimality
conditions are

0 A B

AT Q 0
BT 0 R

y
x
u

 =

b
q
r

 , (5)

7

which is a symmetric indefinite set of 2Nn + Mm equations in 2Nn + Mm variables (x ∈
RMm, u ∈ RNn, y ∈ RNn).

It follows from our assumptions (Q � 0, R � 0) that the coefficient matrix is nonsingular:
the (3,3)-block R is nonsingular and its Schur complement

[−BR−1BT A
AT Q

]
=

[−BR−1BT A
AT 0

] [
I A−TQ
0 I + A−1BR−1BTA−TQ

]

is also nonsingular, because A is nonsingular (it is lower triangular with diagonal elements
equal to −1), and Q and R are positive semidefinite, so the eigenvalues of the matrix

A−1BR−1BTA−TQ

are real and nonnegative.
In the next three paragraphs we describe a very efficient method for solving (5), by taking

advantage of the block structure of A, B, Q, and R. The method is based on the Riccati
recursion [AM90], with the linear algebra interpretation of [RWR98, Wri93]. We first show
in §2.2 that the coefficient matrix can be factored as a product of five easily inverted matrices.
The factorization can be obtained in roughly 3Nn3 + M(4mn2 + 4m2n + m3/3) flops, which
is much less than the cost of a general-purpose LDLT -algorithm ((2Nn+Mm)3/3 flops). In
particular, the complexity of the Riccati method grows linearly with the control horizons N
and M . After the factorization is computed, the solution of (5) can be obtained by straight-
forward backward and forward substitutions at a cost of order 8Nn2 + M(6mn + 2m2) op-
erations (see §2.3 and §2.4).

The overall complexity of the method is dominated by the factorization. As a conse-
quence that will be important later on, we note that we can solve several linear systems
of the form (5) with the same coefficient matrix but different righthand sides, by a single
factorization, followed by several forward and backward substitutions. The cost of solving a
few (� n,m) systems with the same coefficient matrix is therefore rougly the same as the
cost of solving a single system, i.e., 3Nn3 + M(4mn2 + 4m2n + m3/3) flops.

2.2 Factorization

To simplify the notation we permute the first two block rows and block columns of the
matrix (5). We will show that the coefficient matrix can be factored as a product of five
matrices as follows:

Q AT 0
A 0 B
0 BT R

 =

(A + BK)T −S −KT

0 I 0
0 0 I

I 0 0
0 I 0

BT 0 I

−S I 0
I 0 0
0 0 R̄

I 0 B
0 I 0
0 0 I

A + BK 0 0
−S I 0
−K 0 I

 ,

(6)

8

where S, R̄ and K are block matrices with the following structure:

S =

S(1) 0 · · · 0
0 S(2) · · · 0
...

...
. . .

...
0 0 · · · S(N)

 ∈ SNn,

R̄ =

R̄(0) 0 · · · 0
0 R̄(1) · · · 0
...

...
. . .

...
0 0 · · · R̄(M − 1)

 ∈ SMm,

K =

0 0 · · · 0 0 · · · 0
K(1) 0 · · · 0 0 · · · 0

0 K(2) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · K(M − 1) 0 · · · 0

∈ RMm×Nn,

with S(t) ∈ Sn, R̄(t) ∈ Sm, and K(t) ∈ Rm×n. Moreover we have R̄ � 0 and S � 0.
To verify this statement and to find out how we can compute K(t), S(t) and R̄(t), we

multiply out the righthand side of (6), which yields

Q AT 0
A 0 B
0 BT R

 =

−ATSA − SA − ATS + KT R̄K AT −ATSB − SB − KT R̄

A 0 B
−BTSA − BTS − R̄K BT −BTSB + R̄

 .

Therefore, S, K and R̄ must satisfy

S = Q + (I + A)TS(I + A) − KT R̄K

R̄ = R + BTSB

R̄K = −BTS(I + A),

or, more explicitly, in terms of the individual blocks,

S(N) = Q(N) (7)

S(t) = Q(t) + ATS(t + 1)A, t = M, . . . , N − 1 (8)

S(t) = Q(t) + ATS(t + 1)A−K(t)T R̄(t)K(t), t = 1, . . . ,M − 1 (9)

R̄(t) = R(t) + BTS(t + 1)B, t = 0, . . . ,M − 1 (10)

R̄(t)K(t) = −BTS(t + 1)A, t = 1, . . . ,M − 1. (11)

We have to show that these equations uniquely determine S(t), R̄(t), and K(t), and that
S(t) � 0 and R̄(t) � 0. We first note that (7) and (8), combined with our assumption
that Q(t) � 0, immediately imply that S(t) � 0 for t = M, . . . , N . Next, we assume that
S(t + 1) � 0, for some t < M . We will show that equations (9)–(11) are solvable and yield
a solution S(t), R̄(t), K(t) with R̄(t) � 0 and S(t) � 0. By induction this then implies that

9

R̄(t), K(t), and S(t) are well defined for all t, with R̄(t) � 0 and S(t) � 0. Equation (10)
implies that R̄(t) � 0, because R(t) � 0 and S(t + 1) � 0. Equation (11) then uniquely
defines K(t) = −R̄(t)−1BTS(t + 1)A. Moreover,[

Q(t) + ATS(t + 1)A −K(t)T

−K(t) R̄(t)−1

]
=

[
Q(t) 0
0 R̄(t)−1R(t)R̄(t)−1

]
+

[
AT

R̄(t)−1BT

]
S(t + 1)

[
A BR̄(t)−1

]
� 0.

The (2, 2) block of the lefthand side is positive definite, so its Schur complement must be
positive semidefinite, i.e.,

S(t) = Q(t) + ATS(t + 1)A−K(t)T R̄(t)K(t) � 0,

which completes the proof.
To conclude this section, we summarize the factorization algorithm, and give a flop count.

Factorization (Riccati recursion)

1. S(N) = Q(N)
2. for t = N − 1, N − 2, . . . ,M
3. S(t) = Q(t) + ATS(t + 1)A
4. end
5. for t = M − 1,M − 2, . . . , 1
6. R̄(t) = R(t) + BTS(t + 1)B
7. K(t) = −R̄(t)−1BTS(t + 1)A
8. S(t) = Q(t) + ATS(t + 1)A−K(t)T R̄(t)K(t)
9. end
10. R̄(0) = R(0) + BTS(1)B

The cost of the two matrix-matrix multiplications in step 3 is 3n3 flops (2n3 flops to calculate
S(t + 1)A, and n3 to calculate the symmetric matrix ATS(t + 1)A). The cost of step 6 is
2mn2 +m2n (2mn2 flops to calculate S(t+1)B and m2n to calculate the symmetric matrix
BTS(t + 1)B). In step 7 we can first take the Cholesky factorization of R̄(t) (m3/3 flops).
This allows us to calculate K(t) at a cost of 2n3 + 2mn2 + 2m2n flops (2n3 to calculate
S(t + 1)A, 2mn2 to calculate BTS(t + 1)A, and 2m2 flops to solve for one column of K(t)).
Step 8 costs n3+m2n flops (n3 to form ATS(t+1)A, since S(t+1)A was calculated in step 7,
and m2n to form K(t)R̄(t)K(t), since R̄(t)K(t) is known from step 7). Finally, step 10 costs
2mn2 + m2n flops. Adding everything we obtain a total complexity of roughly

3Nn3 + M(4mn2 + 4m2n + m3/3)

flops.
The five matrices in the factorization (6) are nonsingular (note that A + BK is lower

triangular, with diagonal elements −1). Combining the first two and the last two matrices,
we can write the factored system as

AT −S −KT

0 I 0
BT 0 I

−S I 0
I 0 0
0 0 R̄

A 0 B
−S I 0
−K 0 I

x
y
u

 =

q
b
r

 .

10

This factorization allows us to determine the solution of (5) by a forward and a backward
recursion.

2.3 Backward recursion

Define x̃ = (x̃(1), . . . , x̃(N)), ỹ = (ỹ(1), . . . , ỹ(N)), ũ = (ũ(0), . . . , ũ(M −1)), as the solution
of

AT −S −KT

0 I 0
BT 0 I

x̃
ỹ
ũ

 =

q
b
r

 ,

and x̂ = (x̂(1), . . . , x̂(N)), ŷ = (ŷ(1), . . . , ŷ(N)), û = (û(0), . . . , û(M − 1)), as the solution
of

−S I 0
I 0 0
0 0 R̄

x̂
ŷ
û

 =

x̃
ỹ
ũ

 .

From the first equation it is clear that ỹ = b and ũ = r − BT x̃, and x̃ is defined by

(A + BK)T x̃ = Sb + KT r + q.

From x̃ we can compute the solution of the second system

x̂ = b, ŷ = x̃ + Sb, û = R̄−1(r − BT x̃)

The following backward recursion calculates these variables. (Here, b(t) stands for block t
of the vector b = (b(0), b(1), . . . , b(N). Although in problem (4), b(0) = −Ax0, and b(t) = 0
for t ≥ 1, we give here the general method for solving (5) for arbitrary b.)

Backward recursion

1. ŷ(N) = −q(N)
2. x̃(N) = ŷ(N) − S(N)b(N)
3. x̂(N) = b(N)
4. for t = N − 1, N − 2, . . . ,M
5. ŷ(t) = AT x̃(t + 1) − q(t)
6. x̃(t) = ŷ(t) − S(t)b(t)
7. x̂(t) = b(t)
8. end
9. for t = M − 1,M − 2, . . . , 1
10. ŷ(t) = AT x̃(t + 1) −K(t)T (r(t) −BT x̃(t + 1)) − q(t)
11. x̃(t) = ŷ(t) − S(t)b(t)
12. û(t) = R̄(t)−1(r(t) −BT x̃(t + 1))
13. x̂(t) = b(t)
14. end
15. û(0) = R̄(0)−1(r(0) −BT x̃(1))

The required number of flops is 4Nn2 + 2M(mn + m2), if we reuse the matrices A + BK(t)
and the Cholesky factors of R̄(t) that are computed during the factorization.

11

2.4 Forward recursion

Finally, we have to solve

A 0 B
−S I 0
−K 0 I

x
y
u

 =

x̂
ŷ
û

 ,

i.e.,
(A + BK)x = x̂ − Bũ, y = ŷ + Sx, u = û + Kx.

The solution is computed by the following forward recursion.

Forward recursion

1. x(1) = −x̂(1) + Bũ(0)
2 y(1) = ŷ(1) + S(1)x(1)
3 u(0) = û(0)
4. for t = 2, 3, . . . ,M
5. x(t) = (A + BK(t− 1))x(t− 1) − x̃(t) + Bũ(t− 1)
6 y(t) = ŷ(t) + S(t)x(t)
7 u(t− 1) = û(t− 1) + K(t− 1)x(t− 1)
8. end
9. for t = M + 1,M + 2, . . . , N
10. x(t) = Ax(t− 1) − x̃(t)
11. y(t) = ŷ(t) + S(t)x(t)
12. end

The required number of operations is 4Nn2 + 4Mmn.

3 The nonrobust output tracking problem

We now return to problems (1) and (2). We first describe an efficient method for solving (2),
and defer problem (1) to Section §4. Following the matrix notation introduced in §2, we
write (2) as

minimize ‖C0x − ydes‖∞
subject to −1 � u � 1

Ax + Bu = b
(12)

where A, x, u, b are defined as in §2, and

C0 =

cT
0 0 · · · 0
0 cT

0 · · · 0
...

...
. . .

...
0 0 · · · cT

0

 ∈ RN×Nn, ydes =

ydes(1)
ydes(2)

...
ydes(N)

 ∈ RN .

12

3.1 Linear programming formulation

Problem (12) is readily formulated as an LP

minimize w

subject to

C0 0 −1
−C0 0 −1
0 I 0
0 −I 0

x
u
w

 �

ydes

−ydes

1
1

[
A B 0

]

x
u
w

 = b.

(13)

The variables are w ∈ R, x ∈ RNn, and u ∈ RMm. The corresponding dual problem is

maximize −yT
des(z

+
0 − z−0) − 1T (z+

u + z−u) − bTy

subject to

CT
0 −CT

0 0 0 AT

0 0 I −I BT

−1T −1T 0 0 0

z+
0

z−0
z+

u

z−u
y

+

0
0
1

 = 0

z+
0 � 0, z−0 � 0, z+

u � 0, z−u � 0.

(14)

Both LPs are strictly feasible. For example, we obtain a strictly primal feasible point by
choosing u = 0, x(1) = Ax0, x(2) = Ax(1), . . . , x(N) = Ax(N − 1), and any w >
maxt |cT

0 x(t) − ydes(t)|. Strictly feasible dual values are given by z+
0 = z−0 = 1/(2N),

z+
u = z−u = 1, and y = 0.

We also note that

Rank(

C0 0 −1
−C0 0 −1
0 I 0
0 −I 0
A B 0

) = Nn + Mm + 1, Rank(

[
A B 0

]
) = Nn (15)

(i.e., both matrices are full rank), because A is nonsingular.

3.2 Solution via interior-point methods

We propose to solve the LPs (13) and (14) using Mehrotra’s method, one of the most popular
and efficient interior-point methods for linear programming. The details of the method are
given in Appendix §A. For our present purposes it is sufficient to note that each iteration of

13

Mehrotra’s method, applied to (13), involves solving two sets of linear equations of the form

−D+
0 0 0 0 0 C0 0 −1

0 −D−
0 0 0 0 −C0 0 −1

0 0 −D+
u 0 0 0 I 0

0 0 0 −D−
u 0 0 −I 0

0 0 0 0 0 A B 0
CT

0 −CT
0 0 0 AT 0 0 0

0 0 I −I BT 0 0 0
−1T −1T 0 0 0 0 0 0

∆z+
0

∆z−0
∆z+

u

∆z−u
∆y
∆x
∆u
∆w

=

r+
0

r−0
r+
1

r−1
r2

r3

r4

r5

. (16)

Both equations have the same values of D+
0 , D−

0 , D+
u , D−

u , but different righthand sides. The
matrices D+

0 ,D−
0 ∈ SN and D+

u ,D−
u ∈ SM are positive diagonal, with values that change at

each iteration.
To solve (16) we can first eliminate the variables ∆z+

0 , ∆z−0 , ∆z+
u , and ∆z−u from the

first four equations, which yields a set of equations of the form

0 A B 0
AT Q 0 d
BT 0 R 0
0 dT 0 γ

∆y
∆x
∆u
∆w

 =

r6

r7

r8

r9

 , (17)

where
Q = CT

0 D0C0, R = (D−
u)−1 + (D+

u)−1, d = CT
0 D̃01, γ = TrD0, (18)

and
D0 = (D+

0)−1 + (D−
0)−1, D̃0 = (D−

0)−1 − (D+
0)−1.

The righthand side of (17) is given by

r6 = r2

r7 = r3 + CT
0 ((D+

0)−1r+
0 − (D−

0)−1r−0)

r8 = r4 + (D+
u)−1r+

1 − (D−
u)−1r−1

r9 = r5 − 1T ((D+
0)−1r+

0 + (D−
0)−1r−0).

It follows from the rank condition (15) that the system (17) is nonsingular (see Appendix §A).
Note that further eliminating ∆w from (17) would result in a 3 × 3 block matrix with

a large dense matrix Q − (1/γ)ddT in the (2, 2)-position. Instead of eliminating ∆w, we
therefore solve two equations

0 A B

AT Q 0
BT 0 R

∆y1

∆x1

∆u1

 =

r6

r7

r8

 ,

0 A B
AT Q 0
BT 0 R

∆yx

∆x2

∆u2

 =

0
d
0

 , (19)

and then make a linear combination to satisfy the last equation, i.e., calculate the solution
of (17) as

∆x
∆y
∆u

 =

∆x1

∆y1

∆u1

 − ∆w

∆x2

∆y2

∆u2

 , ∆w =

r9 − dT∆x1

γ − dT∆x2

.

14

The equations (19) have exactly the same form as (5). Moreover R is positive diagonal, and
Q is block diagonal with positive semidefinite diagonal blocks

Q(t) = D0(t)c0c
T
0 , t = 1, . . . , N,

where the diagonal elements of D0 are denoted by D0(t), i.e., D0 = diag(D0(1), . . . , D0(N)).
We can therefore apply the Riccati method of §2, and solve (16) in roughly

3Nn3 + M(4mn2 + 4m2n + m3/3)

operations. (Note that the cost of constructing Q is 2n2N operations, so it can be neglected
compared to the cost of the factorization.)

3.3 Numerical results

The algorithm described above has been implemented in Matlab (Version 6) and tested on
a 933 Mhz Pentium III running Linux.

Table 1 summarizes the results for a family of randomly generated problems. The first
four columns give the problem dimensions. Columns 5–7 give the number of variables,
inequalities, and equality constraints in the corresponding LPs (13). The last three columns
give the number of iterations to reach a relative error of 0.1%, the total CPU time, and the
CPU time per iteration.

The results confirm that the number of iterations grows slowly with problem size, and
typically ranges between 10 and 50. The most important data are in the last column, which
gives the CPU time per iteration. It shows that the CPU time per iteration grows linearly
with N and M . Within the range of dimensions considered here (n ≤ 40, m ≤ 20), the
cost per iterations appears to grow more slowly with n and m than predicted by the theory
(which predicts a cubic increase).

4 The robust output tracking problem

We now extend the method of the previous paragraph to the robust tracking problem (1),
which can be expressed concisely as

minimize sup‖ρ‖∞≤1 ‖(C0 +
∑p

i=1 ρiCi)x − ydes‖∞
subject to Ax + Bu = b

−1 � u � 1

where

Ci =

cT
i 0 · · · 0
0 cT

i · · · 0
...

...
. . .

...
0 0 · · · cT

i

 ∈ RN×Nn.

The other matrices and vectors are defined as before.

15

dimensions LP dimensions # iters CPU time time/iter
N M n m #vars. #ineqs #eqs. (seconds) (seconds)

100 50 5 2 601 1200 1000 8 0.9 0.1
500 450 5 2 3401 6800 5000 9 6.9 0.8

1000 950 5 2 6901 13800 10000 11 17.5 1.6
2000 1950 5 2 13901 27800 20000 13 42.9 3.3
100 50 10 5 1251 2500 2000 10 1.3 0.1
500 450 10 5 7251 14500 10000 14 12.8 0.9

1000 950 10 5 14751 29500 20000 11 20.4 1.9
2000 1950 10 5 29751 59500 40000 14 54.3 3.9
100 50 20 10 2501 5000 4000 13 2.4 0.2
500 450 20 10 14501 29000 20000 15 18.6 1.3

1000 950 20 10 29501 59000 40000 16 41.3 2.6
2000 1950 20 10 59501 119000 80000 21 113.9 5.4
100 50 40 20 5001 10000 8000 17 6.6 0.4
500 450 40 20 29001 58000 40000 15 40.0 2.7

1000 950 40 20 59001 118000 80000 21 121.0 5.8
2000 1950 40 20 119001 238999 160000 27 304.1 11.3

Table 1: Number of iterations and CPU times for a family of output tracking
problems with randomly generated data.

16

4.1 Linear programming formulation

To express (1) as an LP, we first switch the maximum and the supremum in the objective,
introduce a scalar variable w, and write the problem as

minimize w
subject to sup‖ρ‖∞≤1 |(c0 +

∑p
i=1 ρici)

Tx(t) − ydes(t)| ≤ w, t = 1, . . . , N
x(1) = Ax0 + Bu(0)
x(t + 1) = Ax(t) + Bu(t), t = 1, . . . ,M − 1
x(t + 1) = Ax(t), t = M, . . . , N − 1
−1 � u(t) � 1, t = 0, . . . ,M − 1.

(20)

The first constraint is satisfied at time t if and only if, for all ρ with ‖ρ‖∞ ≤ 1,

−w ≤ cT
0 x(t) +

p∑
i=1

ρic
T
i x(t) − ydes(t) ≤ w,

which is true if and only if

−w ≤ cT
0 x(t) −

p∑
i=1

|cT
i x(t)| − ydes(t), cT

0 x(t) +
p∑

i=1

|cT
i x(t)| − ydes(t) ≤ w.

We can cast these two nonlinear convex inequalities as the following set of linear inequalities
by introducing p auxiliary variables vi(t), i = 1, . . . , p:

−w ≤ cT
0 x(t) −

∑p
i=1 vi(t) − ydes(t)

cT
0 x(t) +

∑p
i=1 vi(t) − ydes(t) ≤ w

−vi(t) ≤ cT
i x(t) ≤ vi(t).

These four inequalities (which are linear in x(t), vi(t), w) are equivalent to the first constraint
in (20) at time t. We can therefore express (20) as an LP

minimize w
subject to cT

0 x +
∑p

i=1 vi(t) − ydes(t) ≤ w, t = 1, . . . , N
cT
0 x− ∑p

i=1 vi(t) − ydes(t) ≥ −w, t = 1, . . . , N
−vi(t) ≤ cT

i x ≤ vi(t), t = 1, . . . , N
x(1) = Ax0 + Bu(0)
x(t + 1) = Ax(t) + Bu(t), t = 1, . . . ,M − 1
x(t + 1) = Ax(t), t = M, . . . , N − 1
−1 � u(t) � 1, t = 0, . . . ,M − 1.

17

The variables are w ∈ R, vi(t) ∈ R (i = 1, . . . , p, t = 1, . . . , N), x(t) ∈ Rn (t = 1, . . . , N),
and u(t) ∈ Rm (t = 0, . . . ,M − 1). We can write the LP more clearly as

minimize w

subject to

C0 0 E −1
−C0 0 E −1
C 0 −I 0
−C 0 −I 0
0 I 0 0
0 −I 0 0

x
u
v
w

 �

ydes

−ydes

0
0
1
1

,

[
A B 0 0

]

x
u
v
w

 = b,

(21)

where

E =
[
I I · · · I

]
∈ RN×Np, C =

C1

C2
...

Cp

 ∈ RNp×Nn,

and v = (v1(1), . . . , v1(N), v2(1), . . . , v2(N), . . . , vp(1), . . . , vp(N)) ∈ RNp. The variables are
x ∈ RNn, u ∈ RNm, and the auxiliary variable v ∈ RNp. The dual LP is given by

maximize −yT
des(z

+
0 − z−0) − 1T (z+

u + z−u) − bTy

subject to

CT
0 −CT

0 CT −CT 0 0 AT

0 0 0 0 I −I BT

ET ET −I −I 0 0 0
−1T −1T 0 0 0 0 0

z+
0

z−0
z+

z−

z+
u

z−u
y

+

0
0
0
1

 = 0

z+
0 � 0, z−0 � 0, z+ � 0, z− � 0, z+

u � 0, z−u � 0.

(22)

As in §3, both LPs are strictly feasible. In (21) we can take u = 0, x(1) = Ax0, x(2) = Ax(1),
. . . , x(N) = Ax(N − 1), any v satisfying −v ≺ Cx ≺ v, and any w satisfying

−w1 + Ev ≺ C0x − ydes ≺ w1 − Ev.

Strictly feasible dual values are given by z+
0 = z−0 = 1/(2N), z+ = ETz+

0 , z− = ETz−0 ,
z+

u = z−u = 1, and y = 0.
We also note that the constraint matrix in (22) has rank Nn + Np + Mm + 1, and

Rank([A B 0 0]) = Nn, i.e., both matrices have full rank.

18

4.2 Solution via interior-point methods

We now examine the cost of applying Mehrotra’s method to the LPs (21) and (22). At each
iteration of Mehrotra’s method, we must solve two sets of linear equations of the form

−D+
0 0 0 0 0 0 0 C0 0 E −1

0 −D−
0 0 0 0 0 0 −C0 0 E −1

0 0 −D+ 0 0 0 0 C 0 −I 0
0 0 0 −D− 0 0 0 −C 0 −I 0
0 0 0 0 −D+

u 0 0 0 I 0 0
0 0 0 0 0 −D−

u 0 0 −I 0 0
0 0 0 0 0 0 0 A B 0 0

CT
0 −CT

0 CT −CT 0 0 AT 0 0 0 0
0 0 0 0 I −I BT 0 0 0 0

ET ET −I −I 0 0 0 0 0 0 0
−1T −1T 0 0 0 0 0 0 0 0 0

∆z+
0

∆z−0
∆z+

∆z−

∆z+
u

∆z−u
∆y
∆x
∆u
∆v
∆w

=

r+
0

r−0
r+
1

r−1
r+
2

r−2
r3

r4

r5

r6

r7

.

(23)
The matrices D+

0 , D−
0 , D+, D−, D+

u , D−
u are positive diagonal, with values that change at

each iteration, but are equal for both sets of equations. Eliminating ∆z+
0 , ∆z−0 , ∆z+, ∆z−,

∆z+
u , ∆z−u from the first six equations yields

0 A B 0 0

AT CT
0 D0C0 + CTDC 0 −CT

0 D̃0E + CT D̃ CT
0 D̃01

BT 0 R 0 0

0 −ET D̃0C0 + D̃C 0 ETD0E + D −ETD01

0 1T D̃0C0 0 −1TD0E TrD0

∆y
∆x
∆u
∆v
∆w

=

r8

r9

r10

r11

r12

(24)

where the matrices

D0 = (D+
0)−1 + (D−

0)−1, D = (D+)−1 + (D−)−1, R = (D+
u)−1 + (D−

u)−1

are positive diagonal, and

D̃0 = −(D+
0)−1 + (D−

0)−1, D̃ = −(D+)−1 + (D−)−1

are diagonal. The righthand side is given by

r8 = r3

r9 = r4 + CT
0 ((D+

0)−1r+
0 − (D−

0)−1r−0) + CT ((D+)−1r+
1 − (D−)−1r−1)

r10 = r5 + (D+
u)−1r+

2 − (D−
u)−1r−2

r11 = r6 + ET ((D+
0)−1r+

0 + (D−
0)−1r−0) − (D+)−1r+

1 − (D−)−1r−1
r12 = r7 − 1T ((D+

0)−1r+
0 + (D−

0)−1r−0).

Next, we note that the matrix in the (4, 4)-position of (24) has the form

ETD0E + D =

D0 D0 · · · D0

D0 D0 · · · D0
...

...
...

D0 D0 · · · D0

 +

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dp

19

(where Di ∈ Sn), so it is easily verified that its inverse is given by

(ETD0E + D)−1 = D−1 − D−1ET (D−1
0 +

p∑
i=1

D−1
i)−1ED−1

=

D−1
1 0 · · · 0
0 D−1

2 · · · 0
...

...
. . .

...
0 0 · · · D−1

p

 −

D−1
1

D−1
2
...

D−1
p

 (D−1

0 +
p∑

i=1

D−1
i)−1

[
D−1

1 D−1
2 · · · D−1

p

]
.

We can therefore eliminate ∆v from (24). The resulting system of equations is

0 A B 0
AT Q 0 d
BT 0 R 0
0 dT 0 γ

∆y
∆x
∆u
∆w

 =

r13

r14

r15

r16

 (25)

where

Q =
p∑

i=0

CT
i (Di − D̃2

i D
−1
i)Ci + (

p∑
i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(

p∑
i=0

D̃iD
−1
i Ci) (26)

d = (
p∑

i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−11 (27)

γ = Tr(
p∑

i=0

D−1
i)−1 (28)

r13 = r8

r14 = r9 + (
p∑

i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1ED−1r11 − CT D̃D−1r11

r15 = r10

r16 = r12 + 1T (
p∑

i=0

D−1
i)−1ED−1r11.

(The derivation of these expressions is straightforward but tedious, and is given in Ap-
pendix B.)

The matrix Q defined in (26) is block-diagonal with positive semidefinite diagonal blocks

Q(t) =
p∑

i=0

Di(t)
2 − D̃i(t)

2

Di(t)
cic

T
i +

1∑p
i=0 Di(t)−1

(p∑
i=0

D̃i(t)

Di(t)
ci

) (p∑
i=0

D̃i(t)

Di(t)
ci

)T

,

where Di(t) and D̃i(t) denote the diagonal elements of Di = diag(Di(1), . . . , Di(N)) and
D̃i = diag(D̃i(1), . . . , D̃i(N)). From this expression it is clear that the cost of forming Q
is approximately 2Npn2 flops, ignoring lower-order terms. The system (25) has the same
structure as (17), and can be solved using the same method. The total complexity of one
iteration of Mehrotra’s method is therefore about

2Npn2 + 3Nn3 + M(4mn2 + 4m2n + m3/3)

operations.

20

dimensions LP dimensions # iters CPU time time/iter
N M n m p #vars. #ineqs #eqs. (seconds) (seconds)

100 50 5 2 2 801 1600 1000 10 1.3 0.1
500 450 5 2 2 4401 8800 5000 12 10.4 0.9

1000 950 5 2 2 8901 17800 10000 10 17.6 1.8
2000 1950 5 2 2 17901 35800 20000 12 44.5 3.7
100 50 10 5 5 1751 3500 2000 9 1.4 0.2
500 450 10 5 5 9751 19500 10000 13 13.7 1.1

1000 950 10 5 5 19751 39500 20000 13 28.4 2.2
2000 1950 10 5 5 39751 79500 40000 16 71.5 4.5
100 50 20 10 10 3501 7000 4000 20 4.1 0.2
500 450 20 10 10 19501 39000 20000 16 21.7 1.4

1000 950 20 10 10 39501 79000 40000 21 62.0 3.0
2000 1950 20 10 10 79501 159000 80000 21 126.8 6.0
100 50 40 20 20 7001 14000 8000 18 7.9 0.4
500 450 40 20 20 39001 78000 40000 23 69.8 3.0

1000 950 40 20 20 79001 158000 80000 24 152.7 6.4
2000 1950 40 20 20 159001 318000 160000 22 297.7 13.5

Table 2: Number of iterations and CPU times for a family of robust output tracking
prolems with randomly generated data.

4.3 Numerical results

Table 2 summarizes numerical results for a family of robust output tracking problems with
randomly generated data. The algorithm was implemented in Matlab and tested on a
933 MHz Pentium III.

We again note that the CPU time per iteration grows linearly with the tracking and
control horizons N and M , and appears to grow more slowly than cubicly with n, m, and p,
at least in the range n ≤ 40, m, p ≤ 20.

Comparing with table 1 we also note that the cost of solving the robust output tracking
problem is only slightly higher than the cost of solving the nonrobust problem, in spite of
the fact that the corresponding LPs are much larger.

5 Conclusions

We have described efficient methods for solving a constrained linear optimal control problem
and its robust counterpart. The methods are based on a primal-dual interior-point method
for linear programming, and take a number of iterations that typically ranges between 10 and
50 and appears to grow very slowly with problem size. The cost per iteration is dominated by
the solution of a large, structured set of linear equations. By exploiting problem structure,
we are able to reduce these linear equations to the solution of an unconstrained quadratic

21

linear optimal control problem, which can be solved very efficiently by the well-known Riccati
recursion.

We compare in detail the cost of solving the output tracking problem and its robust
counterpart. The robust problem is readily formulated as an LP, similar to the LP formu-
lation of the nonrobust problem, but with an additional Np variables and 2Np inequality
constraints. The main contribution of the paper is to show that, despite the size differences
of the corresponding LPs, the robust output tracking problem can be solved at a cost that
is not much higher than the nonrobust problem.

The techniques discussed here extend to a variety of related problems, for example,
problems with an �1-objective or a quadratic objective, problems with additional convex
constraints such as slew rate constraints, and problems with ellipsoidal uncertainty.

Acknowledgment

We thank Anders Hansson for interesting discussions on the topic of this paper.

References

[AM90] B. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods.
Prentice-Hall, 1990.

[AP92] J. C. Allwright and G. C. Papavasiliou. On linear programming and robust model-
predictive control using impulse-responses. Systems and Control Letters, pages
159–164, 1992.

[BCH98] S. Boyd, C. Crusius, and A. Hansson. Control applications of nonlinear convex
programming. Journal of Process Control, 8(5-6):313–324, 1998. Special issue for
papers presented at the 1997 IFAC Conference on Advanced Process Control, June
1997, Banff.

[BTN98] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of
Operations Research, 23:769–805, 1998.

[BVG94] S. Boyd, L. Vandenberghe, and M. Grant. Efficient convex optimization for engi-
neering design. In Proceedings IFAC Symposium on Robust Control Design, pages
14–23, September 1994.

[EL97] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM J. on Matrix Analysis and Applications, 18(4):1035–1064,
October 1997.

[EOL98] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite
programs. SIAM J. on Optimization, 9(1):33–52, 1998.

[Han00] A. Hansson. A primal-dual interior-point method for robust optimal control of
linear discrete-time systems. IEEE Trans. Aut. Control, 45:1639–1655, 2000.

22

[HB98] H. Hindi and S. Boyd. Robust solutions to �1, �2 and �∞ uncertain linear approx-
imation problems using convex optimization. In Proc. American Control Conf.,
1998.

[ML99] M. Morari and J. H. Lee. Model predictive control: past, present and future.
Computers and Chemical Engineering, 23:667–682, 1999.

[NN94] Yu. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex
programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
PA, 1994.

[Raw00] J. B. Rawlings. Tutorial overview of model predictive control. IEEE Control
Systems Magazine, 20:38–52, 2000.

[RR00] C. V. Rao and J. B. Rawlings. Linear programming and model predictive control.
Journal of Process Control, 10:283–289, 2000.

[RWR98] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point methods
in model predictive control. Journal of Optimization Theory and Applications,
99:723–757, 1998.

[Wri93] S. J. Wright. Interior point methods for optimal control of discrete time systems.
Journal of Optimization Theory and Applications, 77:161–187, 1993.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

[ZM00] A. Zheng and M. Morari. Robust control of linear time-varying systems with
constraints. International Journal of Robust and Nonlinear Control, 10:1063–1078,
2000.

[ZW62] L. A. Zadeh and B. H. Whalen. On optimal control and linear programming. IRE
Trans. Aut. Control, pages 45–46, July 1962.

A Mehrotra’s predictor-corrector method

In this appendix we describe Mehrotra’s method, one of the most popular algorithms for
linear programming. We consider LPs of the form

minimize cTx
subject to Gx � g

Hx = h.

The variables is x ∈ Rn. The problem data are c ∈ Rn, G ∈ Rm×n, g ∈ Rm, H ∈ Rp×n,
h ∈ Rp. We assume that

RankH = p, Rank(

[
G
H

]
) = n. (29)

23

We can also define a slack variable s ∈ Rm for the inequality constraint, and write the
LP as

minimize cTx
subject to Gx + s = g

Hx = h
s � 0

(30)

with variables x and s. The dual LP is given by

maximize −gT z − hTy
subject to GT z + HTy + c = 0

z � 0,
(31)

with variables z ∈ Rm and y ∈ Rp.

A.1 Algorithm

We follow Wright [Wri97, Chapter 10], with minor modifications that reflect our notation
and problem format. The algorithm starts with initial estimates s, z, x, that have to satisfy
s � 0 and z � 0 (for example, x = 0, s = 1, z = 1), and repeats the following steps.

1. Evaluate stopping criteria. Terminate if the following four conditions are satisfied

‖Gx + s− g‖ ≤ εfeas(1 + ‖g‖)
‖Hx− h‖ ≤ εfeas(1 + ‖h‖)

‖GT z + HTy + c‖ ≤ εfeas(1 + ‖c‖)
cTx + gT z + hTy ≤ max{εabs,−εrel(c

Tx),−εrel(g
T z + hTy)},

where εfeas, εabs, εrel are given positive tolerances, or if a specified maximum allowable
number of iterations is reached. Otherwise go to step 2.

2. Compute the affine scaling directions ∆xaff , ∆yaff , ∆zaff , ∆saff , by solving the linear
set of equations

diag(z) diag(s) 0 0
I 0 0 G
0 0 0 H
0 GT HT 0

∆saff

∆zaff

∆yaff

∆xaff

 =

−diag(s)z
−(Gx + s− g)
−(Hx− h)

−(HTy + GT z + c)

 . (32)

3. Compute the centering-plus-corrector directions ∆xcc, ∆ycc, ∆zcc, ∆scc, by solving the
set of linear equations

diag(z) diag(s) 0 0
I 0 0 G
0 0 0 H
0 GT HT 0

∆scc

∆zcc

∆ycc

∆xcc

 =

σ1 − diag(∆saff)∆zaff

0
0
0

 , (33)

24

where

σ =
((s + αx∆saff)T (z + αz∆zaff))3

m(sT z)2

and

αx = max{α ∈ [0, 1] | s + α∆saff ≥ 0}
αz = max{α ∈ [0, 1] | z + α∆zaff ≥ 0}.

4. Update the primal and dual variables:

x := x + αx∆x, s := s + αx∆s, y := y + αz∆y, z := z + αz∆z

where

∆x = ∆xaff + ∆xcc, ∆s = ∆saff + ∆scc, ∆y = ∆yaff + ∆ycc, ∆z = ∆zaff + ∆zcc,

and

αx = min{1, 0.99max{α ≥ 0 | s + α∆s � 0}}
αz = min{1, 0.99max{α ≥ 0 | z + α∆z � 0}}.

Go to step 1.

A.2 Discussion

Starting point

The algorithm can start at any x, y, z, s, as long as s � 0 and z � 0. We say the starting
point is strictly feasible if it satisfies s � 0, z � 0, and, in addition,

Gx + s = h, Hx = h, GT z + HTy + c = 0.

If we start at a strictly feasible initial point, then all iterates remain strictly feasible. Indeed,
if x, s, y and z are feasible, then the last three entries of the righthand side of (32) are zero.
Therefore, the affine search directions satisfy

G∆xaff + ∆saff = 0, H∆xaff = 0, HT∆yaff + GT∆zaff = 0.

From (33), it is clear that the centering-plus-corrector directions satisfy similar expressions.
Therefore the sum of both directions, used in Step 4, satisfies

G∆x + ∆s = 0, H∆x = 0, HT∆y + GT∆z = 0.

The step size selection in Step 4 then guarantees that the new iterates x + α∆x, s + αx∆s,
y + αz∆y, z + αz∆z are also strictly feasible.

25

Stopping criteria

If we start with feasible initial values, the first three stopping conditions are always satisfied.
The fourth inequality is satisfied if at least one of the following conditions holds

• cTx + gT z + hTy ≤ εabs. If x, z, y are feasible, this means that the duality gap is less
than εabs, which guarantees

cTx− p� ≤ εabs, p� + gT z + hTy ≤ εabs,

where p� is the optimal value of (30). i.e., the absolute accuracy is better than εabs.

• cTx < 0 and (cTx+ gT z + hTy)/|cTx| ≤ εrel. This guarantes that the relative accuracy
is better than εrel, i.e.,

cTx− p�

|p�| ≤ εrel,
p� + gT z + hTy

|p�| ≤ εrel.

• −gT z− hTy > 0 and (cTx+ gT z + hTy)/(−gT z− hTy) ≤ εrel). In this case the relative
accuracy is also certainly less than εrel.

If we start at infeasible initial points, the algorithm will attempt to simultaneously achieve
primal and dual feasibility and optimality. If the problem is primal or dual infeasible, then
the four inequalities in Step 1 will never be satisfied, so the algorithm simply terminates
when the maximum number of iterations is exceeded. General-purpose implementations use
more sophisticated stopping criteria that include more graceful tests for identifying infeasible
problems. The LPs considered in this paper, however, are always strictly primal and dual
feasible (and, indeed, feasible starting points are readily obtained), so the simple criteria in
Step 1 are adequate for our purposes.

Computing search directions

The main computation at each iteration is the solution of the two linear equations (32)
and (33), which both have the form

diag(z) diag(s) 0 0
I 0 0 G
0 0 0 H
0 GT HT 0

∆s
∆z
∆y
∆x

 =

rs

rz

ry

rx

 .

We can simplify the system by eliminating ∆s from the first equation, i.e., solve

−diag(z)−1 diag(s) 0 G

0 0 H
GT HT 0

∆z
∆y
∆x

 =

rz − diag(z)−1rs

ry

rx

 , (34)

and then set ∆s = diag(z)−1(rs − diag(s)∆z).

26

If the rank conditions (29) are satisfied, then the coefficient matrix is nonsingular, as can
be seen as follows. We have to show that

−diag(z)−1 diag(s) 0 G

0 0 H
GT HT 0

∆z
∆y
∆x

 = 0 (35)

is only possible if ∆z = 0, ∆y = 0, ∆x = 0. Suppose V ∈ Rn×(n−p) spans the nullspace of
H, i.e., HV = 0 and RankV = n− p. The second equation of (35) means ∆x = V ∆w for
some ∆w. The first equation implies ∆z = diag(z)diag(s)−1GV ∆w. Substituting in the
third equation gives

GT diag(z)diag(s)−1GV ∆w + HT∆y = 0.

Premultiplying with V T yields

V TGT diag(z)diag(s)−1GV ∆w = 0.

This is only possible if GV ∆w = 0, i.e.,[
G
H

]
∆x = 0.

Since the matrix on the left has full rank, we must have ∆x = 0. The first equation then
implies ∆z = 0, and the third equation implies HT∆y = 0. Since RankH = p, ∆y = 0.

Overall complexity

When applied to an LP that is primal and dual feasible, Mehrotra’s method typically con-
verges in about 10–50 iterations, almost independently of the problem dimensions and data.
The main computation in each iteration is the solution of the two linear systems (32) and (33).
Both systems have the same coefficient matrix, and it is well known from linear algebra that
the cost of solving several linear systems with the same coefficient matrix and different right-
hand sides, is roughly equal to the cost of solving a single linear system. In other words, for
large problems, the cost of solving (32) and (33) is roughly equal to the cost of solving one
of the two equations. As a practical rule of thumb, we can therefore say that the cost of
solving the LPs (30) and (31) equals the cost of solving about 10–50 sets of linear equations
of the form

−D 0 G
0 0 H

GT HT 0

∆z
∆y
∆x

 =

r1

r2

r3

 ,

where the matrix D is positive diagonal with values that change at each iteration.

B Elimination of v in (24)

We first prove (26). Q is defined as

Q = CT
0 D0C0 + CTDC − (CT

0 D̃0E − CT D̃)(ETD0E + D)−1(ET D̃0C0 − D̃C)

= CT
0 D0C0 + CTDC − (CT

0 D̃0E − CT D̃)(D−1 − D−1ET (
p∑

i=0

D−1
i)−1ED−1)(ET D̃0C0 − D̃C).

27

We expand the righthand side and make use of the fact that diagonal matrices commute, to
write this expression as

Q = CT
0 D0C0 + CT (D − D̃2D−1)C + CT

0

(
−D̃2

0(
p∑

i=1

D−1
i) + D̃2

0(
p∑

i=1

D−1
i)2(

p∑
i=0

D−1
i)−1

)
C0

+ (
p∑

i=1

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(

p∑
i=1

D−1
i D̃iCi) + CT

0 D̃0

(
I − (

p∑
i=1

D−1
i)(

p∑
i=0

D−1
i)−1

)
(

p∑
i=1

D̃iD
−1
i Ci)

+ (
p∑

i=1

CT
i D̃iD

−1
i)

(
I − (

p∑
i=1

D−1
i)(

p∑
i=0

D−1
i)−1

)
D̃0C0.

(Note that ED−1ET =
∑p

i=1 D−1
i and CT D̃D−1ET =

∑p
i=1 CT

i D̃iD
−1
i .) Next we move the

factors (
∑p

i=0 D−1
i)T outside of the middle parentheses in the third, fifth, and sixth terms of

the sum, and simplify:

Q = CT
0 D0C0 + CT (D − D̃2D−1)C − CT

0 D̃2
0D

−1
0 (

p∑
i=1

D−1
i)(

p∑
i=0

D−1
i)−1C0

+ (
p∑

i=1

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(

p∑
i=1

D̃iD
−1
i Ci) + (CT

0 D̃0D
−1
0)(

p∑
i=0

D−1
i)−1(

p∑
i=1

D̃iD
−1
i Ci)

+ (
p∑

i=1

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(D̃0D

−1
0 C0)

By adding and subtracting CT
0 D̃2

0D
−2
0 (

∑p
i=0 D−1

i)−1C0 we can complete the square given by
last three terms. This yields

Q = CT
0 D0C0 + CT (D − D̃2D−1)C − CT

0 D̃2
0D

−1
0 (

p∑
i=1

D−1
i + D−1

0)(
p∑

i=0

D−1
i)−1C0

+ (
p∑

i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(

p∑
i=0

D̃iD
−1
i Ci)

=
p∑

i=0

CT
i (Di − D̃2

i D
−1
i)Ci + (

p∑
i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−1(

p∑
i=0

D̃iD
−1
i Ci).

This proves (26). The proof of equation (27) is similar: d is given by

d = CT
0 D̃01 − (CT

0 D̃0E − CT D̃)(ETD0E + D)−1(ETD01)

= CT
0 D̃01 − (CT

0 D̃0E − CT D̃)(D−1 − D−1ET (
p∑

i=0

D−1
i)−1ED−1)ETD01.

We have ED−1ET =
∑p

i=1 D−1
i , CT D̃D−1ET =

∑p
i=1 CT

i D̃iD
−1
i , so after expanding the

righthand side we obtain

d = CT
0 D̃01 − CT

0 D̃0(D0

p∑
i=1

D−1
i + D0(

p∑
i=1

D−1
i)2(

p∑
i=0

D−1
i)−1)1

28

− (
p∑

i=1

CT
i D̃iD

−1
i)(D0 − D0(

p∑
i=1

D−1
i)(

p∑
i=0

D−1
i)−1)1

= CT
0 D̃01 − CT

0 D̃0(
p∑

i=1

D−1
i + D0(

p∑
i=1

D−1
i)2 − D0(

p∑
i=1

D−1
i)2)(

p∑
i=0

D−1
i)−11

+ (
p∑

i=1

CT
i D̃iD

−1
i)(I + D0

p∑
i=1

D−1
i − D0

p∑
i=1

D−1
i)

)
(

p∑
i=0

D−1
i)−11

= (
p∑

i=0

CT
i D̃iD

−1
i)(

p∑
i=0

D−1
i)−11.

Finally, γ is given by

γ = TrD0 − (1TD0E)(ETD0E + D)−1(ETD01)

= TrD0 − 1TD0E(D−1 − D−1ET (
p∑

i=0

D−1
i)−1ED−1)ETD01

= Tr

(
D0 − D2

0

p∑
i=1

D−1
i + D2

0(
p∑

i=1

D−1
i)2(D−1

0 +
p∑

i=1

D−1
i)−1

)

= Tr

(
(I + D0(

p∑
i=1

D−1
i) − D0(

p∑
i=1

D−1
i) − D2

0(
p∑

i=1

D−1
i)2 + D2

0(
p∑

i=1

D−1
i)2)(

p∑
i=0

D−1
i)

)

= Tr

(
(

p∑
i=0

D−1
i)−1

)
,

which proves (29). The expressions for r14 and r16 can be verified in a similar way:

r14 = r9 + (CT
0 D̃0E − CT D̃)(ETD0E + D)−1r11

= r9 + (CT
0 D̃0E + CT D̃)(D−1 − D−1ET (

p∑
i=0

D−1
i)−1ED−1)r11

= r9 + CT
0 D̃0(I − (

p∑
i=1

D−1
i)(

p∑
i=0

D−1
i)−1)ED−1r11 + (CT D̃D−1ET)(

p∑
i=0

D−1
i)−1ED−1r11

− CT D̃D−1r11

= r9 + (CT
0 D−1

0 + CT D̃D−1ET)(
p∑

i=0

D−1
i)−1(ED−1r11) − CT D̃D−1r11

r16 = r12 + 1TD0E(ETD0E + D)−1r11

= r12 + 1TD0E(D−1 − D−1ET (
p∑

i=0

D−1
i)−1ED−1)r11

= r12 + 1TD0(I − (
p∑

i=1

D−1
i)(

p∑
i=0

D−1
i)−1)ED−1r11

= r12 + 1T (
p∑

i=0

D−1
i)−1(ED−1r11).

29

