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Abstract—In Chebyshev finite-impulse response (FIR) equal-
ization, we design an FIR filter that minimizes the Chebyshev
equalization error, i.e., the maximum absolute deviation between
the equalized and the desired frequency response functions,
assuming the unequalized response function is known exactly.
In robust Chebyshev FIR equalization, we take into account
uncertainty in the unequalized response function, described as
a set of possible values for the unequalized response at each
frequency, by designing an FIR filter that minimizes worst-case
Chebyshev equalization error over all possible unequalized re-
sponse functions. When the uncertainty in unequalized response
function is described by a complex uncertainty ellipsoid, at each
frequency, we show that the robust Chebyshev FIR equalization
design problem can be formulated as a semidefinite program
(SDP), and therefore efficiently (and globally) solved. When the
uncertainty is given by a complex disk, the design problem can be
formulated as a second-order cone program (SOCP), which can
be solved almost as fast as the nominal Chebyshev equalization
problem (ignoring uncertainty). The robust equalizer design
method is demonstrated with a numerical example.

I. INTRODUCTION

A. Chebyshev FIR equalization

Let G(ω) ∈ C, defined over [0, 2π], be an unequalized
frequency response, where ω is the discrete-time frequency
variable. In an equalizer design problem, we are given a
desired frequency response Gdes(ω), and want to design an
FIR (finite impulse response) equalizer filter with frequency
response H(ω) so that the product H(ω)G(ω) approximates
Gdes(ω) over [0, 2π] as well as possible:

H(ω)G(ω) ≈ Gdes(ω) for all ω ∈ [0, 2π].

(A common choice for Gdes(ω) is a delay, Gdes(ω) = e−iDω;
in this case, equalization is approximate deconvolution up to
delay D.) In practice we often want to achieve this approxi-
mation at the frequencies ω1, . . . , ωM sampled over [0, 2π]:

HmGm ≈ Gdes
m , m = 1, . . . , M, (1)

where we use the shorthand notation

Hm = H(ωm), Gm = G(ωm), Gdes
m = Gdes(ωm).
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We refer to m as the frequency index. We judge the perfor-
mance of the equalizer by the maximum absolute deviation
over the sampled frequencies [1]:

C(h) = max
m

∣∣GmHm − Gdes
m

∣∣ .

In this paper, we focus on constructing equalizers using
FIR filters with real coefficients, and therefore assume that the
unequalized frequency responses are Hermitian; our results are
readily extended to handle the case where the FIR coefficients
are complex. We use h = (h0, h1, . . . , hn−1) ∈ R

n to denote
the impulse response of the FIR equalizer filter H : [0, π] →
C, where

H(ω) =

n−1∑
k=0

hke−ikω.

Note that H(ω) is linear in the coefficients h:

H(ω) = w∗h,

where (·)∗ denotes Hermitian transpose and

w = (1, eiω, . . . , ei(n−1)ω) ∈ C
n.

The maximum absolute deviation can now be expressed as

C(h) = max
m

∣∣Gmw∗
mh − Gdes

m

∣∣ ,

where wm = (1, eiωm , . . . , ei(n−1)ωm) ∈ C
n.

The Chebyshev FIR equalizer design problem is to find filter
coefficients h ∈ R

n that minimize the maximum absolute
deviation:

minimize C(h), (2)

where the problem data are the complex numbers Gm, Gdes
m ,

m = 1, . . . , M . Any solution of (2) is called a nominal optimal
equalizer and denoted h�

nom.
When expressed in terms of the real and imaginary parts of

the data, this problem is a second-order cone program (SOCP)
[2]–[4]. Therefore, it can be readily solved using interior-point
methods; see, e.g., [2], [5], [6]. Semidefinite programming
(SDP) techniques have also been used in the FIR filter design;
see, e.g., [7].
This equalizer design problem is illustrated in figure 1,

where the equalizer H processes the output of the function G.
The problem remains the same even if the order of the
equalizer and given function is reversed. In this case, H is
called a precoder.
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Fig. 1: Channel equalization.

B. Robust Chebyshev FIR equalization

The unequalized frequency response G is often not known
exactly. As a representative example, when equalizing a
communication channel, the unknown channel response is
estimated by transmitting a known training sequence through
the channel and then approximating G based on the received
signal, so the estimated channel response is uncertain due
to the imperfections in the statistical estimation procedure.
Another example arises in audio applications, where we want
to design an equalizer to improve sound quality in an uncertain
environment, or at several physical locations simultaneously.
The performance of Chebyshev FIR equalization can be

sensitive to the uncertainty or variation in the unequalized
frequency response. It is often desired to account for this
uncertainty when designing an equalizer (or precoder).
The goal of robust equalization is to choose filter coef-

ficients h such that the equalized frequency response does
not deviate much from the desired frequency response despite
variations in the unequalized response Gm,m = 1, . . . , M . We
assume that each Gm is uncertain, but belongs to a known
uncertainty set Gm. In the worst-case robust optimization
approach (with the uncertainty set described above), we judge
the objective by its worst-case value over all possible data
Gm ∈ Gm,

Cwc(h) = max
m

sup
Gm∈Gm

∣∣Gmw∗
mh − Gdes

m

∣∣ ,

which is called the worst-case (Chebyshev) maximum absolute
deviation. The goal of the robust Chebyshev FIR equalizer de-
sign problem is to find the FIR filter that minimizes the worst-
case maximum absolute deviation (over the given uncertainty
model):

minimize Cwc(h). (3)

Any solution of (3) is called a robust optimal equalizer and
denoted h�

rob.
We note that this problem is convex, since the objective is

the pointwise supremum of a family of convex functions [8,
Chap. 3]. However, it is not clear how to solve this problem
directly, since the objective is given by a supremum over an
infinite set.
We consider robust Chebyshev FIR equalization with an

ellipsoidal model of uncertainty where the frequency response
at each discrete frequency is uncertain but known to be inside
an ellipse in the complex plane. The ellipse can be chosen
by considering the distribution of the frequency response
estimation error. As an example, when the error is complex
Gaussian, we can take a confidence region as the uncertainty
set. As another example, when the amplitude and phase of the
error are independent and uniform distributions, the support

of the error distribution becomes a disk. In this special case,
we say that the uncertainty set is a disk in the complex plane.
The main goal of this paper is to show that the associ-

ated robust equalization problem (3) can be formulated as a
semidefinite program (SDP), which interior-point algorithms
can solve with great efficiency. (See, e.g., [9] for more on
semidefinite programming.) In the disk uncertainty case, the
problem can be further simplified as a second-order cone
program (SOCP), which interior-point algorithms can solve
even more efficiently. (Here the computational effort to solve
the robust equalization problem is about the same as for
the nominal problem that ignores the uncertainty). When the
uncertainty model is not given in the ellipsoidal form, we can
approximate it with an ellipsoidal set and proceed with the
given robust equalization approach.
The computational complexity of the nominal equalization

problem is O(Mn2); in particular, it grows linearly with the
number of frequency samples, and as the square of the order
of the filter. In fact, the computational complexity of the
robust equalization problem, with disk and general ellipsoidal
uncertainty, is also O(Mn2), but with larger constants hidden
in order notation.

C. Related work

Robust equalization has been studied in the literature since
the 1980’s [10], [11]. More recently, ideas from the (worst-
case) robust optimization [12]–[14] have been applied to
least-squares equalization [15, Sec. 3.4], minimax mean-
squared-error (MSE) equalization [16], zero-forcing equaliza-
tion (ZFE), minimum-mean-squared-error (MMSE) equaliza-
tion, and MMSE with decision feedback equalization (MMSE-
DFE) [17]. The previous work in robust equalization uses the
least-squares metric to judge the approximation between the
equalized response and the desired response.
Similar ideas of using the worst-case robust optimization

have been successfully applied to related signal processing
problems such as: robust filtering [18], [19], robust parameter
estimation [20], [21], robust matched filtering [22], [23], robust
minimum variance beamforming [24]–[28].

II. ROBUST EQUALIZATION WITH ELLIPSOIDAL MODEL

A. Ellipsoidal uncertainty model

We assume that the uncertainty in Gm is described by an
ellipse in the complex plane:

Gm ∈ Gm = {Gnom
m + pmu1 + qmu2 | u2

1 + u2
2 ≤ 1}, (4)

where Gnom
m ∈ C is the nominal (estimated) value of the

frequency response at frequency ωm, pm and qm ∈ C are
complex numbers that describe the shape of the uncertainty
ellipse, and u1, u2 ∈ R are free parameters. Without loss of
generality, we also assume that qm = iμpm, for some μ ∈ R.
This is the same as saying that the angle between the complex
numbers pm and qm is 90◦, i.e., Re(p∗mqm) = 0. We take
μ ≥ 1, so pm is the principal axis of the ellipse.
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Am(h) =

⎡
⎢⎢⎣

λm 0 0 Re pmw∗
m

h Im pmw∗
m

h
0 λm 0 Re qmw∗

m
h Im qmw∗

m
h

0 0 t − λm ReGnom
m

w∗
m

h − Gdes
m

ImGnom
m

w∗
m

h − Gdes
m

Re pmw∗
m

h Re qmw∗
m

h ReGnom
m

w∗
m

h − Gdes
m

t 0
Im pmw∗

m
h Im qmw∗

m
h ImGnom

m
w∗

m
h − Gdes

m
0 t

⎤
⎥⎥⎦ ∈ R

5×5. (5)

As a special case, when ρm = |pm| = |qm|, the ellipse Gm

becomes a disk of radius ρm in the complex plane and can be
equivalently expressed as

Gm = {Gnom
m + ρmz | |z| ≤ 1}, (6)

where z ∈ C is a free parameter.

B. SDP formulation with ellipsoidal uncertainty
The main result of this paper is based on the fact that the

robust Chebyshev FIR equalizer design problem (3) with the
ellipsoidal uncertainty model (4) can be reformulated as the
problem

minimize t
subject to Am(h) � 0, m = 1, . . . , M,

(7)

where the matrix Am(h) ∈ R
5×5 is given in (5). The

optimization variables in the problem are t ∈ R, h ∈ R
n, and

λ1, . . . , λM ∈ R. The details of the equivalence between (3)
and (7) when the uncertainty sets G1, . . . ,GM are ellipsoidal
are given in Appendix A.
The objective of problem (7) is to minimize a linear function

over M linear matrix inequalities, which is a semidefinite
program (SDP). Semidefinite programs are computationally
tractable [9], and therefore the robust Chebyshev FIR equaliza-
tion with the ellipsoidal uncertainty model is tractable. (Sev-
eral high quality solvers for SDPs are available as open-source
software, e.g., SeDuMi [29], SDPT3 [30], and DSDP5 [31].)
We can see that the complexity is O(Mn2) as follows. First

we note that interior-point methods almost always converge
in a few tens of steps; in particular we can consider the
number of steps as being constant [8]. In each step of an
interior-point method, a set of linear equations in n variables
has to be solved; the dominant cost is actually forming the
coefficient matrix, not solving the resulting equations. This
cost is O(Mn2) (using the fact that the LMIs have a fixed
size, i.e., 5 × 5).

C. SOCP formulation with disk uncertainty
With the disk uncertainty model in (6), we can find a simpler

formulation of the robust Chebyshev FIR equalizer design
problem (3) than the SDP (7). Specifically, with (6) we can
reformulate (3) as

minimize t
subject to |Gnom

m w∗
mh − Gdes

m | + ρm|w∗
mh| ≤ t

m = 1, . . . , M,

(8)

where the optimization variables are t ∈ R and h ∈ R
n.

This problem is equivalent to an SOCP, when expressed
in terms of the real and imaginary parts of the variables,

which can be solved efficiently and globally using interior-
point methods. The computational complexity is the same
order, O(Mn2), as the nominal equalization problem (2) and
the robust equalization problem (7), but with a constant that
lies in between these two.
Next we show the equivalence between problem (3) with

the disk uncertainty and the SOCP (8). We observe that we
can introduce the epigraph variable t in problem (3) to obtain

minimize t
subject to supGm∈Gm

∣∣Gmw∗
mh − Gdes

m

∣∣ ≤ t,

where m = 1, . . . , M . It suffices to show that

sup
Gm∈Gm

∣∣GmHm − Gdes
m

∣∣ =
∣∣Gnom

m Hm − Gdes
m

∣∣ + ρm|Hm|,

where Hm = w∗
mh and the supremum is taken over all Gm ∈

Gm given in (6). Using the triangle inequality, we have
∣∣(Gnom

m
+ ρmz)Hm − Gdes

m

∣∣ ≤
∣∣Gnom

m
Hm − Gdes

m

∣∣ + |ρmzHm|

=
∣∣Gnom

m
Hm − Gdes

m

∣∣ + ρm|Hm|.

Here the equality holds with the choice of z = eiφ where the
angle is

φ = �
(
Gnom

m Hm − Gdes
m − Hm

)
.

This gives us the problem formulation (8), and completes the
equivalence proof.
We give a simple interpretation of the relation

sup
Gm∈Gm

∣∣HmGm − Gdes
m

∣∣ =
∣∣HmGnom

m − Gdes
m

∣∣ + ρm|Hm|.

We add to the original objective a weighted magnitude of
the equalizer’s frequency response that penalizes designs with
large frequency response, which would amplify uncertainties
in the unequalized response. Therefore, this robust design
approach can be viewed as a regularization of the equalizer.
(A similar observation is made in the context of robust
beamforming with uncertain weights; see, e.g., [28].)

III. NUMERICAL EXAMPLE
As a simple illustrative example, we design an FIR equalizer

of length n = 20 for a channel with the nominal impulse
response

gnom = 1/2 (1/4, 1/2, 0, 1, 1/4).

and the nominal frequency response Gnom obtained by tak-
ing the Fourier transform of gnom. We sample the response
at M = 100 frequencies ωm = π(m − 1)/M , where
m = 1, . . . , M . We take the desired frequency response as
Gdes = e−iDω, where the delay is D = 8. The magnitude and
the phase of the nominal frequency response Gnom, together
with the desired frequency response, are shown in figure 2.
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Fig. 2: Nominal frequency response of the channel (solid
curve) versus the desired frequency response (dash-dotted
curve). Top. Magnitude. Bottom. Phase.

We consider ellipsoidal uncertainty in the channel frequency
response Gm given by

Gm = {Gnom
m + pmu1 + qmu2 | u2

1 + u2
2 ≤ 1},

where the uncertainty radius ρ is equal for all response
samples m = 1, . . . , M .
We solve the nominal Chebyshev FIR equalization prob-

lem (2) and a family of robust equalization problems (8) for
various values of ρ using the CVX software package [32], a
Matlab-based modeling system for convex optimization. (The
CVX package internally uses SDPT3 [30] as the solver.)
For a particular value of ρ, the worst-case maximum abso-

lute deviation Cwc of an equalizer h is given by

Cwc(h) = max
m=1,...,M

(∣∣Gnom
m w∗

mh − Gdes
m

∣∣ + ρ|w∗
mh|

)
. (9)

The worst-case maximum absolute deviation versus ρ is shown
in figure 3. We note that the robust optimal equalizer performs
better than the nominal one in the worst-case sense, i.e., it
always has a lower Cwc value.
We fix the value of uncertainty radius ρ = 0.1, and

compute the nominal and robust optimal equalizers for this
case. Figure 4 shows impulse responses of the nominal optimal
and robust optimal equalizer. Figure 5 shows the nominal
equalized response H(ω)Gnom(ω) (for the nominal and robust
cases) and the desired response Gdes(ω). Figure 6 shows the
worst-case equalized response H(ω)Gwc(ω) (for the nominal
and robust cases) and the desired response Gdes(ω), where
we have found the worst-case uncertainties for both the
nominal optimal and robust optimal equalizers. The nominal
optimal equalizer performs worse than the robust one given
the uncertainty in the channel. In addition, the performance
of the robust optimal equalizer does not degrade very much
over all the possible channel realizations compatible with the
uncertainty model.
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Fig. 3: Worst-case maximum absolute deviation (MAD)
for the nominal h�

nom (dashed curve) and the robust
optimal equalizer h�

rob (solid curve).
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Fig. 4: Nominal (dashed curve) and robust (solid curve)
equalizer impulse responses.
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Fig. 5: Nominal and robust equalized transfer functions
(dashed and solid curve, respectively) versus the ideal
transfer function (dash-dotted curve) given the nominal
channel. Top. Magnitude. Bottom. Phase.
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IV. CONCLUSIONS

In this paper, we have shown that the worst-case robust
Chebyshev FIR equalization with ellipsoidal uncertainty in the
unequalized frequency response can be cast as an SDP; in the
case of disk uncertainty, the robust equalization problem can
be cast as an SOCP. Both of these problems can be solved with
O(Mn2) operations, which is the same order as the nominal
equalization problem (which can also be posed an an SOCP).
(The constants, however, are different.) The SOCP formulation
(in the disk uncertainty case) can be interpreted as a weighted
regularization of the nominal equalization problem.
The robust Chebyshev FIR equalization approach can be

readily extended to robust filtering and equalization with
complex FIR coefficients. Another straightforward extension
is robust Chebyshev FIR equalization of multiple channels.
Finally, the extension to robust Chebyshev FIR equalization
with general nonseparable uncertainty models on the fre-
quency responses of the unequalized channel appears to be
very challenging. (In this paper, we have assumed that the
frequency responses are subject to separable variations over
the frequencies.)

APPENDIX

A. SDP formulation

We show the equivalence between problem (3) with an
ellipsoidal uncertainty set and the SDP (7). We start by
observing that we can introduce the epigraph variable t in (3)
to obtain

minimize t
subject to supGm∈Gm

∣∣Gmw∗
mh − Gdes

m

∣∣ ≤ t

m = 1, . . . , M,

where the supremum is taken over all Gm ∈ Gm given in (4).
The equivalence now follows directly from the following

observation (which we will establish below):

sup
Gm∈Gm

|Gmw∗
mh − Gdes

m | ≤ t

if and only if there exists λ ∈ R such that⎡
⎢⎢⎣

λ 0 0
0 λ 0
0 0 t − λ

Fm

FT
m tI

⎤
⎥⎥⎦ � 0, (10)

where Fm is given by

Fm =

⎡
⎣

Re pmw∗
mh Im pmw∗

mh
Re qmw∗

mh Im qmw∗
mh

ReGnom
m w∗

mh − Gdes
m ImGnom

m w∗
mh − Gdes

m

⎤
⎦ .

We start by noting that

sup
Gm∈Gm

∣∣Gmw∗
mh − Gdes

m

∣∣ ≤ t

if and only if |Gmw∗
mh − Gdes

m | ≤ t for all Gm ∈ Gm, i.e.,
the following implication holds:

u2
1 +u2

2 ≤ 1 =⇒ |(Gnom
m +pmu1 +qmu2)w

∗
mh−Gdes

m )| ≤ t.
(11)

We introduce v = (u1, u2, 1) ∈ R
3 to express u2

1 + u2
2 ≤ 1 as

vT

⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ v ≤ 0.

The right-hand side of the implication (11) is equivalent to

|(Gnom
m + pmu1 + qmu2)w

∗
mh − Gdes

m )|2 ≤ t2,

which is in turn equivalent to

(FT
mv)T (FT

mv) − t2 ≤ 0.

Dividing the right-hand side of the implication by t > 0 and
re-arranging terms, we obtain

vT

⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ v ≤ 0 =⇒

vT

⎛
⎝FmFT

m

t
−

⎡
⎣

0 0 0
0 0 0
0 0 t

⎤
⎦

⎞
⎠ v ≤ 0.

Using the S-procedure [8, App. B], we can see that this
implication between two quadratic forms is equivalent to the
existence of λ ∈ R such that λ ≥ 0 and

λ

⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦ − Fm(tI)−1FT

m +

⎡
⎣

0 0 0
0 0 0
0 0 t

⎤
⎦ � 0.

Using the Schur complement technique [8, A.5.5], we can now
see that the implication is equivalent to

λ ≥ 0,

⎡
⎢⎢⎣

λ 0 0
0 λ 0
0 0 t − λ

Fm

FT
m tI

⎤
⎥⎥⎦ � 0.

The condition λ ≥ 0 is also enforced by the matrix inequality
and thus can be dropped to obtain (10), which completes the
proof.
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