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Abstract 
In this paper is described how to efficiently solve a robust op- 
timal control problem using recently developed primal-dual 
interior-point methods. Among potential applications are 
model predictive control. The optimization problem consid- 
ered consists of a worst case quadratic performance criterion 
.over a finite set of linear discrete-time models subject to in- 
equality constraints on the states and control signals. The 
scheme has been prototyped in Matlab. To give a rough idea 
of the efficiencies obtained, it is possible to solve problems 
with more than 1000 variables and 5000 constraints in a few 
minutes on a workstation. 

1 Introduction 
In recent years rapid progress has been made in solving con- 
vex optimization problems. Especially the development of 
interior-point methods have contributed to this. They have 
their roots in Karmarkar's method to solve linear programs, 
[Kar84], and they were extended to nonlinear convex prob- 
lems by Nesterov and Nemirovski, [NN94]. 

One particular class of these convex problems are linear 
matrix inequalities, which have seen many applications in 
control theory, e.g. (BEGFB941. Some other convex opti- 
mization problems in control are described in [BBSl]. 

Recently specially tailored interior-point methods for 
model predictive control have appeared. These algorithms 
solve the resulting quadratic program by utilizing the spe- 
cial structure of the control problem. By ordering the equa- 
tions and variables in a certain way the linear system of 
equations that has to be solved for the search directions be- 
comes block-diagonal, [Wri93, Wri961. By further examining 
this structure it is possible to diagonalize the matrix using 
a Riccati-recursion. This makes the computational burden 
to grow only linearly with the time horizon, [RWR97]. The 
scope of this paper is to extend these results to robust model 
predictive control. The robustness is obtained by considering 
worst case performance over a finite set of models. Numer- 
ical algorithms for robust model predictive control has also 
been proposed in [Bad96]. 
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The remaining part of the paper is organized as follows. 
In Section 2 the robust optimal control problem is described. 
In Section 3 the primal-dual interior-point method is intro- 
duced, and it is shown how it can be made to work in an 
efficient way. Then in Section 4 the method is evaluated on 
a double-tank example. Finally, in Section 5 some conclud- 
ing remarks are given. 

2 Control Problem 
In this section the control problem is described. First the dy- 
namic model is described together with the state and control 
signal constraints. Then the performance criterion is intro- 
duced. Finally is discussed how the problem can be rewritten 
as a robust quadratic program. 

Consider the following linear and time-varying models 
f o r i = l ,  . . .  , L :  

~ i ( k  + 1) = Ai(k)~,(k) + Bi(k)~(k), k = 0 , .  . . , N - 1 
(1) 

di(k) 1 Ci(k)~i(k) + Di(k)~(k), IC = 0 , .  . . , N (2) 

where z,(k) E W" is the state, u(k) E Wm is the control sig- 
nal, and where A, (k )  E W"'", B,(k)  E ItnXm, C;(k)  E W p x " ,  
D,(k)  E RPXm, and d , ( k )  E RP. The initial state ~ ( 0 )  is 
given and could be different for each model. The inequality 
in (2) should be interpreted as component-wise inequality. 
Notice that this model is rich enough to describe most ob- 
jectives encountered in model predictive control, see [ML97]. 
In Section 3 it will be seen how state constraints, control 
signal constraints and slew rate constraints on the control 
signal can be incorporated. Since the model is time-varying 
also non-linear models can be considered as in [Wri93]. This 
will not be pursued further in this paper. 

Introduce the following performance criteria: 

(3) 

They could easily be extended to contain linear terms, but 
this is not done for clarity of exposition. The following opti- 
mization problem is the robust optimal control problem that 
will be considered in this paper: 

minimize y 
subject to +i 5 7, i = 1 , .  . . , E 
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and (1-3). This can with suitable definitions of matrices and 
variables be written as the robust quadratic program: 

minimize 7 (4) 
subject to xTQax 5 y, ( 5 )  

F x = g ;  C x s d  (6) 

i = 1 , .  . . , L 

where E W(N+l)(Ln+m), E W(N+I)Ln, d g W(N+l)LP. How 
to do this is shown in Appendix A. 

- 0  -1T 0 0 0 0 0  
-1 0 I XTQT 0 0 0 
O S M  0 0 0 0  
0 QX 0 Q,  FT CT 0 
O O O F  0 0 0  
o o o c o o I  

- 0  0 0 0 0 T L  

3 Interior-Point Method 
In this section the Karush-Kuhn-Tucker (KKT) conditions 
for the robust quadratic program are presented together with 
an interior point-method that finds a solution for them. Spe- 
cial attention is given to how to compute the search direction 
for the Newton steps in an efficient way. 

The KKT conditions for the robust quadratic program 
in (4-6) are, see [Wri97]: 

L L 

C Q ~ , U ~ X  + F ~ A  + C ~ X  = 0; Cpa = 1 
,=l *=1 

1 T T  S X  Q * z + s ~ = ~ ,  i = l ,  ... , L  

C x + t = d ;  F x = g  
= 0; X a t a  = 0 

and (p,  A, s, t )  2 0, where 7 and x are the primal variables, 
T E W(N+')L" is the dual variable associated with the equal- 
ity constraint, p E WL and X E W(N+l)Lp are the dual vari- 
ables associated with the inequality constraints, and where 
s E WL and t E W(N+l)Lp are the slack variables. Define 

Q = [Ql . . .  QL]  ; X = block diag,,l, , L ( x )  
L 

Q,  = CQa/lz; 
M = diaga=i,  pa); 

S = diag,=l, , L ( S * )  
a = l  

L = diag,=l,.. , (N+I)L~(&)  

Introduce F(z)  as 

AY-  
AP 
As 
A x  
AT 
AA 
At  

' 0  -1T 0 0 0 0 0  
-1 0 I +XTQT 0 0 0 
O O M  0 0 0 0  
0 0 0 Q,  FT CT 0 
0 0 0  F 0 0 0  
0 0 0  C 0 0 1  

- 0  0 0 0 0 O L  

= r (7) 

- 
7 
P 
S 

T 
X 
t 

x -  

where t = (7, p, s, x ,  T ,  A, t ) .  Then the KKT conditions can 
be written as T ( z )  = 0 and (p ,  A, s, t )  2 0. Primal-dual 
interior-point methods generate iterates 9, j = 1 , 2 , .  . . , 
with ( p 3 ,  X3, s3, t 3 )  > 0 that approach the solution of the 
KKT conditions as j + CO. The search directions are Newton- 
like directions for the equality conditions. Dropping the it- 
eration index j and denoting the current iterate by z ,  the 
general linear system to be solved for the search direction 

'- 1- 
0 
0 
0 
9 
d 
0 

where T = diagiZl,.,,  ti). Notice that the matrix of 
the linear system of equations is the Jacobian of the non- 
linear equations specifying the KKT conditions. Different 
primal-dual methods are obtained depending on what right- 
hand side vector T is used. The method used in this pa- 
per is a so-called predictor-corrector infeasible-interior-point 
method and it is described in [Wri97, p. 1661. This algo- 
rithm typically converges to an accuracy where the 2-norm 
of the constraints are smaller than lop4 in about 20 steps 
irrespective of the size of the problem. The largest compu- 
tational burden is in computing the search direction. The 
rest of this section is devoted to how this can be done in an 
efficient way. Notice that 

At = -CAx - Cx - t  + d  

AA = -T- ' (L( t  + A t )  - a v l )  

from (7) By substituting this back into (7) the following 
equation is obtained: 

0 -lT 0 0 0 
-1 0 I XTQT 0 
0 S M  0 0 
0 Q X  0 Q,+CTT-'LC F' I 0 0 0  F 0 

where explicit expressions for the right hand side is omitted 
due to space limitations. The bottom right 2 x 2 block matrix 
is much larger than the rest of the matrix, so it makes sense 
to partition the problem in the following way: 

where the definition of the matrices and vectors is obvious 
from what was said above. Making use of the special struc- 
ture of T12 some calculations show that AI  and A2 can be 
obtained by solving 

The dimension of the first set of equations is (N + 1)(2Ln + 
m), whereas the second set of equations has dimension 2L + 
1. Hence the second set can be solved with any standard 
solver. The first set can be efficiently solved using a Riccati 
recursion in a similar way as in [RWR97]. This is described in 
more detail in Appendix B. It is there shown that the Riccati 
recursion for the robust case is L2 times bigger than for the 
non-robust case. However, the computational complexity 
still grows only linearly with N. 
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Figure 1: The double-tank process. 
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Figure 2: Plot of the performance of the robust optimal 
control signal. 

4 Example 
In this section the optimization scheme presented in the pre- 
vious sections is evaluated on a a double-tank process. Com- 
parisons are made between the robust optimal solution and 
a non-robust nominal optimal solution. 

The double-tank process has been described in [.&086]. 
It is depicted in Figure 1. For short reference the model will 
be given below. The process can be described with 

where hl and hp are the levels in the upper and lower tank 
respectively, q is the water flow into the upper tank, A' = 
Az = 2734 x 10-6m2 are the areas of the cross-sections of 
the tanks, and a1 = a2 = 7 x 1OP6m2 are the areas of the 
cross-sections of the outlet pipes. The height of the tanks are 
0.2 m, and the level of the tanks are measured with sensors 
that give an output voltage y; proportional to the level. The 
proportional constant is 50 V/m. Thus the sensor output is 
limited within the range [0,10] V. Further the flow q is given 
by q = ku, where U is the pump voltage-input and where 
k = 27 x 10-'m3/Vs. The voltage U is limited such that 
U E [0,10] V. Linearizing around the steady state solution 
y! = 5V and uo = 1.82V yields 

where cy1 = cy12 = a2 = 0.0179s-' and p = 0.0494s-'. NQ- 
tice that Au E [-1.82,8.19]V and that Ay; E [-5,5]V. The 
time constants of the tanks are approximately 60s. Hence 
a reasonable sample interval is T = 2s. Sampling with zero 
order hold yields the discrete time equation 

Ay(k + 1) = +A.y(k) + rAu(k)  

where 

0.9648 0 0.0971 
= [0.0345 0.96481 ' = [0.0017] 

To further demonstrate the flexibility of the optimization 
problem considered a slew-rate constraint will be imposed 
on U ,  i.e. the absolute value of du/dt will be limited to lV/s. 
This can be accommodated by augmenting the state: 

A y ( k + 1 )  0 0 Ay(k) 
[At(k + l)] = [ O  O]  [ 4 ( k ) ]  -k [f] 

How the matrices Ai, B; , Ci , and Di , and the vector d; of the 
robust optimal control problem are defined in more detail is 
omitted because of space limitations. Here it is only noted 
that different matrices are obtained for different indexes i by 
taking cy1, ~ ~ 1 2 ,  a, and /3 equal to their nominal values plus 
a random normally distributed term with relative standard 
deviation of 0.25. The performance indexes considered are 

N 

4; = Ayi(k), i = 1,2,. . . , L 
k=O 

The result for$ = 5 and N = 50 and an initial value of 
y(0) = [5 I ]  V is shown in Figure 2. Notice how the 
different constraints become active. First the slew rate con- 
straint on the control signal is active. Then the control sig- 
nal reaches its maximal value at 8s. After another 8s the 
maximum level is reached in the upper tank for one of the 
models. This is balanced with a constant control signal of 
4V for about 20 seconds. Then the control signal is lowered 
to its minimal value so that the level of the upper tank can 
decrease and approach the same level as the lower tank level 
at the final time of 100s. 

To get a feel for how different a robust optimal design is 
as compared to a nominal design, i.e. the design obtained 
when L = 1, both robust and nominal optimal solutions 
were computed for a range of values of the upper and lower 
saturation levels of the upper tank. More precisely the con- 
straints were modified to Ay1 E [-Ay,naX,A~max],  where 
Ay,,,a, = (0.5, I, 1 . 5 , .  . . ,6). The result of this is presented 
in Figure 3, where the left plot shows the robust and nominal 
solutions evaluated on only the nominal model, and where 
the right plot shows the the robust and nominal solutions 
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Figure 3: Tradeoff curve between performance index y and 
the largest absolute value H of the deviation of the level in 
the upper tank from half level. 

evaluated on the worst case model. It is seen that the robust 
solution is worse than the nominal solution when evaluated 
on the nominal model. However, the robust solution outper- 
forms the nominal solution when evaluated on the worst case 
model. 

This section is concluded with the comment that there 
is not yet any good theoretical explanation of how good the 
primal-dual interior-point method used works in general. For 
example it was found that scaling the variables by a factor 
of 0.2 made a big impact on the speed of the solver. 

5 Conclusions 
In this paper it has been shown how in an efficient way a 
primal-dual interior-point method can be used to solve ro- 
bust optimal control with potential applications to model 
predictive control. It has been shown that the computational 
complexity grows linearly with the time horizon N just as 
for the non-robust case. However, the Riecati recursion is L2 
times larger for the robust case. Still it is possible to solve 
large problems in a reasonable time on a work station. I t  
is believed that more efficient implementations can be made. 
Also it is believed that the size of the Riccati recursion can be 
brought down to the same size as for the non-robust case if 
an approximate Riccati recursion is used as a pre-conditioner 
for a conjugate gradient method This is a topic for further 
research. 
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6 Appendix A 
In this appendix it shown how the robust optimal control 
problem can be rewritten as a robust quadratic program. To 
this end introduce the extended state and system matrices 

4 k )  = block diag,=1, ... , L ( A , ( ~ ) )  
C(k)  = block diagi,l ,... , L ( C , ( ~ ) )  

B1 ( k )  D1 ( k )  

BL ( k )  D L  ( k )  
5 1  tk) d l  ( k )  

X L ( k )  dr. ( k )  

B ( k ) =  [ ; 1 ;  D ( k ) =  [ ; ] 
x ( k )  = [ i ] ; d ( k )  = [ i ] 

Then it holds that 

~ ( k  + 1) = A ( k ) ~ ( k )  + B ( k ) ~ ( k ) ,  k = 0,. . . , N - 1 
d ( k )  2 C ( k ) x ( k )  + D(k)u(k) ,  k = 0,. . . , N 

Define 
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where the identity matrix in the first block row is in the ith 
block column, and where the identity matrix in the last block 
row is in the (L + 1)th block column, Then it holds that 

4; = s x  1 T  Qii,  Qi = block diagk=o, ... ,N (ET&i(k)Ei) 

Let 

r~ 0 0 0 * e .  01 
-A(O) -B(O) I 

F = /  : 
. . .  0 "I 

l o  . . .  - A ( N -  1) - B ( N -  1) I O ]  

g = [ X * ( O )  0 . . .  O I T  

Then 
F x = g ;  C x s d  

and hence it has been shown how to rewrite the robust op- 
timal control problem as the robust quadratic program in 
(4-6). 

7 AppendixB 
In this appendix it will be shown how the search direction for 
the Newton step can be efficiently computed using a Riccati 
recursion. Write (8) as 

where 

+ [CW) mIT C ( k )  [C(W D(k)] 

and where C ( k )  is defined via 

block diagk,o,.., , j ~ ( C ( k ) )  = LT-' 

It can be shown using induction that there exist sequences of 
matrices n(k) E ItLnxLn, and @(k) E W L n x ( L + ' )  such that 

*(k) + II(k)5(k) = *(k) 

These can be recursively computed from 

W N )  = Pl(N) - P l Z ( N ) P 2 m " N )  
* ( N )  = Fx(N) - Pn(N)P,-'(N)F,(N) 

G(k - 1) = Pz(k - 1) + BT(k - l )II(k)B(k - 1) 

lI(k - 1) = Pl(k - 1) + AT(k - l)lT(k)A(k - 1) 

- (&(k - 1) + AT(k - l )n (k )B(k  - 1)) 

x G-'(k - 1) 

x (Piz(k - 1) + AT(k - l)II(k)B(k - 1)) 

- (PIz(~ - 1) + AT(k  - l ) n ( k ) B ( k  - 1)) 

x G-'(k - l)[Fu(k - 1) 

T 

*(k - 1) = Fx(k - 1) 

- BT(k - 1) (l-I(k)F,(k - 1) - *@))I 
- AT(k - 1) ( lI(k)F,(k - 1) - *(k)) 

where II (k)  obeys a backward Riccati recursion. The solution 
to the linear set of equations can then be obtained from the 
forward recursion 

z(0) = Fn(0) 

i l (k  - 1) = G-'(k - l)[-u T (k - 1) - [PlZ(k - 1) 

- BT(k - 1) (rI(k)F,(k - 1) - * ( I C ) ) ]  

+ A T @  - l )n(k)B(k - l)]z(k - 1) 

f(k) = A(k - 1)%(k - 1) + B(k - l)ii(k - 1) + Fx(k - 1) 
%(k) = -II(k)O(k) + *(k) 

Notice that the dimension of the matrix IT(k) is L2 times 
bigger for the robust case as compared to the non-robust 
case. 
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