
Engineering Optimization
Vol. 41, No. 4, April 2009, 365–384
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This article concerns the design of tapers for coupling power between uniform and slow-light periodic
waveguides. New optimization methods are described for designing robust tapers, which not only perform
well under nominal conditions, but also over a given set of parameter variations. When the set of parameter
variations models the inevitable variations typical in the manufacture or operation of the coupler, a robust
design is one that will have a high yield, despite these parameter variations.

The ideas of successive refinement, and robust optimization based on multi-scenario optimization with
iterative sampling of uncertain parameters, using a fast method for approximately evaluating the reflection
coefficient, are introduced. Robust design results are compared to a linear taper, and to optimized tapers
that do not take parameter variation into account. Finally, robust performance of the resulting designs is
verified using an accurate, but much more expensive, method for evaluating the reflection coefficient.
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1. Introduction

In this article, a new approach for non-convex robust optimization, including a successive
refinement technique to avoid local minima, is applied to the problem of designing waveguide
taper transitions for the challenging case of ‘slow-light’ periodic structures. By robust optimiza-
tion, it is meant that the resulting low-loss tapers still perform well even when manufacturing errors
and other uncertainties are included; in contrast, the nominal optimum produced by straightfor-
ward optimization of this problem relies on delicate interference effects that are destroyed by any
deviation from the design.

A standard component of optical and microwave devices is a waveguide taper, which couples
light from one waveguide to another by means of a gradual transition. Although a sufficiently
gradual taper approaches an ‘adiabatic’ limit of 100% transmission, in a practical setting the
challenge is to design a taper as short as possible, or with as low a loss as possible for a given length.
Perhaps the most challenging case is to design a short taper between an ordinary uniform wave-
guide and a periodic waveguide (Elachi 1976), a special case of a general class of periodic optical
structures known as ‘photonic crystals’ (Joannopoulos et al. 1995, Johnson and Joannopoulos
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Figure 1. Various tapers between uniform and periodic dielectric waveguides. (a) Periodic sequence of holes, where
taper varies the radius and period of the holes, in 2d or 3d. (b) Periodic set of flanges, where taper varies the width of
the flange, in 2d or 3d. (c) Periodic sequence of dielectric blocks, where taper varies the period ! between the blocks.
All three of these tapers, in 2d and 3d, can be efficiently optimized by the robust coupled-mode method, but this article
focusses on (c) because it is also amenable to brute-force computation for verification purposes.

2001a). (Several such structures are depicted in Figure 1.) Periodic waveguides are both useful
and challenging for the same reason: a periodic waveguide has a ‘slow-light’ band edge, for
which the group velocity of light slows down as it approaches a certain frequency. Operating in
this slow-light region is useful because it increases the interaction of the light with the material,
enhancing nonlinearities (Xu et al. 2000b, Soljačić et al. 2002), tunability (Povinelli et al. 2005),
gain (Yariv 1989), and other effects. However, as the group velocity decreases, the ‘impedance
mismatch’between the periodic and uniform waveguides increases, and a longer taper is generally
required to achieve the same coupling loss (Povinelli et al. 2005). (If the waveguides are simply
butt-coupled without a taper, the transmission goes to zero as the zero-velocity band-edge is
approached (Sanchis et al. 2004).)

A variety of techniques have been employed to select a taper shape for coupling to periodic
waveguides. Most of this work examines cases operating far from any band edge (so the group
velocity is not small) and focuses on simple linear (constant-rate) tapers (Xu et al. 2000a, Mekis
and Joannopoulos 2001, Palamaru and Lalanne 2001, Happ et al. 2001, Johnson et al. 2002,
Talneau et al. 2002, Pottier et al. 2003, Bienstman et al. 2003, Chietera et al. 2004) or families
of quadratic shapes (Khoo et al. 2005, Dossou et al. 2006, Zhang 2006). Genetic algorithms
have also been employed to design couplers using arbitrarily placed scattering cylinders (Jiang
et al. 2003, Hakansson, Sanchis, Sanchez-Dehesa and Marti 2005). (Non-taper-based couplers,
from free space or parallel waveguides, have also been considered (Kuang et al. 2002, Prather
et al. 2002, Barclay et al. 2004, Hakansson, Sanchez-Dehesa and Sanchis 2005)). Although this
previous work did not explicitly account for uncertainties in the model parameters, the mostly
small number of design parameters combined with the moderate group velocities help avoid
non-manufacturable designs. As soon as the design involves optimization over a large number
of free parameters, the nominal optimum tends to be a non-robust design that relies on delicate
interference effects. (A similar result was observed as a strong frequency sensitivity in genetic
optimization over many degrees of freedom (Hakansson, Sanchez-Dehesa and Sanchis 2005)).
In an earlier article, some of the authors considered a slow-light periodic-waveguide coupler
with higher-degree polynomial taper shapes, and used a simple regularization technique to avoid
non-robust solutions (Povinelli et al. 2005).

The classic case of a tapered uniform waveguide has also been extensively studied, especially
in the context of linear and quadratic polynomial shapes (Snyder 1970, Milton and Burns 1977,
Constantinou and Jones 1992, Wei et al. 1997). (This is, of course, a special case of a periodic
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waveguide: period zero.) More general optimization of uniform-waveguide couplers, allowing
more arbitrary taper shapes (also called ‘inverse design’), has also been considered using a variety
of optimization techniques (Spühler et al. 1998, Felici and Engl 2001, Luyssaert et al. 2005). In
this work, again, the initial problem was found to be ill-posed and to require a regularization to
account for variations in the design variables (Felici and Engl 2001).

This article presents optimization methods for designing robust tapers, which not only perform
well under nominal conditions, but also over a given set of parameter variations. The methods
optimize over an arbitrary variable taper rate, described by hundreds (or thousands) of degrees
of freedom, in order to find a design with performance orders of magnitude better than that of
a simple linear (constant-rate) taper. Accurate techniques from coupled-mode theory (Johnson
et al. 2002) are used to quickly explore different shapes; the results are validated against a direct
numerical solution of Maxwell’s equations (Bienstman 2001, 2006). Although the same coupled-
mode and robust-optimization techniques are equally effective for arbitrary waveguide tapers, in
order to directly validate the results against an explicit numerical solution of Maxwell’s equations
this article will focus on the structure of Figure 1(c), which can be efficiently solved by an
eigenmode-expansion method (Bienstman 2001, 2006). Because the set of parameter variations
models the inevitable variations typical in the manufacture or operation of the coupler, and is
explicitly accounted for in the optimization, a robust design will have a high yield, despite these
parameter variations.

There are several general models of parameter uncertainty, as well as general approaches for
dealing with uncertain parameters. These can be broadly classified into three groups (which are
closely related and connected): regularization, stochastic optimization, and worst-case robust opti-
mization. In regularization, what the parameter variations are is a bit vague; the technique simply
adds an extra cost term to the objective function that penalizes sensitive or non-robust designs.

In a stochastic optimization approach, there is a stochastic or probabilistic model for the param-
eter uncertainty; a taper design is chosen that, for example, minimizes an expected or average
objective value, or directly maximizes the yield (i.e. the probability that a set of specifications will
be met). Various methods can be used to approximately solve these stochastic design problems,
such as sampling or scenario approaches (not unlike the method proposed in this article); see, e.g.
(Calafiore and Dabbene 2006, Rockafellar and Wets 1991, Calafiore and Campi 2005, de Farias
and Roy 2004, Prekopa 1995, Birge and Louveaux 1997). These methods are computationally
expensive, and require knowledge of the probability distribution of the uncertain parameters,
which typically is not known. Another approach that is based on a stochastic model of parameter
uncertainty is Taguchi’s method, where the goal is to find a design that achieves a target mean value
of objective, while maintaining small variance. The method consists of a collection of heuristics
and simple design procedures for achieving this goal, and is widely used in industry; see, e.g.
(Taguchi et al. 2004, Beyer and Sendhoff 2007, Phadke 1995, Dehnad 1989, Tsui 1992,Yang and
El-Haik 2003).

The third general approach, which is taken in this article, is worst-case robust optimization (or
minimax optimization). Here the parameters are modelled as lying in some given set of possible
values, but without any known distribution; a taper design is chosen, whose worst-case objective
value, over the given set of possible uncertainties, is minimized. In this model, one does not
rely on any knowledge of the distribution of uncertain parameters (which, indeed, need not be
stochastic). While the worst-case approach is adopted in this article, the solution methods and
ideas can be modified to handle at least some stochastic design formulations. There is no claim
that worst-case robust optimization is superior to stochastic optimization or Taguchi’s approach;
but it is generally found that worst-case robust designs produced by the methods of this article
also perform well when analysed under a stochastic model of parameter variation.

There have been several recent breakthroughs in worst-case robust optimization, for specific
convex optimization problems and associated parameter uncertainty sets; see, e.g. (Ben-Tal and
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Nemirovski 1998, 2002, Soyster 1973, El Ghaoui and Lebret 1997, El Ghaoui et al. 1998,
Chandrasekaran et al. 1998, Bertsimas and Sim 2006, Goldfarb and Iyengar 2003). In these
articles, specific robust optimization problems are re-formulated as other convex optimization
problems, which can now be efficiently solved using, for example, interior-point methods (Boyd
and Vandenberghe 2004, Ruszczyński 2006). Unfortunately, the taper design problem consid-
ered here is not convex, so none of these methods can be directly applied. Worst-case robust
optimization has been applied in control (Zhou et al. 1996, Calafiore and Campi 2006), signal
processing (Vorobyov et al. 2003, Lorenz and Boyd 2005), portfolio optimization (Rustem and
Howe 2002, El Ghaoui et al. 2003), machine learning (Lanckriet et al. 2003), and other fields.

The outline of this article is as follows. In §2 the basic taper design problem is introduced,
along with a piecewise-linear parametrization of the taper shape function that results in a finite
dimensional problem. In §3 two methods for computing the magnitude of the reflected light due
to miscoupling, as well as the gradient with respect to the taper shape variables, are described.
The first method is approximate but very fast, and thus appropriate for use in an optimization
routine, since it will be evaluated many times. The second method is a slower, brute-force method,
which is presumably more accurate. In §4 the algorithm for robust taper design is described. This
method is based on sequential linear programming, and a method for identifying the worst, or
at least bad, values of the unknown parameters for a given taper shape. This basic method can
and does get caught in poor local minima, but a successive refinement method described in §4.4
helps avoid this pitfall, and greatly improves the overall robustness of the taper designs. In §5
numerical results are presented, comparing the robust design to a linear taper, and also to optimized
tapers that do not take parameter variations into account. Performance is verified using both the
fast method for evaluating the reflection coefficient magnitude, as well as the slower, but more
accurate, brute force method.

2. Nominal and robust taper design problems

2.1. Taper shape and reflection magnitude

Consider a taper with length L that couples a uniform and a slow-light waveguide structure with
period !. The taper is a quasi-periodic structure that is parametrized by the taper shape function
s : [0, 1] → R+. The argument of the taper shape function is the normalized length variable
u = z/L, where z is the physical coordinate along the taper. Each value of s corresponds to an
intermediate periodic structure between the taper endpoints, for example, in Figure 1, s could
correspond to the width of the flanges, the radius of the holes, or the separation of the blocks. The
varying periodic structure described by s(u) defines a taper as described in (Johnson et al. 2002);
essentially, the taper matches the cross-section of the periodic structure s(u) at z = Lu. The taper
shape function is constrained at its starting and its final point, with s(0) = 0 denoting the starting
uniform structure, and s(1) = 1 denoting the final periodic structure. Figure 2 illustrates a sample
taper and its shape function, where in this case s is simply proportional to the continuously varying
width of the flanges.

Given a taper shape function, one can evaluate the magnitude of the reflection from an incoming
light wave coupled from the uniform into the slow-light waveguide, for example by numerical
simulation of the wave equation. The reflection magnitude is denoted R; it depends on the taper
shape function s, as well as various parameters such as the refractive index (which might, indeed,
vary spatially), the wavelength, and so on. These parameters are denoted by a vector v ∈ Rm; to
emphasize that R is a function (or, since s is a function, a functional) of the taper shape s and the
parameter vector v, it will sometimes be written as R(s, v).
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Figure 2. Top. A taper coupling uniform and slow-light waveguide structures. Bottom. Its taper shape function s.

Let vnom be the nominal value of v, i.e. a typical (or expected) value of the parameter vector.
The nominal reflection magnitude is defined as

Rnom(s) = R(s, vnom).

The nominal reflection magnitude is a functional of the taper shape function s, and gives the
magnitude of the reflection when the parameter vector is equal to its nominal value.

2.2. Parameter uncertainty and worst-case reflection magnitude

Parameter uncertainty, which can be caused by manufacturing imperfections, wavelength varia-
tion, model parameter errors, etc., is modelled by a set V ⊆ Rm. The set V can be thought of as
the set of possible values of the parameter vector. It will be assumed that vnom ∈ V . As a simple
(but important) example, V can be a finite set V = {v1, . . . , vK}. In this case the index i is referred
to as a scenario, with associated parameter vector vi . As another common example, V can be a
box in Rm, for example, centred at the nominal parameter value,

V = {v| |vi − vnom,i | ≤ ξi , i = 1, . . . , m}, (1)

where ξi gives the radius or half-range of the variation in parameter i. (This type of parameter
variation can be described as vi = vnom,i ± ξi .)

The performance of a taper design, in the presence of parameter uncertainty, is judged by
the worst-case (largest possible) reflection magnitude over all possible v ∈ V . The worst-case
reflection magnitude is defined as

Rwc(s) = sup
v∈V

R(s, v).

The worst-case magnitude reflection Rwc is a functional of the taper shape function s. It is always
the case that Rwc(s) ≥ Rnom(s) for any s; indeed, the ratio Rwc(s)/Rnom(s) gives a measure of
(worst-case) performance degradation of the taper, due to parameter variation.

For a scenario model of parameter uncertainty, i.e. when V = {v1, . . . , vK}, the worst-case
reflection magnitude has the form

Rwc(s) = max
i=1,...,K

R(s, vi),
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the maximum reflection magnitude over the K scenarios. But in most cases, Rwc(s) cannot
be computed exactly, since this involves solving a non-convex optimization problem. It can be
approximately computed, however, using several methods described in §3.4.

2.3. Nominal and robust taper shape problems

In the nominal taper shape problem, a taper shape function s is found that minimizes the nominal
reflection magnitude Rnom, subject to some constraints:

minimize Rnom(s)

subject to s(0) = 0, s(1) = 1

0 ≤ s(u) ≤ Smax, |s ′(u)| ≤ Dmax for 0 ≤ u ≤ 1.

(2)

The optimization variable is the taper shape function s : [0, 1] → R+. The problem parameters
are the maximum allowed shape value Smax, the maximum allowed taper slope Dmax, and, of
course, the objective function Rnom. A solution of this problem is called a nominal optimal taper.

In the robust taper shape problem, the goal is to find a taper shape function s that minimizes
the worst-case reflection magnitude Rwc, subject to some constraints:

minimize Rwc(s)

subject to s(0) = 0, s(1) = 1

0 ≤ s(u) ≤ Smax, |s ′(u)| ≤ Dmax for 0 ≤ u ≤ 1.

(3)

A solution of this problem is called a robust optimal taper. The main goal of this article is to
present a tractable way to (approximately) solve the robust taper shape problem (3).

Both the nominal and robust taper shape problems (2) and (3) are infinite-dimensional optimiza-
tion problems, since the optimization variable is a function (Anderson and Nash 1987), and they
include semi-infinite constraints (Hettich and Kortanek 1993), i.e. an infinite set of constraints
indexed by a continuous variable (u). Both of these issues will be (approximately) handled by
searching over a finite-dimensional set of shape functions, for which the semi-infinite constraints
can be expressed in a simple way. The complexity of the algorithm grows linearly with the dimen-
sion of the finite-dimensional parametrization, and easily scales to dimensions large enough (e.g.
thousands) that errors due to the finite-dimensional parametrization are negligible.

A more fundamental issue is that the problems (2) and (3) are not convex (since the objectives
are, in general, not convex), which makes it unlikely that the global solutions can be found
efficiently. So one must settle for locally optimal solutions of the problems, which need not be
globally optimal. In §4.4 a successive refinement approach is described, which appears to be quite
resistant to getting trapped in poor local minima.

2.4. Piecewise-linear taper shape parametrization

It is assumed that the taper shape functions are piecewise-linear, parametrized by their values
at n fixed control or break or grid points u1, . . . , un, with 0 < u1 < · · · < un < 1, and passing
through the endpoints s(0) = 0 and s(1) = 1. This is illustrated for n = 4 grid points in Figure 3.

This can be expressed as

s(u) = x1f1(u) + · · · + xnfn(u) + fn+1(u), (4)
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Figure 3. A piecewise-linear taper shape s with n = 4, with grid-points u1, . . . , u4. The taper shape satisfies s(0) = 0,
s(u1) = x1, . . . , s(u4) = x4, and s(1) = 1.

with

fi(u) =






(u − ui−1)/(ui − ui−1) ui−1 ≤ u ≤ ui,

(ui+1 − u)/(ui+1 − ui) ui ≤ u ≤ ui+1,

0 otherwise,

where u0 = 0 and un+1 = 1, and

fn+1(u) =
{

(u − 1)/(un − 1) un ≤ u ≤ 1,

0 otherwise.

The vector x ∈ Rn is referred to as the taper shape vector. Evidently s(ui) = xi .
With this parametrization, the endpoint constraints s(0) = 0 and s(1) = 1 hold automatically,

for any shape vector x. Moreover, the semi-infinite constraints

0 ≤ s(u) ≤ Smax, |s ′(u)| ≤ Dmax for 0 ≤ u ≤ 1,

hold if and only if

0 ≤ xi ≤ Smax, i = 1, . . . , n,

|xi+1 − xi | ≤ Dmax(ui+1 − ui), i = 1, . . . , n − 1, (5)

|x1| ≤ Dmaxu1, |1 − xn| ≤ Dmax(1 − un).

These are a set of 4n linear inequalities on the shape vector x. The notation x ∈ S will be used to
denote this, where S is the (polyhedral) set of x for which (5) holds.

With some abuse of the notation, Rnom(x) and Rwc(x) will be used to denote the values of
Rnom(s) and Rwc(s), for the shape function s associated with the shape vector x. With piecewise-
linear parametrization of taper shapes, the nominal taper design problem can be expressed as

minimize Rnom(x)

subject to x ∈ S,
(6)

and the robust taper design problem as

minimize Rwc(x)

subject to x ∈ S.
(7)

These are finite-dimensional optimization problems, with optimization variable x ∈ Rn, and 4n

linear inequality constraints.
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3. Computation of reflection magnitude

To optimize the taper shape function s, one needs a rapid method to compute the reflected power
fraction R and its gradient for light incident on a particular taper structure. This article will employ
two such methods, described below: a fast approximate method for the optimization (including the
computation of the gradient), and a slower brute-force method for verification of the final design.
In §3.4, some methods for estimating the worst-case reflection Rwc, given s and the uncertainty
parameter set V , will be described.

3.1. Coupled-mode theory

In general, computing the reflection from an arbitrary structure could require an expensive solution
of the complete Maxwell equations, evaluated to high accuracy in order to distinguish the tiny
reflected field in a well-designed gradual taper. In the present case, however, the fact that the
structure is nearly periodic (slowly varying) and the reflection is consequently small, can be
exploited to utilize a fast semi-analytical method based on coupled-mode theory.

Coupled-mode theory, also known as coupled-wave theory or the slowly-varying envelope
approximation (SVEA), involves an expansion of the electromagnetic field along the waveguide
taper in terms of the eigenmodes (indexed by k) of a uniform periodic waveguide matching the
cross-section at each point. The expansion coefficients ck in this basis are then determined by a
set of ordinary differential equations for dck/dz along the taper direction (z), where the different
modes are coupled by terms proportional to the rate of change of the structure. Because the
structure is slowly varying, the expansion coefficients approach an ‘adiabatic’ limit in which the
ck are nearly constant. In this limit, the equations can be integrated approximately, to first-order
in the taper rate, to yield a simple integral for the reflection coefficient. (Reflection dominates the
loss in slow-light tapers.)

The most common form of coupled-mode theory was developed for nearly uniform waveguides
(Marcuse 1991), but some of the authors have recently generalized this approach to strongly
periodic waveguides of the type considered in this article (Johnson et al. 2002). The results of a
simple first-order calculation were found to be nearly exact as long as the reflections were under
10%, making them ideal for the present case where the taper designs all have reflections well
under 1%.

In particular, coupled-mode theory of a taper shape s(u) with length L leads to a first-order
reflection amplitude cr , where the fraction of reflected power is R = |cr |2, given by an integral
of the form:

cr{s(u)} =
∫ 1

0
du s ′(u)

∑

k

Mk[s(u)]
#βk[s(u)]e

iL
∫ u

0 #βk [s(u′)]du′
. (8)

Here, Mk and#βk are given functions of the taper parametrization s. That is, each s denotes a given
intermediate periodic structure, Mk(s) is a (complex-valued) coupling coefficient determined from
the eigenfields of that structure, and #βk(s) is a (real) phase-mismatch factor. The summation
must in principle run over all integers k, but in practice only a handful of terms are required
because the contributions decrease rapidly with k. (In particular, #βk(s) = #β(s) + 2πk/!(s),
where !(s) is the variable period along the taper.)

The derivation of these coupled-mode equations is rather complicated and will not be repro-
duced here.1 The key point, however, is that the full Maxwell equations need only be solved once:
a set of small calculations for the eigenmodes of the periodic structures at each s, by a spectral
method (Johnson and Joannopoulos 2001b), yields the functions Mk(s) and #β(s). One can then
re-use these functions to compute the reflection for any taper shape s(u) and any length L by a
single integral, which allows quick exploration and optimization over many different shapes.
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The equations are the same regardless of the dimensionality of the problem, and have previously
been used by some of the authors to compute taper reflections and perform simple optimizations in
large three-dimensional structures where direct simulation was not possible (Povinelli et al. 2005).

3.2. Coupled-mode reflection gradient

To carry out taper shape optimization one will need to evaluate not only the reflection magnitude
R but also its functional derivative (gradient) ∂R/∂s. In general, such gradients can be computed
by an adjoint method (Cao et al. 2003), but in this case the problem is simple enough that one
can derive the same thing without resorting to such cumbersome techniques.

In particular, since R = |cr |2 and cr is a summation over k, it suffices to compute the gradient
of each k term in the summation equation for cr above. Dropping the k subscript for simplicity,
each k term corresponds to the functional:

c{s(u)} =
∫ 1

0
du s ′(u)F [s(u)]e

∫ u

0 f [s(u′)]du′
, (9)

where F(s) = Mk(s)/#βk(s) and f (s) = iL#βk(s). The gradient g(u) of this functional is
defined by the first-order change of c{s(u)} under a small change δs(u) (where δs(0) = δs(1) = 0
to preserve the boundary conditions):

δc = c{s + δs} − c{s} =
∫ 1

0
g(u)δs(u)du. (10)

The explicit gradient g can be derived by substituting s + δs into c, dropping terms higher than
first-order in δs, and integrating by parts to eliminate the δs ′ term.After some algebra, one obtains:

g(u) = −F [s(u)]f [s(u)]e
∫ u

0 f [s(u′)]du′ + f ′[s(u)]
∫ 1

u

dũs ′(ũ)F [s(ũ)]e
∫ ũ

0 f [s(u′)]du′
, (11)

which is a single integral in terms of s(u) and the known functions F and f and their derivatives,
which means that the gradient can be evaluated with roughly the same cost as evaluating c{s(u)}
(similar to what one would expect for adjoint methods).

In practice, of course, infinitely many degrees of freedom are not present in s(u). As explained
in §2.4, a piecewise-linear parametrization s(u) = ∑

i xifi(u), for ‘tent’ functions fi(u) and
parameters xi , is employed. One therefore needs only the finite-dimensional gradient with respect
to the xi :

∂c

∂xi

=
∫ 1

0
g(u)fi(u) du. (12)

The gradient of the reflection R is then found by first summing ∂c/∂xi over k to obtain ∂cr/∂xi ,
and then ∂R/∂xi is the real part of 2c∗

r ∂cr/∂xi .

3.3. Brute-force verification

Because coupled-mode theory involves some approximations, it is also desirable to directly solve
the Maxwell equations, with no assumptions, in order to verify the correctness of the solutions.
Such a direct solution allows one to consider the effect of imperfections that violate the slow-taper
assumption underlying coupled-mode theory; in particular, one can include rapid small variations
in the structure corresponding to fabrication imperfections (e.g. surface roughness). The specific



374 A. Mutapcic et al.

computational method employed is an eigenmode-expansion, or transfer-matrix, method that is
implemented in a free software package called CAMFR (Bienstman 2001, 2006).

CAMFR works by expanding the fields at every z in terms of the eigenmodes of that
cross-section, with perfectly-matched layer (PML) absorbing boundaries in the lateral direc-
tions (Bérenger 1994). In this sense, it is related to the classic coupled-mode method mentioned
above (Marcuse 1991). Unlike the first-order integration above, however, CAMFR makes no
assumption of small scattering or slow variation, and computes a complete transfer matrix at each
point where the cross-section changes that couples all the modes according to the continuity condi-
tions on the electromagnetic field. In this sense, it is a ‘brute-force’ method: it solves the complete
Maxwell equations with no assumptions, to an arbitrary accuracy given enough computational
time and memory (i.e. a large enough eigenmode basis). However, it is extremely efficient for
structures like the one considered in Figure 1(c), in which the cross-section is piecewise uniform,
since the uniform regions are handled analytically.

Moreover, CAMFR imposes the incident-wave boundary conditions (at z = 0 and z = L) ana-
lytically, thanks to its eigenmode basis, and hence can distinguish even a tiny reflection coefficient
with high accuracy. It is most effective, however, when the two ends of the simulation are termi-
nated by semi-infinite uniform waveguide, and so the CAMFR simulations are performed using
a double taper, which tapers from uniform to periodic, then five periods in the periodic structure,
and then tapers back from periodic to uniform.

3.4. Worst-case reflection magnitude

The problem of finding the worst, or at least a bad, value of the parameter v ∈ V , for a given taper
shape s, is called pessimizing, since the goal is to find the least favourable value of the parameter
for the given shape. When V is finite, exact pessimizing can be carried out by evaluating R under
each scenario and taking the largest value found.

When V is infinite it is difficult to compute the exact value of the worst-case reflection magnitude

Rwc(s) = sup
v∈V

R(s, v),

along with a (worst-case) parameter v( that achieves this supremum, since in general R(s, v)

is not concave in v (and V need not be convex). Options for pessimizing include direct search
methods (Nelder and Mead 1965, Wright 1995, Kolda et al. 2003), or any standard local opti-
mization method such as sequential quadratic programming methods (Nocedal and Wright 1999,
Gill et al. 2005). With any of these methods, the algorithm is run from a number of starting points
in V; the largest value of R found is then an estimate of Rwc.

When V is a box (1), one can easily guess a value of v that often leads to large (if not largest)
R. The gradient of R with respect to v is evaluated at vnom; the approximate pessimizer is then

v(
i ≈

{
vnom,i + ξi , ∂R/∂vi > 0
vnom,i − ξi , ∂R/∂vi < 0.

(This is the maximizer of the first-order approximation of R over V .) This point can, of course,
be used as the starting point for a local optimization method.

4. Taper shape optimization

In this section the methods for nominal, multi-scenario, and general robust taper shape optimiza-
tion, for a given piecewise-linear taper shape parametrization, are described. The section finishes
by explaining a method that applies to all three, in which the taper shape is successively refined.
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4.1. Nominal design

A standard local linearization method, with a trust region constraint (see, e.g. Conn et al. (2000),
Nocedal and Wright (1999, Chap. 4)) is used, but any other first-order nonlinear optimization
method could have been used here. Let x be the current shape vector parameter, which is assumed
feasible (i.e. x ∈ S). The reflection function Rnom is replaced with the affine approximation

Rnom(x + δ) ≈ Rnom(x) + ∇Rnom(x)T δ, (13)

where δ ∈ Rn is a proposed perturbation, and a trust region constraint

‖δ‖∞ = max
i

|δi | ≤ ρ

is added to ensure the approximation (13) is good enough for the algorithm to make adequate
progress. The size of the trust region is scaled by ρ > 0, which is called the trust region radius.
For example, for ρ = 0.01Smax, the trust region constraint limits the maximum perturbation to
1% of the maximum allowable shape function value. (Another trust region constraint that gives
good results is the l2-norm constraint on the perturbation and its difference, i.e. ‖δ‖2 ≤ ρ1 and
‖δi+1 − δi‖2 ≤ ρ2, where ρ1 and ρ2 are appropriate constants.)

To find δ, the search direction subproblem

minimize Rnom(x) + ∇Rnom(x)T δ

subject to x + δ ∈ S, ‖δ‖∞ ≤ ρ,
(14)

is solved, with optimization variable δ ∈ Rn. This gives the best possible update δ, based on
the linearized objective, and subject to the constraint that x + δ be feasible, and the trust region
constraint.

The problem (14) can be expressed as a linear program (LP),

minimize ∇Rnom(x)T δ

subject to 0 ≤ xi + δi ≤ Smax, i = 1, . . . , n

− Dmax(ui+1 − ui) ≤ xi+1 + δi+1 − xi − δi ≤ Dmax(ui+1 − ui), i = 1, . . . , n− 1

−Dmaxu1 ≤ x1 + δ1 ≤ Dmaxu1

− Dmax(1 − un) ≤ 1 − xn − δn ≤ Dmax(1 − un)

− ρ ≤ δi ≤ ρ, i = 1, . . . , n, (15)

with n variables and 6n inequality constraints. This particular LP can be solved very efficiently,
by exploiting its structure. Each constraint involves only a single variable δi , or the difference
between successive variables, δi+1 − δi . As a result, the linear system that needs to be solved
to determine the search direction in each step of an interior-point method is tridiagonal, and so
can be solved extremely fast. Since only a few tens of iterations are needed to solve the LP,
the entire cost is O(n) flops. (See, e.g. Boyd and Vandenberghe (2004 Chap. 11, App. C).) Any
general purpose LP solver that exploits sparsity will recognize and exploit this structure automat-
ically (although not quite as efficiently as when the tridiagonal structure is recognized from the
beginning).
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Once the tentative update δ is computed, Rnom(x + δ) is evaluated. If this is not worse than
the current point x, i.e. Rnom(x + δ) ≤ Rnom(x), one accepts the update step and sets x := x + δ,
and increases the trust region radius ρ (up to some maximum value ρmax). If the tentative point
x + δ is worse than the current point, i.e. Rnom(x + δ) > Rnom(x), one reduces the trust region
radius ρ (down to some minimum value ρmin), and re-computes the step δ. As a stopping criterion,
a maximum number of iterations Nmax can be specified, or the algorithm can terminate when, even
with the minimum trust region radius, there is no improvement in Rnom. The overall algorithm is
summarized below.

NOMINAL TAPER SHAPE (NTS) ALGORITHM.

given initial feasible x, initial ρ > 0, and parameters ρmin > 0, ρmax > 0,
αdecr < 1, αincr > 1, and Nmax.

repeat
1. Determine an update step δ by solving (15).
2. Update.

2a. if Rnom(x + δ) ≤ Rnom(x)

x := x + δ; ρ := min{ρmax,αincrρ}
2b. else

ρ := max{ρmin,αdecrρ}.
until stopping criterion is satisfied.

4.2. Multi-scenario design

The NTS algorithm is now extended to (approximately) solve the robust taper shape problem (7),
when V = {v1, . . . , vK}. (This problem is referred to as the multi-scenario taper shape problem.)
In this case, the objective in (7) is

Rwc(x) = max
i=1,...,K

R(x, vi). (16)

The algorithm is similar to the NTS algorithm, but with two differences: a tentative update
step based on the linearization of each term in the objective (16) is computed, and the objec-
tive (16) is evaluated when determining if whether to accept or reject the tentative update
step. This new algorithm is called the multi-scenario taper shape (MSTS) algorithm. A simi-
lar algorithm for solving nonlinear discrete minimax (i.e. multi-scenario) problems was presented
in Madsen and Schjaer-Jacobsen (1978), Jonasson and Madsen (1994), where the authors also
give a proof of convergence to stationary points.An algorithm that solves a discrete minimax prob-
lem using penalty functions and trust-region methods can also be found in Erdmann and Santosa
(2004).

In the update step calculation the affine approximation of R is used for each scenario,

R(x, vi) ≈ R(x, vi) + ∇R(x, vi)
T δ,

and the objective (16) is approximated with the piecewise-linear function

Rwc(x) ≈ max
i=1,...,K

(R(x, vi) + ∇R(x, vi)
T δ).

At each iteration, the following problem is solved to compute a tentative update step δ:

minimize max
i=1,...,K

(R(x, vi) + ∇R(x, vi)
T δ)

subject to x + δ ∈ S, ‖δ‖∞ ≤ ρ .
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This problem is easily solved, since it can be cast as the LP; see Boyd and Vandenberghe (2004,
Chap. 4),

minimize t

subject to R(x, vi) + ∇R(x, vi)
T δ ≤ t, i = 1, . . . , K

0 ≤ xi + δi ≤ Smax, i = 1, . . . , n

− Dmax(ui+1 − ui) ≤ xi+1 + δi+1 − xi − δi ≤ Dmax(ui+1 − ui), i = 1, . . . , n − 1

− Dmaxu1 ≤ x1 + δ1 ≤ Dmaxu1

− Dmax(1 − un) ≤ 1 − xn − δn ≤ Dmax(1 − un)

− ρ ≤ δi ≤ ρ, i = 1, . . . , n. (17)

Here the optimization variables are δ ∈ Rn and t ∈ R. This LP has n + 1 variables and
6n + K inequality constraints. Again, the associated LP coefficient matrix is sparse, except
for the block of K constraints generated by the first K inequalities. The LP can be solved in
O(min{n, K}2 max{n, K}) flops. (See, e.g. Boyd and Vandenberghe (2004, Chap. 11, App. C).)

The MSTS algorithm outline is the same as the one for the NTS algorithm, except that the
linear program (17) is solved in step 1, and Rwc is evaluated instead of Rnom in step 2.

4.3. Robust design

In this section, an algorithm to (approximately) solve the robust taper shape problem (7) with
general parameter set V is presented. The algorithm is based on carrying out a sequence of multi-
scenario robust designs, with an expanding set Vbad of scenarios that are found by approximate
worst-case analysis.

ROBUST TAPER SHAPE (RTS) ALGORITHM.

given initial feasible x and Vbad = {vnom}.
repeat

1. Pessimization. (Approximate worst-case analysis.)
1a. Find approximate worst-case parameter value v( for current s.
1b. Vbad := Vbad ∪ {v(}.

2. Multi-scenario design.
Solve MSTS problem with Vbad, starting from current shape.

until stopping criterion is satisfied.

As a stopping criterion, a maximum number of iterations Nmax can be specified, or termination
can occur when there is no improvement in Rwc. Several variations on the basic algorithm given
above can be given. First, instead of producing just one bad parameter value, several bad parameter
values can be found in the pessimization step, and these are appended to the set Vbad. Second,
one can add a step in which Vbad is pruned, i.e. parameter values are removed from the set.

4.4. Successive refinement

The taper design problems (6) and (7) are non-convex, and local methods, such as the local
linearization method described above, can (and do) get stuck in poor locally optimal points. A
common method to fix this problem is to run the algorithm multiple times, starting with different
initial taper designs, picking the best design obtained among the runs of the algorithm. A method
called successive refinement, however, seems to avoid the problem of getting caught in poor local
minima, and eliminates the need for multiple runs from different starting points.
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Figure 4. Top left. Linear taper with a single grid point. Top right. Full search performed to obtain a global optimum
taper with a single grid point. Bottom left. Two new grid points added and taper values interpolated at u

(2)
1 and u

(2)
3 .

Optimization algorithm is run starting from this taper. Bottom right. New local optimum.

In successive refinement, a sequence of design problems with successively finer piecewise-
linear taper shape functions is solved, in each case starting from the previous design. One starts
with a single grid point, i.e. n = 1, and runs a global search of the optimal robust taper, which is
tractable only for this single dimensional problem. One then adds two more grid points, in between
0 and the first grid point, and the first grid point and 1, so that n = 3, and runs the RTS algorithm
described above, starting from the previous design. This is repeated until some maximum value
of n is reached. This is illustrated in Figure 4.

In numerical experiments the authors started with initial grid point at 1/2, and in each successive
refinement step, new grid points are added halfway in-between the old ones (and 0 and 1). At the
Mth refinement step there will be n = 2M − 1 grid points, with values

u
(M)
i = i2−M, i = 1, . . . , 2M − 1.

This approach is related in spirit to the multigrid method (Briggs et al.. 2000), where the latter
uses both successive refinements and coarsenings in order to speed up convergence of a linear
solver rather than to avoid local minima. Successive refinement ideas have been successfully
applied in circuit design (Chan et al. 2000), in motion estimation for video coding (Chun and Ra
1992), etc.

5. Numerical results

In this section some numerical results for a particular structure are presented.

5.1. Taper geometry and uncertainty model

The two-dimensional taper depicted in Figure 1(c), similar to the one considered in Johnson
et al. (2002), will be optimized, in order to have a structure where the brute-force method is
efficient (and thus can be used to validate the coupled-mode theory for a large number of values
of the parameters). The periodic structure is a sequence of dielectric blocks with period !0,
size 0.4!0 × 0.4!0, and dielectric constant ε = 12. The blocks are surrounded by air (ε = 1).
The electric field is polarized perpendicular to the 2d plane (‘TM’ polarization). As described
in Johnson et al. (2002), this structure supports true localized guided modes by the mechanism
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of index-guiding (Fan et al. 1995), and has a zero-group-velocity band edge at a frequency of
ω!0/2π = 0.2434. The operating frequency is ω!0/2πc = 0.23,2 which is slightly below the
band edge, where the group velocity is under c/4 and the waveguide is single-mode at every point
along the taper.

A uniform waveguide of width 0.4!0, which can be treated as a sequence of (touching) blocks
with period 0.4!0, is tapered to the periodic structure by gradually spreading the blocks apart. That
is, their period varies as !(s) = !0[s + 0.4(1 − s)], so that s = 0 corresponds to the uniform
structure with pitch 0.4!0 and s = 1 corresponds to the periodic structure with pitch !0. The
problem is then to determine the function s describing how fast the period (pitch) varies along the
taper. The taper will be designed with length L = 30!0, maximum shape value Smax = 1, and
maximum slope Dmax = 5.

On physical grounds, one expects the optimal taper to be more rapid at the u = 0 end corre-
sponding to the uniform waveguide where the group velocity is larger, and to be more gradual at
the u = 1 end corresponding to the periodic waveguide where the group velocity is low (and thus
the structure is more sensitive to small changes (Povinelli et al. 2005)). This is precisely what is
found, below, although the exact taper rate is difficult to predict a priori.

The following parameter uncertainty model is used. The operating frequency varies ±1%
around its nominal value ω!0/2πc = 0.23; variation in the taper shape function is bounded at
each grid point by ±0.001 around the current value, with the perturbed taper shape within the
bounds 0 and 1. The shape variation is meant to model, for example, manufacturing variation.

5.2. Pessimizing method

The following method is used to carry out approximate worst-case analysis. At each of 20 val-
ues of ω, uniformly spaced over the interval [0.227, 0.233], the approximate worst-case shape
perturbation at the current point s is found using the derivative heuristic as described in §3.4, i.e.

s((u) =
{

min{s(u) + 0.001, 1} ∂R/∂s(u) > 0
max{s(u) − 0.001, 0} ∂R/∂s(u) < 0.

(The worst-case shape perturbation depends on ω.) The reflection magnitude is evaluated for
each ω, with its associated approximate worst-case taper shape. The result is the approximate
worst-case reflection magnitude over the shape uncertainty; maximizing over the 20 values of ω
yields the approximation of Rwc.

The authors cannot claim that this pessimization heuristic gives the true worst-case value.
However, it has been tested extensively, by attempting to find worse parameter values using other
methods, such as derivative-free optimization, SQP, and simply sampling random parameter values
in V . In no case was a significantly worse value of the parameter found.

5.3. Optimization

Tapers were found using the NTS and RTS algorithms, with the following algorithm parameters:
initial ρ = 0.1Smax, ρmin = 0.001Smax, ρmax = 0.5Smax, αdecr = 0.75, αincr = 1.25, and Nmax =
150, terminating also if no improvement is made. 10 iterations of successive refinement are used,
with dyadic grid points, which results in a final taper design with n = 1023 grid points. Global
optimization is carried out during the first step of the successive refinement, after which the
obtained shape is used to construct initial points for the subsequent steps.

The NTS algorithm, and the MSTS algorithms carried out in each iteration of the RTS algorithm,
usually terminate in 50–70 steps, due to no improvement in objective value. The RTS algorithm
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converged after around 30–40 steps (each of which consisted of an approximate worst-case
analysis and a multi-scenario optimization). For highest level of refinement, the RTS algorithm
required a total of around 2000 basic iterations (each requiring an approximate worst-case analysis,
the solution of an LP, etc.).

The algorithms were implemented in Matlab, solving the update step subproblems (15) and (17)
using CVX (Grant et al. 2006), which calls the SeDuMi solver (Sturm 1999). The subproblem
calculation for the NTS algorithm with n = 1023 variables (the last step in successive refinement)
takes about a second, while the subproblem calculation for the MSTS algorithm with n = 1023
variables and K = 50 scenarios takes about ten seconds (on a personal computer). Solving the
NTS problem required a total of around 40 seconds, and solving the RTS problem required a total
of around 20 minutes. Had algorithms been implemented in C, using a custom LP solver for the
particular structure that arises in these problems, these times would likely have been far smaller,
by a factor exceeding 10.

5.4. Results

Figure 5 shows the nominal and robust taper designs obtained, together with the linear taper.
The performance of these three taper designs is compared in Table 1, which gives the nominal
reflection magnitude, and the approximate worst-case reflection magnitude computed using the
fast coupled-mode solver, and also using the brute-force CAMFR solver. (In order to minimize
numerical errors in the simulations the double taper setup as described in Johnson et al. (2002,
Sec. 5) is used.) The calculations of approximate worst-case reflection magnitude, using the fast
and brute-force methods, agree reasonably well. The robust optimal design gives a worst-case
reflection that is around an order of magnitude better than the nominal design, and almost two
orders of magnitude better than the simple linear taper design.

Figure 5. Linear, nominal optimal, and robust optimal designs.

Table 1. Summary of results for three tapers.

Linear taper Nominal taper Robust taper

Rnom 3.27 × 10−3 1.75 × 10−10 3.15 × 10−8

Rwc (fast) 8.60 × 10−3 4.03 × 10−4 2.09 × 10−5

Rwc (brute) 1.90 × 10−2 9.77 × 10−4 2.19 × 10−5
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Figure 6. Partial worst-case values over the operating frequency generated by using the faster, but less accurate
coupled-mode computations. The tapers were designed using the same coupled-mode model of the reflected power.

Figure 7. Partial worst-case values over the operating frequency generated by using the slower, but more accurate
brute-force computations.

To give a little more insight into the performance of the three designs, the approximate worst-
case reflection is plotted, over the shape parameter, as ω varies over the interval [0.224, 0.236],
in Figure 6. Figure 7 shows the values computed using the brute-force method. This ‘partial’
worst-case values were generated by fixing a value of ω and approximately computing the worst
reflection over all allowed taper shape perturbations. One can observe from Figure 6 that the
partial worst-case value for the robust taper is approximately flat over the uncertain ω region,
which is a desired characteristic of a robust (minimax) solution.

6. Conclusions

In this article, a new approach to non-convex robust optimization is presented, which is applied to
the challenging problem of designing robust taper transitions to ‘slow-light’ periodic waveguides.
The robust optimization algorithm is based on multi-scenario optimization with iterative sampling
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of uncertain parameters, and uses fast and accurate coupled-mode computations in order to quickly
explore different taper designs. The approach also uses the idea of successive refinement in order
to avoid poor locally optimal points and to improve design robustness to taper shape uncertainty.

Experimental results verify that the obtained robust tapers perform well over a given set of
parameter variations, while the optimized tapers that do not take parameter variation into account
only perform well under nominal conditions. Robust performance of the designs is verified using
an accurate, but much more expensive, method for evaluating the reflection coefficient.

The techniques presented in this article should be well suited for robust optimization of other
non-convex PDE-based problems that lack most analytical guarantees. The authors are plan-
ning to apply robust optimization methods to the complex problems of microcavity design and
superlensing. Other applications are also being considered.
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Notes

1. Our original derivation (Johnson et al. 2002) did not include an explicit shape function s(u). However, it was noted
that the coupling matrix elements were simply proportional to the taper rate, and this is what allows us to pull out the
taper-rate dependence as an s′(u) term in the integral.

2. It is convenient to use dimensionless frequency units of 2πc/!0, where c is the speed of light in vacuum, because of
the scale-invariance of Maxwell’s equations (Joannopoulos et al. 1995).
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