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Abstract

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncer-
tainty, meaning that the MV efficient portfolios constructed with an estimate of the
model parameters (i.e., the expected return vector and covariance of asset returns)
can give very poor performance for another set of parameters that is similar and sta-
tistically hard to distinguish from the one used in the analysis. Robust MV analysis
attempts to systematically alleviate the sensitivity problem, by explicitly incorporating
an uncertainty model on the parameters in a portfolio selection problem and carrying
out the analysis for the worst-case scenario under the model.

This paper concerns robust MV analysis with a separable uncertainty model, in
which uncertainty in the mean return vector is independent of that in the covariance
matrix, a model which has been widely used in the literature. The main focus is on
the (worst-case) robust efficient frontier, i.e., the optimal trade-off curve in terms of
worst-case MV preference, as the extension of the efficient frontier to the worst-case
MV analysis setting. We establish some basic properties of the robust efficient frontier,
describe a method for computing it, and give several computationally tractable uncer-
tainty models. We also establish a fundamental relation between the robust efficient
frontier and the infimum of all efficient frontiers consistent with the assumptions made
on the model parameters. The robust efficient frontier analysis method is illustrated
with a numerical example.

1 Introduction

We consider MV analysis with n risky assets held over a period of time. Their (percentage)
returns over the period are modeled as a random vector a = (a1, . . . , an) in R

n with mean
µ = E a and covariance Σ = E (a − µ)(a − µ)T of a = (a1, . . . , an), where E denotes the
expectation operation [48]. We assume that Σ is positive definite. We let wi denote the
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amount of asset i held throughout the period. The return of a portfolio w = (w1, . . . , wn)
is a (scalar) random variable wT a =

∑n
i=1 wiai. The mean return of w is wT µ, and the

risk, measured by the standard deviation, is (wT Σw)1/2. We assume that an admissible
portfolio w = (w1, . . . , wn) ∈ R

n is constrained to lie in a closed convex subset W of R
n.

Each portfolio w ∈ W must satisfy the budget constraint 1T w = 1, where 1 is the vector of
all ones. The convex setW can represent a wide variety of convex asset allocation constraints
(beyond the budget constraint) including portfolio diversification, short-selling constraints,
long/short constraints, market impact constraints with convex impact costs, transaction cost
constraints with convex transaction costs, and bound constraints; see, e.g., [20, 42, 43, 53].

1.1 Efficient frontier analysis

We give a brief review of EF analysis to set up our notation, and to compare it the extension
we describe in this paper.

Optimal trade-off between risk and return

The choice of a portfolio involves a trade-off between risk and return [48]. To describe the
optimal trade-off, we consider the portfolio optimization problem

maximize wT µ

subject to w ∈ W,
√

wT Σw ≤ σ,
(1)

where the variable is w and the problem data or parameters are µ and Σ. In this problem
we find the portfolio that maximizes the expected return subject to a maximum acceptable
volatility level σ (associated with the standard deviation of the return), and satisfying the
asset allocation and portfolio budget constraints.

As σ varies over (0,∞), the trajectory of the optimal solution defines the curve

fµ,Σ(σ) = sup
w∈W,

√
wT Σw≤σ

wT µ. (2)

The curve fµ,Σ(σ) is concave and increasing over σ ≥ infw∈W
√

wT Σw. Since the covariance
Σ is positive definite (by assumption), fµ,Σ(σ) is strictly concave over the interval [σinf , σsup),
where

σsup = inf

{√
wT Σw

∣

∣

∣

∣

w ∈ W, wT µ = sup
w∈W

wT µ

}

.

The strictly concave portion is the optimal risk-return trade-off curve of the assets a1, . . . , an

and called the (mean-variance or Markowitz) efficient frontier (EF). A portfolio w is called
(MV) efficient if its risk and return are on the EF. Any portfolio with the same return as w
would have a higher risk. In the sequel, the curve fµ,Σ(σ) is often called the efficient frontier,
although strictly speaking only the strictly concave portion is.

These definitions are illustrated in Figure 1.
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Figure 1: The efficient frontier of risky assets, the tangency portfolio, and the
capital market line.

Efficient frontier analysis via Sharpe ratio maximization

When there is no asset allocation constraint (except for the portfolio budget constraint), the
two fund theorem tells us that the EF is a hyperbola and two efficient funds (portfolios)
can be established so that any efficient portfolio can be duplicated, in terms of mean and
variance as a combination of these two [45, 50]. With linear asset allocation constraints, the
portfolio optimization problem (1), and hence the EF, can be computed efficiently using a
variety of methods including the critical line method and its extensions [33, 49, 66]. With
general convex asset allocation constraints, the problem of computing fµ,Σ(σ) is a convex
optimization problem, so we can compute the EF efficiently using standard methods of convex
optimization. Using the idea behind Roy’s safety-first approach to portfolio selection [59, 58],
the EF can be computed, as shown below.

We use Sr̄(w, µ, Σ) to denote the ratio of the excess expected return of a portfolio w
relative to the (hypothetical) risk-free return r̄ (with zero return variance) to the return
volatility:

Sr̄(w, µ, Σ) =
wT µ− r̄√

wT Σw
.

This ratio is called the reward-to-variability or Sharpe ratio (SR) of w (when the risk-free
return is r̄).

The problem of finding the admissible portfolio that maximizes the SR can be written as

maximize Sr̄(w, µ, Σ)
subject to w ∈ W,

(3)
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with variable w ∈ R
n and problem data µ and Σ. The optimal value is called the market

price of risk. This problem is related to Roy’s safety-first approach through the Chebyshev
inequality [59].

The line
r = r̄ + sup

w∈W
Sr̄(w, µ, Σ)σ, (4)

is called the optimal capital allocation line (CAL) or capital market line (CML) (when the
risk-free return is r̄) [8]. We can see from the concavity of fµ,Σ that

sup
w∈W

Sr̄(w, µ, Σ) = sup
σ>0

fµ,Σ(σ)− r̄

σ
, r̄ < sup

w∈W
wT µ. (5)

(The supremum over the empty set is−∞, so fµ,Σ(σ) = −∞ whenever σ < infw∈W(wT Σw)1/2.)
Therefore, if there is an admissible portfolio that achieves the maximum SR, i.e., the optimal
value of (3), the CML is tangential to the EF at the risk and return of the portfolio. This
portfolio is called the tangency portfolio (TP). (See figure 1 for an illustration; the filled
circle corresponds to the risk and return of the TP.) If there is no such portfolio, then the
robust optimal CAL lies entirely above the EF:

fµ,Σ(σ) < r̄ + sup
w∈W

Sr̄(w, µ, Σ)σ, σ > 0.

This case can arise only when the EF has an (upper) asymptote and the CML is parallel to
the asymptote.

As r̄ varies, the tangential point (
√

w⋆T Σw⋆, w⋆T µ) moves along the EF. The EF can
therefore be computed as the trajectory of the point, as r̄ varies. From (5) and the concavity
of the efficient frontier, the curve fµ,Σ can be expressed as the infimum of the CMLs as r̄
varies over the interval (−∞, supw∈W wT µ):

fµ,Σ(σ) = inf
r̄<supw∈W wT µ

(

r̄ + sup
w∈W

Sr̄(w, µ, Σ)σ

)

, σ ≥ inf
w∈W

√
wT Σw. (6)

1.2 MV analysis with a separable uncertainty model

In standard or conventional MV portfolio analysis, we assume that the input parameters, i.e.,
the mean vector and covariance matrix of asset returns, are known. In practice, however,
the input parameters are estimated with error. Standard MV analysis is often sensitive
to uncertainty or estimation error in the parameters, meaning that MV efficient portfolios
computed with an estimate of the parameters can give very poor performance for another
set of parameters that is similar and statistically hard to distinguish from the assumed one.

There has been a growing interest in (worst-case) robust MV analysis and optimization as
a systematic way of finding portfolio weights that performs reasonably well despite estimation
error or model uncertainty. (A brief review of the literature on robust portfolio optimization
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will be given in the next section.) In this paper we consider robust MV analysis with a
product form or separable uncertainty model

U =M×S ⊆ R
n × S

n
++, (7)

whereM is the set of possible expected return vectors and S is the set of possible covariances.
Here we use S

n
++ to denote the set of all n× n symmetric positive definite matrices. In this

model, the uncertainties in the mean return vector and the covariance are independent of
each other. We assume that M and S are compact (i.e., bounded and closed). Separable
uncertainty models have been widely used in the literature on robust portfolio optimization;
see, e.g., [27, 30, 42, 51].

With model uncertainty, the performance of a portfolio w is described by the set of
risk-return pairs computed with model parameters over the set U :

P(w) =

{

(

(wT Σw)1/2, wT µ
)

∈ R
2

∣

∣

∣

∣

(µ, Σ) ∈ U
}

.

Assuming U is connected, the set P(w) is a box:

P(w) =

{

(σ, r) ∈ R
2

∣

∣

∣

∣

inf
Σ∈S

√
wT Σw ≤ σ ≤ sup

Σ∈S

√
wT Σw, inf

µ∈M
wT µ ≤ r ≤ sup

µ∈M
wT µ

}

. (8)

The worst-case scenario arises in the lower right corner of the box P(w), since it has the
highest risk and the lowest return. The worst-case risk of w, where ‘worst’ means largest, is

σwc(w) = sup
Σ∈S

√
wT Σw.

The worst-case return with the (given) portfolio w, where ‘worst’ means smallest, is

rwc(w) = inf
µ∈M

wT µ.

A mean vector µ ∈ M is called a worst-case expected return vector for w if wT µ = rwc(w),
and a covariance Σ ∈ S is called a worst-case covariance of w if (wT Σw)1/2 = σwc(w).

Since the risk-return set of a portfolio has an obvious worst-case corner, it is straight-
forward to extend the notion of portfolio preference to robust MV analysis with a separable
uncertainty model: A portfolio w̄ is preferred to ŵ if w̄ has a lower or equal worst-case risk,
and a higher or equal worst-case return than ŵ. (If they are both equal, then ŵ and w̄ are
equivalent, in terms of worst-case risk and return.)

Figure 2 illustrates worst-case risk-return analysis. The shaded rectangles in the figure
correspond to the risk-return sets of three portfolios w(1), w(2), w(3). The worst-case corners
are shown as filled circles. We can easily see that w(2) is preferred to w(3) in the worst-case
MV sense. There is no worst-case MV portfolio preference relation among the other two
pairs (i.e., w(1) and w(2), and w(1) and w(3)).
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Figure 2: Risk-return sets of three portfolios with a separable uncertainty model.
For each portfolio, the worst-case is shown as a filled circle at lower right.

Before proceeding, we show how to efficiently carry out risk-return analysis with a convex
separable uncertainty model. The maximum and minimum risk of a portfolio w over the
set S can be written as

inf
Σ∈S

(wT Σw)1/2 =

(

inf
Σ∈S

wT Σw

)1/2

, sup
Σ∈S

(wT Σw)1/2 =

(

sup
Σ∈S

wT Σw

)1/2

.

When the setsM and S are convex, computing these two quantities as well as the minimum
return infµ∈M wT µ and the maximum return supµ∈M wT µ requires us to minimize or max-
imize a linear function over a convex set. Therefore, the four corners of the set P(w), and
hence the risk-return set, can be computed efficiently using convex optimization.

1.3 Robust EF analysis with a separable uncertainty model

In this paper, we are interested in optimal trade-off of risk and return in the worst-case sense.
To describe the trade-off, we consider the (worst-case) robust counterpart of the portfolio
optimization problem (1)

maximize rwc(w)
subject to w ∈ W, σwc(w) ≤ σ.

(9)
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Here we find the portfolio that maximizes the worst-case expected return subject to a maxi-
mum acceptable worst-case volatility level σ, and satisfying the asset allocation and portfolio
budget constraints.

As σ varies over (0,∞), the trajectory of the optimal solution of this problem defines the
curve

frob(σ) = sup
w∈W, σwc(w)≤σ

rwc(w). (10)

The curve frob(σ) is increasing and concave over σ ≥ σinf , where σinf is the minimum worst-
case risk level,

σinf = inf
w∈W

σwc(w).

The curve frob(σ) is strictly concave over the interval [σinf , σsup), where

σsup = inf

{

σwc(w)

∣

∣

∣

∣

w ∈ W, rwc(w) = sup
w∈W

rwc(w)

}

.

(Whenever σ ≥ σsup, frob(σ) = supw∈W rwc(w).) The proof of the strict concavity property
is given in Appendix A.1.

The strictly concave portion of the curve frob(σ) is the optimal trade-off curve between
worst-case risk and return, and is called the (worst-case) robust EF. (This definition should
be distinguished from the EF computed with an estimate of the parameters obtained using a
robust statistical estimation procedure, which is often called the robust EF in the literature;
see, e.g., [57].) An admissible portfolio w ∈ W is called (worst-case) robust MV efficient if
its worst-case risk and return lie on the strictly increasing portion. Any portfolio with the
same worst-case return would have a higher worst-case risk. In the sequel, the curve frob

is often called the robust EF, although strictly speaking only the strictly increasing portion
describes the optimal trade-off.

Figure 3 illustrates the definitions given above. The portfolios w(1), w(2), and w(3) are
robust MV efficient, whereas ŵ is not.

1.4 Summary of the paper

We give a summary of the main results of this paper.

Robust EF and sampled EFs

There is an interesting relation between the robust EF and the infimum of all EFs consistent
with the assumptions made on the model parameters. Since the infimum of concave curves
is concave, the infimum of the curves is concave.

Theorem 1. For any M⊆ R
n and any S ⊆ S

n
++,

frob(σ) ≤ inf
µ∈M, Σ∈S

fµ,Σ(σ), σ > 0. (11)

7



risk σ

ex
p
ec

te
d

re
tu

rn
r

P(w(1))

P(w(2))

P(w(3))

P(ŵ)
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Figure 3: Robust efficient frontier analysis with a separable uncertainty model.
The portfolios w(1), w(2), and w(3) are robust MV efficient; the portfolio ŵ is not.

When M and S are convex,

frob(σ) = inf
µ∈M, Σ∈S

fµ,Σ(σ), σ > 0. (12)

The proof is deferred to Appendix A.2.
This theorem has an important implication for the sampling based approach to (approx-

imate) robust EF analysis. Suppose we uniformly sample a finite number of pairs (µ(i), Σ(i))
for i = 1, . . . ,m from U and compute the corresponding EFs, fµ(i),Σ(i) for i = 1, . . . ,m. In the
convex case, as the number of samples m increases, the infimum infi fµ(i),Σ(i) of the sampled
EFs converges to the robust EF. By contrast, in the non-convex case, the infimum need not
give a good approximation of the robust EF, even when m is large.

Robust EF analysis via worst-case SR maximization

The objective of the robust portfolio optimization problem (9) is a concave function of w,
since it is the pointwise infimum of a family of linear functions. The constraint set C =

{

w ∈
R

n
∣

∣ w ∈ W, σwc(w) ≤ σ
}

is convex, since the constraints consist of a family of convex
quadratic constraints, parameterized by Σ ∈ S and the convex asset allocation constraint
w ∈ W. The robust portfolio optimization problem (9) is a convex semi-infinite program,
so robust EF analysis with a general uncertainty model can be carried out via semi-infinite
programming. However, semi-infinite programs are difficult to solve in the absence of special
structure. The reader is referred to [31] for more on general approximate solution methods
for semi-infinite programs.
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For computational tractability, we are interested in uncertainty models with which robust
EF analysis can be carried out efficiently using convex optimization. We show how the
idea behind the method for computing the EF via SR maximization can be generalized
to MV analysis with a separable uncertainty model. Specifically, we show that the robust
EF can be computed from the trajectory of the solution to the robust counterpart of the
SRMP (3), called the worst-case SRMP, as the hypothetical risk-free return r̄ varies. With
general convex uncertainty models, the corresponding robust counterparts can be solved
using the minimax result for the SR proved in [39] and convex optimization. As a consequence
of the minimax result, the robust EF can be computed as the trajectory of the saddle
point of the zero-sum game of choosing w from W , to maximize the SR, and choosing
(µ, Σ) from U = M× S, to minimize the SR, as r̄ varies. For certain types of non-convex
models including those considered in [18, 27], the corresponding robust counterparts can be
reformulated as convex problems. We conclude that robust EF analysis with these models
can be carried out efficiently.

Robust portfolio selection problems

In standard MV analysis, once the EF is computed, a variety of MV portfolio optimization
problems reduce to simple one-dimensional search problems over the family of MV efficient
portfolios. The list includes minimum variance portfolio selection problems, value-at-risk
(VaR) minimization problems, and expected quadratic utility maximization problems. Once
the robust EF is found, the robust counterparts of the portfolio selection problems listed
above reduce to simple one-dimensional search problems over the set of MV efficient portfolios
and hence can be solved efficiently.

Outline

In the remainder of this section, we give a brief review of related literature. In §2-§4, we give
the details of the results summarized above. We illustrate the main results with a numerical
example in §5. We give our conclusions in §6. The appendix contains the proofs that are
omitted from the main text.

1.5 Related literature review

MV efficient portfolios computed with an estimate of the parameters often contain extremely
long and short positions (when the constraint set allows such positions), which are difficult
to implement. As a result, the optimal portfolios are typically very sensitive to variations
in the estimated mean and covariance matrix. The sensitivity problem is often called the
estimation risk. The sensitivity problem has been well documented in the literature; see, e.g.,
[5, 7, 11, 16, 23, 29, 35, 52]. Relatively recent work on estimation risk includes [12, 15, 63].

Over the past several decades, a variety of approaches to mitigating the sensitivity prob-
lem or accounting for estimation risk in MV analysis have been proposed. The list includes
imposing constraints such as no short-sales constraints [34], the resampling approach [52], a
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non-Bayesian adjustment method [63], Bayesian approaches [2, 13, 40, 55, 56], the shrink-
age approach [69], the empirical Bayes approach [24], and the Black-Litterman approach [7]
(which incorporates ideas from economics).

Recently, many researchers have paid attention to alleviating the sensitivity problem
using the idea of (worst-case) robust optimization [4], which is often called (worst-case)
robust MV analysis. The key idea is to explicitly incorporate a model of data uncertainty
in the formulation of a portfolio optimization problem, and to optimize for the worst-case
scenario under the model; see, e.g., [19, 18, 27, 25, 30, 32, 37, 36, 42, 67, 60, 62]. The reader is
referred to a recent survey in [22] and recent books on asset allocation methods [14, 21, 51, 61].
Several numerical studies support the expectation that robust portfolio optimization can be
a valuable tool in quantitative asset allocation [6, 62]. The idea of robust optimization has
been used in other financial optimization problems including robust hedging [47], multi-stage
portfolio selection [3], and robust portfolio optimization via worst-case regret minimization
[46, 41].

Several researchers have considered the worst-case SRMP and robust EF analysis with
specific types of structured uncertainty models. The main focus has been on formulating
the problem as a tractable convex problem. In [27], the authors show that the worst-case
SRMP with a certain type of covariance model which is not convex can be cast as a second-
order cone program (SOCP). They also show that several other robust portfolio selection
problems can be cast as SOCPs. The main results of this paper show that once the robust
EF is computed, these problems can be solved at no additional computational cost. In [67],
the authors consider robust EF analysis with a certain type of separable uncertainty model
in which the elements of the covariance are subject to lower and upper bound constraints.
The authors show that the worst-case analysis can be carried out, by using a special-purpose
interior-point method, developed in [30], for a specific class of saddle-point problems. They
define the robust EF as the trajectory of saddle points in a family of certain parameterized
zero-sum games. In this paper, we describe a method for computing the robust EF with a
more general class of uncertainty models.

2 Robust EF analysis via worst-case SR maximization

We show how the idea behind the method for computing the EF fµ,Σ reviewed above can be
generalized to robust EF analysis with a separable uncertainty model U =M×S.

2.1 Worst-case SR analysis and optimization

In the presence of model mis-specification or uncertainty, the SR of a portfolio becomes
uncertain. The worst-case SR of a portfolio w (over the uncertainty modelM×S) is

Swc(w, r̄) = inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ).

The worst-case scenario for the SR arises in one of the two lower corners of the risk-return
set P(w), depending on the sign of the worst-case excess return rwc(w)− r̄. WhenM and S
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are convex, the worst-case SR can be readily computed using convex optimization, since the
(four) corners of P(w) can be.

The problem of finding an admissible portfolio that maximizes the worst-case SR can be
formulated as

maximize inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ)

subject to w ∈ W,
(13)

which is called the worst-case SR maximization problem (SRMP) (when the risk-free return
is r̄). If this problem has a solution, then it has a unique solution [38]. We use the following
shorthand notation for the optimal value of this problem:

S⋆(r̄) = sup
w∈W

inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ).

As the robust counterpart of (4), we consider the line

r = r̄ + S⋆(r̄)σ (14)

which is called the (worst-case) robust optimal CAL. When lending or borrowing at the risk-
free rate r̄ is allowed and the slope of the robust optimal CAL is positive, the robust optimal
CAL describes the fundamental limitations of asset allocation in the worst-case sense (see
[38]). In this paper, we consider the case when there is no risk-free asset available.

Another problem of interest is to find least favorable asset return statistics over the set U ,
with portfolio weights chosen optimally for the asset return statistics:

minimize sup
w∈W

Sr̄(w, µ, Σ)

subject to µ ∈M, Σ ∈ S.
(15)

Here, the hypothetical risk-free return r̄ is fixed. The optimal value is called the worst-case
market price of risk (when the risk-free return is r̄). This problem is called the worst-case
market price of risk analysis problem (MPRAP).

The two problems described above are related to each other via minimax properties. For
anyM⊆ R

n and any S ⊆ S
n
++, the minimax inequality or weak minimax property

inf
µ∈M, Σ∈S

sup
w∈W

Sr̄(w, µ, Σ) ≤ sup
w∈W

inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ)

holds. In other words, the slope of the robust optimal CAL is not greater than the worst-
case market price of risk. WhenM and S are convex and compact and the left-hand side is
positive, we have the following minimax equality or strong minimax property [38]:

inf
µ∈M, Σ∈S

sup
w∈W

Sr̄(w, µ, Σ) = sup
w∈W

inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ). (16)
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2.2 Existence and uniqueness

We address the basic question in the two problems given above: the existence and uniqueness
of solutions. The worst-case MPRAP (15) always has a solution, which is not necessarily
unique. The worst-case SRMP (13) does not always have a solution. When (13) has a
solution, it has a unique solution [38].

The unique solution of (13) can be found by solving the convex semi-infinite program

maximize inf
µ∈M

xT (µ− r̄1)

subject to x ∈ X , sup
Σ∈S

xT Σx ≤ 1,
(17)

where w ∈ R
n is the variable and X is the convex cone defined by

X = cl {tw ∈ R
n | w ∈ W, t > 0}\{0}.

Here clA is the closure of the set A and A\B is the complement of B in A.

Proposition 1. Suppose that there is an admissible portfolio w̄ ∈ W with

inf
µ∈M

w̄T µ > r̄. (18)

Then, the semi-infinite program (17) has a unique solution, say x⋆ with 1T x⋆ ≥ 0. If
1T x⋆ > 0, then w⋆ = (1/1T x⋆)x⋆ is the unique solution to the worst-case SRMP (13), and if
1T x⋆ = 0, then no admissible portfolio can achieve the optimal value of (13).

The proof is deferred to Appendix A.3.
We can see from the concavity of the robust EF and this proposition that the robust

portfolio optimization problem (9) has a unique solution.

2.3 Robust EF analysis via worst-case SR maximization

From the concavity of frob and the definition of the robust EF, the slope of the robust optimal
CAL (14) can be written as

sup
σ>0

frob(σ)− r̄

σ
= sup

w∈W

rwc(w)− r̄

σwc(w)
= sup

w∈W
inf

µ∈M, Σ∈S
Sr̄(w, µ, Σ), (19)

whenever r̄ < supw∈W infµ∈M wT µ. Therefore, if the worst-case SRMP (13) has a (unique)
solution w⋆, then it is robust MV efficient, i.e.,

frob(σwc(w
⋆)) = rwc(w

⋆),

and the robust optimal CAL (14) is tangential to the robust EF at the point (σwc(w
⋆), rwc(w

⋆)).
Otherwise, the robust optimal CAL lies entirely above the robust EF:

frob(σ) < r̄ + S⋆(r̄)σ, σ > 0,

12



which can arise only when the robust EF has an (upper) asymptote and the robust optimal
CAL is parallel to the asymptote.

Using the results given above, we can generalize the method for computing the EF with
a fixed pair (µ, Σ) described in §1.1 to computing the robust EF. As r̄ varies, the worst-
case risk-return pair (σwc(w

⋆), rwc(w
⋆)) of the solution to the worst-case SRMP (13) moves

along the robust EF. We can now see that there is rthrs ∈ R such that the robust EF can
therefore be computed as the trajectory of the worst-case risk-return pair, as r̄ varies over
(−∞, rthrs). In particular when W is bounded, rthrs is equal to the maximum worst-case
return rsup = supw∈W wT µ.

The expression of the EF given in (6) can be generalized to robust MV analysis.

Proposition 2. The curve defined in (10) can be expressed as

frob(σ) = inf
r̄<supw∈W infµ∈M wT µ

r̄ + S⋆(r̄)σ, σ ≥ σinf . (20)

The proof is deferred to Appendix A.4.
We can approximate the robust EF as

frob(σ) ≈ inf
i=1,...,M

r̄+γ(r̄i)σ, σ ≥ σinf ,

from the solutions to worst-case SRMPs with hypothetical risk-free returns r̄1, . . . , r̄M drawn
from the interval (−∞, supw∈W infµ∈M wT µ). Figure 4 illustrates the approximation method.
Each point in circle corresponds to the point (σi, frob(σi)), the worst-case risk and return of
the solution of the worst-case SRMP (13) with r̄ = ri.

3 Robust EF analysis via convex optimization

In this section, we show how the generalization given above allows us to carry out robust
EF analysis with certain types of uncertainty models using convex optimization.

3.1 Convex separable uncertainty models

When the setsM and S are convex, we can solve the worst-case SRMP (13) efficiently, using
a minimax result for the SR [39]. Here no structural assumptions (e.g., bound constraints on
the entries of µ and Σ) other than the convexity are needed. Several types of our approximate
prior knowledge on the asset returns can be represent by convex uncertainty models. The
list includes known variances of certain portfolios, ellipsoidal confidence region, information
about the order of expected returns and variances of assets, and information about correlation
coefficients, which have been considered in the prior work [1, 10, 18, 42, 51].

We restrict ourselves to the case of interest when the optimal vale of (15) is positive.
We have shown in [38] that the worst-case MPRA problem (15) is equivalent to the convex
problem

minimize (µ− r̄1 + λ)T Σ−1(µ− r̄1 + λ)
subject to µ ∈M, Σ ∈ S, λ ∈ W⊕,

(21)
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Figure 4: Robust efficient frontier analysis via worst-case SR maximization.

with variables µ ∈ R
n, Σ = ΣT ∈ R

n×n, and λ ∈ R
n, where W⊕ is the positive conjugate

cone of W , i.e.,
W⊕ = {λ | λT w ≥ 0, ∀w ∈ X} ⊆ R

n.

The objective function is convex and the constraints are convex. This problem always has a
solution, say (µ⋆, Σ⋆, λ⋆), which satisfies

1T (Σ⋆−1(µ⋆ − r̄1 + λ⋆)) ≥ 0.

We then have the following:

• The pair (µ⋆, Σ⋆) is least favorable, i.e., it solves (15).

• The worst-case SRMP (13) has a solution if and only if

1T (Σ⋆−1(µ⋆ − r̄1 + λ⋆)) > 0.

If this inequality holds, then the least favorable model (µ⋆, Σ⋆) has the TP

w⋆ =
1

1T Σ⋆−1(µ⋆ − r̄1 + λ⋆)
Σ⋆−1(µ⋆ − r̄1 + λ⋆), (22)

which is the unique solution to (13) although there can be multiple least favorable
models. Moreover, the triple (w⋆, µ⋆, Σ⋆) satisfies the saddle-point property:

S(w, µ⋆, Σ⋆) ≤ S(w⋆, µ⋆, Σ⋆) ≤ S(w⋆, µ, Σ), ∀w ∈ W, ∀(µ, Σ) ∈ U , (23)
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When the constraints µ ∈M and Σ ∈ S can be represented by linear matrix inequalities,
the convex optimization problem (21) can be cast as a semidefinite program (SDP) [54], which
can be solved efficiently by several high quality interior-point solvers including SeDuMi [64]
and SDPT3 [65]. The reader is referred to [68] for more on semidefinite programming.

We can establish the following proposition, using (12) and the minimax equality (16).

Proposition 3. Suppose thatM and S are convex and compact. Let (µ⋆, Σ⋆) ∈M×S be a
solution to the worst-case MPRA problem (15). If the worst-case SRMP (13) has a solution,
say w⋆, then

frob

(√
w⋆T Σ⋆w⋆

)

= fµ⋆,Σ⋆

(√
w⋆T Σ⋆w⋆

)

= w⋆T µ⋆,

and the robust optimal CAL (14) is tangential to the two curves r = frob(σ) and r = fµ⋆,Σ⋆(σ)
at the same point ((w⋆T Σ⋆w⋆)1/2, w⋆T µ⋆).

The proof is deferred to Appendix A.5.
Figure 5 illustrates the assertion of Proposition 3. The solid curve is the robust EF, and

the dashed curve is the EF of (µ⋆, Σ⋆), the least favorable asset return statistics when the
risk-free rate is r̄.

The preceding proposition along with the saddle-point property (23) means that the
robust EF can be computed from the trajectory of the saddle point of the zero-sum game of
choosing w from W , to maximize the SR, and choosing (µ, Σ) from U , to minimize the SR,
as the hypothetical risk-free return r̄ varies. (With a special type of convex model, a similar
observation has been made in [67].)

3.2 Factor covariance models with uncertain factor loading

Suppose that the asset returns follow a model of the form

a = µ + V z + u,

where z is a random vector (the underlying factors that affect the asset returns), V is an
n × k matrix containing the sensitivities of the asset returns with respect to the various
factors, and ui are independent (additional volatility of each asset return). The mean return
vector is µ, and the covariance matrix has the factor structure

Σ = V ΣfactorV
T + D,

where Σfactor ∈ R
k×k is the factor covariance and D is the diagonal covariance matrix D of

the residuals uncorrelated with the factors.
When the factor loading matrix is known for certain and the factor covariance is uncertain

but known to belong to a convex subset of S
k
++, the uncertainty set for the covariance is

convex, so the corresponding worst-case SRMP can be solved using the method described
above. We will consider the opposite case in which the factor covariance matrix is known
for certain but the factor loading matrix V is uncertain. In this case, the covariance model
is not convex.
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Figure 5: The robust efficient frontier and the efficient frontier of the least fa-
vorable model when the uncertainty model is convex.

We assume that the uncertainty in the factor loading matrix V is independent of that in
the residual covariance D. We consider a covariance uncertainty model of the form

S = {D + V ΣfactorV
T ∈ R

n×n | V ∈ V, D ∈ D}, (24)

where V is the set of uncertain sensitivity matrices and D is the set of uncertain covariance
matrices. Here, we assume that it has the form

D = {D = diag(d1, . . . , dn) ∈ R
n×n | di ≤ di ≤ di, i = 1, . . . , n}

and di and di are positive known lower and upper bounds on the variances of residuals.
We resort to the semi-infinite formulation given in (17). We note that

sup
Σ∈S

(wT Σw)1/2 =

(

sup
V ∈V

wT V ΣfactorV
T w + wT Dw

)1/2

.

Therefore, we can solve the worst-case SRMP by solving the semi-infinite program

maximize inf
µ∈M

wT (µ− r̄1)

subject to w ∈ X , t + wT Dw ≤ 1, h(w) ≤ t,
(25)

where w ∈ R
n and t ∈ R are the variables and

h(w) = sup
V ∈V

wT V ΣfactorV
T w, D = diag(d1, . . . , dn) ∈ R

n×n.

We will show that the semi-infinite program (25) can be reformulated as an SDP (or
sometimes SOCP), when the inequality h(w) ≤ t in (25) can be represented by linear matrix
inequalities (LMIs) and the setM is a polyhedron or an ellipsoid.
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Tractable factor covariance models

We describe several types of structural assumptions on M that lead to the LMI repre-
sentability of h(w) ≤ t. (The LMI representability has applications in a variety of robust
optimization problems including robust control and robust least squares; see, e.g., [9, 17].)

As the first tractable case, we consider an ellipsoidal uncertainty model for the factor
loading matrix

V =

{

V̄ +

p
∑

i=1

uiVi

∣

∣

∣

∣

‖u‖ ≤ 1

}

,

where V̄ ∈ R
n×k is the nominal factor loading matrix and the given matrices Vi ∈ R

n×k,
k = 1, . . . , p determine the ellipsoid (in the space of n × r matrices). As shown in [18], the
constraint h(w) ≤ t is LMI representable.

The constraint h(w) ≤ t is also LMI representable, with the set

V = {V̄ + L∆R | ∆ ∈ R
l×r, ‖∆‖ ≤ 1},

where V̄ ∈ R
n×k, L ∈ R

n×l, and R ∈ R
r×k are given, and ‖∆‖ is the spectral norm of ∆.

This set can model unstructured uncertainties in some blocks of the factor loading matrix,
with the matrices L and R specifying which blocks are uncertain; the reader is referred to [9]
for more on this model.

As another tractable case, we consider the case in which the factor covariance matrix is
diagonal, i.e.,

F = diag(σ2
1, . . . , σ

2
r),

and the columns of V are uncertain but known to belong to ellipsoids

vi ∈ Ei = {v̄i + Piu | ‖u‖ ≤ 1},

where v̄i is the nominal factor loading of the ith factor and the matrices Pi ∈ R
n×p determine

the shapes of these ellipsoids. (In this case, the factors are uncorrelated.) We can see from
the Cauchy-Schwartz inequality that

h(w) = sup
vi∈Ei, i=1,...,r

wT

(

k
∑

i=1

σ2
i viv

T
i

)

w =
k
∑

i=1

(

σ2
i v̄iv̄

T
i + ‖Piw‖

)2
.

We can easily express the constraint h(w) ≤ t as a set of second-order cone constraints, spe-
cial types of LMIs; the reader is referred to [44] for more on second-order cone programming.

As the final tractable case, we consider the following model which has been studied in
[27] and used in robust active portfolio management in [19]:

V = {V = [v1 · · · vn]T ∈ R
n×r | vi ∈ Ei}, (26)

where vi is the ith column of V T and Ei are the ellipsoids

Ei = {vi ∈ R
k | (vi − v̄i)

T G(vi − v̄i) ≤ ρi}, i = 1, . . . , n.
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Here G determines the common shape of the ellipsoids whose sizes are controlled by the
parameter ρi ≥ 0, and V̄ = [v̄1 · · · v̄n]T ∈ R

n×r is the nominal factor loading matrix. It is
important to point out that unlike the previous models, the uncertainty ellipsoids are the
same shape although their centers and sizes can be different and the uncertainty is on the row
vectors of the factor loading matrix. Using the S-procedure [10, App. B], the authors of [19]
show how to equivalently express the constraint h(w) ≤ t as second-order cone constraints.
The authors give a justification of this uncertainty model in the context of linear regression.

Convex formulation examples

WhenM is an ellipsoid of the form

M = {µ̄ + Pu | ‖u‖ ≤ 1},

where the matrix P ∈ R
n×p determines the shapes of the ellipsoid, we know from the Cauchy-

Schwartz inequality that

inf
µ∈M

wT (µ− r̄1) = wT (µ̄− r̄)− ‖Pw‖.

Therefore, the equivalent formulation (25) can be expressed as

minimize −wT (µ̄− r̄1) + ‖Pw‖
subject to w ∈ X , t + wT D̄w ≤ 1, h(w) ≤ t,

(27)

where the variables are w ∈ R
n, t ∈ R, and P ∈ R

n.
WhenM is a polyhedron of the form

M = {w | Aw ≤ b},

with A ∈ R
m×n and b ∈ R

m, the equivalent formulation (25) is equivalent to

minimize bT λ− wT1

subject to w ∈ X , AT λ + w = 0, t + wT D̄w ≤ 1, h(w) ≤ t,
(28)

where the variables are w ∈ R
n, t ∈ R, P ∈ R

n, and λ ∈ R
m. (Here a ≤ b is componentwise

inequality, i.e., ai ≤ bi for all i.) To establish the equivalence between the two problems (25)
and (28), we find the Lagrange dual problem of a linear program in inequality form

minimize wT µ
subject to Aµ ≤ b.

(29)

The Lagrange dual of the problem is a linear program (LP) in standard form [10],

maximize bT λ
subject to AT λ + w = 0, λ ≥ 0.

(30)
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The two problems (29) and (30) are equivalent, by strong duality which holds for the pri-
mal (29) and the dual (30), which shows the equivalence between (25) and (28).

It is now evident that when the constraint h(w) ≤ t can be represented by an LMIs
the two problems (27) and (28) are SDPs. In particular, when the constraint h(w) ≤ t is
compatible with second-order cone programming, these problems are SOCPs.

We close by pointing out that a variety of robust portfolio selection problems with the
models given above can be readily solved. In [27], the authors show that several types of
robust portfolio selection problems with a structurally uncertain factor covariance model, an
ellipsoidal uncertainty model on the mean return vector, and a polyhedral constraint set can
be formulated SOCPs. The main results of this paper show that the several robust selection
problems considered in [27] are to compute robust MV efficient portfolios.

4 Robust portfolio selection with MV preference

An investor is said to have mean-variance preference if his portfolio preference is based only
on the mean return r = wT µ and the return volatility σ =

√
wT Σw, that is, he judges the

performance by
f(w, µ, Σ) = h(wT µ,wT Σw), (31)

where h is a function from R×R+ into R. Here we assume that h(r, σ) is strictly decreasing
in σ for fixed r and increasing in r for fixed σ.

An example is an expected quadratic utility function

f(x, µ, Σ) = wT µ− γ

2
wT Σw, (32)

which is associated with the mean-variance preference function

h(r, σ) = r − γ

2
σ2.

Here γ > 0 is a positive constant related to risk aversion.
The problem of finding a portfolio that maximizes the worst-case value of f(w, µ, Σ) over

the uncertainty set U =M×S can be formulated as

maximize inf
µ∈M, Σ∈S

h(wT µ,wT Σw)

subject to w ∈ W.
(33)

When h is associated with an expected utility function, this problem is related to max-min
utility theory; see, e.g., [26] for more on max-min utility theory.

We can observe from the assumption on h that for any w ∈ W,

h(wT µ,wT Σw) ≤ h(rwc(w), σwc(w)), ∀µ ∈M, ∀Σ ∈ S,

or equivalently,
inf

µ∈M, Σ∈S
h(wT µ,wT Σw) ≤ h(rwc(w), σwc(w)).

The following proposition follows from this observation.
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Proposition 4. Suppose that h(r, σ) is strictly decreasing in σ for fixed r and increasing
in r for fixed σ. If w⋆ solves (33), then it is robust MV efficient.

The robust portfolio selection problem (33) now reduces to a simple one-dimensional
search problem over the family of robust MV efficient portfolios. As specific examples, we
consider two robust portfolio selection problems: worst-case utility maximization and worst-
case VaR minimization.

4.1 Worst-case VaR minimization

The VaR is defined as
V (w, µ, Σ) = κ

√
wT Σw − wT µ,

where κ > 0 is an appropriate risk factor which depends on the prior assumptions on the
distribution of returns. For the Gaussian case, κ = Φ−1(ǫ), where ǫ is a given probability level
and Φ is the cumulative distribution function of the standard normal distribution. When
the first two moments of asset returns are known (E a = µ, E (a − µ)T (a − µ) = Σ) but
higher moments are otherwise arbitrary, we can take κ =

√

(1− ǫ)/ǫ from the Chebyshev
bound [18].

The worst-case VaR of w over the uncertainty set U =M×S is

Vwc(w) = sup
µ∈M, Σ∈S

V (w, µ, Σ) = κσwc(w)− rwc(w).

The problem of finding the portfolio that maximizes the worst-case VaR over the setM×S
can be cast as

minimize Vwc(w)
subject to w ∈ W.

(34)

This problem has been studied by several authors. If the uncertainty set U =M×S can
be represented by linear matrix inequalities and hence are convex, this problem can be cast
as a semidefinite program and then solved efficiently using interior-point methods [18]. In
[27], the authors consider worst-case VaR minimization problems with a uncertainty factor
covariance model described by (24) and (26) and show that they can be reformulated as
SOCPs.

The worst-case VaR minimization problem (34) can be posed as a problem of the form (33)
with h(r, v) = r − κ

√
v. Proposition 4 tells us that the solution can be found easily via

searching the portfolio that maximizes the worst-case VaR among all robust MV efficient
portfolios. The search problem can be solved using a simple graphical argument: find the
point on the curve r = frob(σ) which is tangent to a line with slope κ, r = r̄ + κs, where r̄
is the return-intercept. The point corresponds to the worst-case risk and return of a robust
MV efficient portfolio, which solves maximizes the worst-case VaR. Figure 6 illustrates the
solution procedure described above.
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Figure 6: Worst-case VaR minimization via robust efficient frontier analysis.

4.2 Worst-case quadratic utility maximization

The problem of finding the portfolio that maximizes the worst-case (expected) quadratic
utility can be expressed as

maximize inf
µ∈M, Σ∈S

wT µ− (γ/2)wT Σw = rwc(w)− (γ/2)(σwc(w))2

subject to w ∈ W,
(35)

which has the form (33) with (32). Proposition 4 tells us that the solution to the worst-case
expected quadratic utility maximization problem (34) is robust MV efficient.

The portfolio that maximizes the worst-case expected quadratic utility can be easily found
in the variance-return space. In this space, the robust EF is transformed into the strictly
concave curve hrov(v) = frob(

√
v), which can be verified easily using basic composition rules

for concave functions. There is one and only one line with slope γ/2, r = (γ/2)v + U⋆,
which is tangential to the strictly concave curve r = hrov(v). Here, U⋆ is the return-intercept
of the line, that is, the point where the line crosses the axis v = 0. The tangential point
on the curve r = hrov(v) corresponds to the worst-case variance and return of a robust
MV efficient portfolio, say w⋆. We can now see that the worst-case quadratic utility is U⋆

and the portfolio w⋆ is the solution to the worst-case expected utility maximization problem
(35). In the risk-return space, the solution procedure amounts to finding the quadratic curve
r = U⋆ +(γ/2)σ2 which is tangential to the robust EF. Figures 7 and 8 illustrate the solution
procedure described above.
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Figure 7: The robust efficient frontier in the variance-return space and quadratic
utility maximization under model uncertainty.
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Figure 8: The robust efficient frontier in the risk-return space and quadratic
utility maximization under model uncertainty.
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5 Numerical example

In this section, we illustrate the results described thus far with a simple example.

5.1 Setup

We illustrate the robust EF analysis method with a simple model with 8 risky assets (n = 8).
We consider the long-only case, so the asset allocation constraint set is

W = {w ∈ R
8 | w ≥ 0, 1T w = 1}.

(When short positions are allowed, it is easy to find examples for which the improvement
given by robust mean-variance analysis, over nominal mean-variance analysis, is dramatic.
With long-only positions, we will see that the improvement is modest, but still quite signif-
icant.) The positive conjugate cone of W is the nonnegative orthant cone:

W⊕ = R
8
+ =

{

λ ∈ R
8 | λ ≥ 0

}

.

Nominal asset return model

We first describe the nominal model with which we compute the nominal EF and MV efficient
portfolios. The nominal returns µ̄i and nominal variances σ̄2

i of the asset returns are taken
as

µ̄ = [6.1 5.9 12.7 10.0 13.99 9.4 10.9 13.7]T ,

σ̄ = [9.4 8.1 19.9 14.4 24.6 15.7 15.2 27.8]T .

All units here are in percentage. The nominal correlation matrix Ω̄ is taken as

Ω̄ =

























1 .41 .22 .28 .11 .19 .19 .02
1 .03 .06 .08 .14 .39 .11

1 .69 .82 .58 .62 0.65
1 .69 .81 .58 0.59

1 .86 .54 0.67
1 .50 0.62

1 0.71
1

























∈ R
8×8.

(Only the upper triangular part is shown because the matrix is symmetric.) The risk-less
return is r̄ = 3. The nominal covariance is

Σ̄ = diag(σ̄)Ω̄ diag(σ̄),

where we use diag(z1, . . . , zm) to denote the diagonal matrix with diagonal entries z1, . . . , zm.
The nominal EF is the EF obtained with the nominal model (µ̄, Σ̄).
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Uncertainty model

We assume that the possible variation in the expected return of each asset is at most 20%:

|µi − µ̄i| ≤ 0.2|µ̄i|, i = 1, . . . , 8.

We also assume that the possible variation in the expected return of a uniformly weighted
portfolio is at most 10%:

|1T µ− 1T µ̄| ≤ 0.1|1T µ̄|.
These assumptions mean that we know more about the return of the portfolio w = (1/n)1
(in which a fraction 1/n of budget is allocated to each asset of the n assets). In summary,
the uncertainty modelM for the mean return vector is

M = {µ | |1T µ− 1T µ̄| ≤ 0.1|1T µ̄|, |µi − µ̄i| ≤ 0.2|µ̄i|, i = 1, . . . , 8}.

We assume that the possible variation in each component of the covariance matrix is at
most 20% and the possible deviation of the covariance from the nominal covariance is at
most 10% in terms of the Frobenius norm:

|Σij/Σ̄ij − 1| ≤ 0.2, i, j = 1, . . . , 8, ‖Σ− Σ̄‖F ≤ 0.1‖Σ̄‖F .

(Here, ‖A‖F denotes the Frobenius norm of A, ‖A‖F = (
∑n

i,j=1 A2
ij)

1/2.) Of course, we
require Σ ∈ S to be positive semidefinite definite. The covariance uncertainty model S is

S =

{

Σ = ΣT ∈ R
n×n

∣

∣

∣

∣

Σ ≥ 0, ‖Σ− Σ̄‖F ≤ 0.1‖Σ̄‖F , |Σij/Σ̄ij − 1| ≤ 0.2, i, j = 1, . . . , 8

}

.

5.2 Computation

To compute the robust EF, we first compute the maximum worst-case return

rsup = sup
w∈W

inf
µ∈M

wT µ.

Using the standard minimax theorem for convex/concave functions, we can show that

sup
w∈W

inf
µ∈M

wT µ = inf
µ∈M

sup
w∈W

wT µ.

Using linear programming duality, we can show

sup
w∈W

wT µ = sup
w≥0, 1T w=1

wT µ = inf
λ≥0, ν1−λ−µ=0

ν,

which means
rsup = inf

µ∈M
sup
w∈W

wT µ = inf
µ∈M

inf
λ≥0, ν1−λ−µ=0

ν.
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We can compute the maximum worst-case return rsup as the optimal value of the problem

minimize ν
subject to |µi − µ̄i| ≤ 0.2|µ̄i|, i = 1, . . . , 8,

|1T µ− 1T µ̄| ≤ 0.1|1T µ̄|,
ν1− λ− µ = 0,
λ ≥ 0,

with variables µ ∈ R
7, λ ∈ R

8, and ν ∈ R. This problem can be reformulated as an LP.
The general solution procedure described in §3 shows that the robust EF for the model

described above can be found via solving the following problem for each r̄ ∈ (−∞, rsup).

minimize (µ− r̄1 + λ)T Σ−1(µ− r̄1 + λ)
subject to Fµ ≥ 0,

|µi − µ̄i| ≤ 0.2|µ̄i|, i = 1, . . . , 8,
|1T µ− 1T µ̄| ≤ 0.1|1T µ̄|,
|Σij − Σ̄ij| ≤ 0.2|Σ̄ij|, i, j = 1, . . . , 8,
‖Σ− Σ̄‖F ≤ 0.1‖Σ̄‖F ,
Σ ≥ 0,
λ ≥ 0,

(36)

in which the variables are µ ∈ R
8, Σ ∈ R

8×8, and λ ∈ R
8. Here A ≥ 0 means that A is

positive semidefinite.
To compute the nominal and robust EFs, we discretized the interval [−20, rsup], where

rsup is the maximum worst-case return, with 200 grid points, and solved the corresponding
portfolio optimization problems of the form (36). Similarly, we computed approximately
the nominal efficient frontier. The risk and return computed with the nominal model are
called the nominal risk and return. We solved the nominal and worst-case SRMPs using the
CVX software package [28], a Matlab-based modeling system for convex optimization. (The
CVX package internally transforms the convex problem (36) into an SDP using the Schur
complement technique and uses SDPT3 [65] as the solver.)

5.3 Comparison

Performance comparison with the baseline model

Figure 9 compares the robust EF with the nominal EF. The solid curve corresponds to the
EF computed with the nominal mean return µ̄ and the nominal covariance Σ̄. The dotted
curve describes the performance of the robust MV efficient portfolios with the baseline model
µ̄ and Σ̄. Robust MV efficient portfolios perform slightly worse than nominal MV efficient
portfolios.

Worst-case performance comparison

Figure 10 compares the worst-case performance of nominal and robust MV efficient portfolios.
The solid curve corresponds to the robust EF. The dotted curve describes the worst-case
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Figure 9: Nominal performance of nominal MV efficient portfolios and robust
MV efficient portfolios. The solid curve is the nominal efficient frontier computed
with the baseline model. The dotted curve is the trajectory of risk and return of
robust MV efficient portfolios computed with the baseline model.
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Figure 10: Comparison of nominal and robust MV efficient portfolios. The solid
curve is the robust efficient frontier. The dotted curve is the trajectory of worst-
case risk and return of nominal MV efficient portfolios.

performance of the nominal MV efficient portfolios; each point on the curve corresponds to
the worst-case risk and return of a nominal MV efficient portfolio. The figure shows the
robust optimal portfolios are less sensitive to variations in the parameters than the nominal
optimal portfolios. (Without short-selling, nominal efficient portfolios are not very sensitive;
see, e.g., [34].)
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Nominal and robust efficient portfolios

Figure 11 shows the optimal trade-off curve for this portfolio optimization problem. The plot
is given in the conventional way, with the horizontal axis showing risk and the vertical axis
showing expected return when the asset return statistics are described by the baseline model
(µ̄, Σ̄). The lower plot shows the optimal asset allocation vector w for each optimal point.
The leftmost point corresponds to the risk and return of the nominal minimum variance
portfolio (MVP) that minimizes the variance when the asset return statistics are described
by the baseline model (µ̄, Σ̄). The rightmost point corresponds to the risk and return of the
nominal maximum return portfolio (MRP) that maximizes the variance with the baseline
model (µ̄, Σ̄). Since no short selling is imposed, the portfolios are less sensitive [34]. The
results in this example agree with our intuition. For small risk, the optimal allocation consists
mostly of the asset with the minimum risk, with a mixture of the other assets in smaller
quantities. At the other end of the trade-off curve, we see that aggressive growth portfolios
(i.e., those with large mean returns) concentrate the allocation in asset 5, the one with the
largest mean return. Overall, the nominal MV efficient portfolios are not diversified well.

Figure 12 shows the worst-case optimal trade-off curve in a similar way, with the hori-
zontal axis showing worst-case risk and the vertical axis showing worst-case expected return.
The lower plot shows the robust optimal asset allocation vector w for each point on the curve
in the top plot. The leftmost point corresponds to the worst-case risk and return of the ro-
bust MVP that minimizes the worst-case variance. The rightmost point corresponds to the
risk and return of the robust MRP that maximizes the worst-case variance. One noticeable
difference is that robust MV efficient portfolios are more diversified than nominal ones with
the same risk levels and so less likely to produce extreme results. We can observe that the
nominal minimum variance portfolio and robust minimum variance portfolio perform sim-
ilarly, although the latter is more diversified. For large risk, the robust optimal allocation
consists mostly of the asset with the maximum worst-case return, with a mixture of the
other assets in smaller quantities. As in optimal asset allocation with the baseline model,
at the other end of the trade-off curve, we see that aggressive growth portfolios (i.e., those
with large mean returns) concentrate the allocation in asset 5. As the maximum allowable
worst-case risk level increases, the discrepancy between the robust optimal allocation and
the nominal optimal allocation tends to diminish, and when it is larger than a threshold,
both allocations are the same.
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Figure 11: Optimal asset allocation with the baseline model. Top. The nominal
MV efficient frontier. Bottom. Corresponding optimal allocations.
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6 Conclusions

In this paper, we have considered robust EF analysis with a separable uncertainty model.
The extension of the main results of this paper to general nonseparable uncertainty models
does not appear to be straightforward; with a general non-separable uncertainty model the
risk-return set of a portfolio can have an arbitrary shape, so it is not clear how to define the
concept of worst-case preference. We have characterized the robust EF as the trajectory of
the solution to the worst-case SRMP. An interesting question is whether this characterization
can be generalized to robust EF analysis with a general non-separable uncertainty model.
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A Proofs

A.1 Concavity of the robust EF

It suffices to show that the robust EF is strictly concave over [σinf , σsup). If σsup is finite,
then frob(σ) = supw∈W infµ∈M wT µ whenever σ ≥ σsup. The robust EF is increasing, so it is
concave over [σinf ,∞).

Suppose that the robust EF is not strictly concave over [σinf , σsup), that is, there are two
points, say (σ1, r1) and (σ2, r2) with σinf ≤ σ1 < σ2 ≤ σsup and r1 < r2, lying on the robust
EF, such that the line that connects the two points lies on or below the frontier. Let w̄
and ŵ be two admissible allocations in W which correspond to the two points (σ1, r1) and
(σ2, r2) in the risk-return space: (σwc(w̄), rwc(w̄) = (σ1, r1) and (σwc(ŵ), rwc(ŵ) = (σ2, r2).
The portfolio w̃ = (w̄+ ŵ)/2 is admissible, sinceW is assumed to be convex. The worst-case
return of w̃ satisfies

rwc(w̃) = inf
µ∈M

µT w̃ ≥ 1

2

(

inf
µ∈M

µT w̄ + inf
µ∈M

µT ŵ

)

=
1

2
(rwc(w̄) + rwc(ŵ)) =

1

2
(r1 + r2).

From the compactness of S, any worst-case covariance, say Σwc ∈ S
n
++, that satisfies

(w̃T Σwcw̃)1/2 = σwc(w̃). for w̃, is in S. Then,

σwc(w̃) = sup
Σ∈S

√
w̃T Σw̃ =

√

w̃T Σwcw̃.

Since Σwc is positive definite,
√

wT Σwcw is strict concave in w, so
√

w̃T Σwcw̃ <
1

2

(

√

w̄T Σwcw̄ +
√

ŵT Σwcŵ
)

.

Here,
√

w̄T Σwcw̄ ≤ sup
Σ∈S

√
w̄T Σw̄,

√

ŵT Σwcŵ ≤ sup
Σ∈S

√
ŵT Σŵ.

We have thus far shown that

σwc(w̃) <
1

2

(

sup
Σ∈S

√
w̄T Σw̄ + sup

Σ∈S

√
ŵT Σŵ

)

=
1

2
(σ1 + σ2).

Taken together, the inequalities on the worst-case risk and return of w̃ mean that the point
(σwc(w̃), rwc(w̃)) lies entirely above the line that connects the two points (σ1, r1) and (σ2, r2),
which is on or above the robust EF. Therefore the point lies entirely above the robust EF,
which contradicts the definition of the robust EF.

A.2 Proof of Theorem 1

A.2.1 General uncertainty models

We start by noting that for any s < infw∈W
√

wT Σw, the set of portfolios that can achieve
the risk level σ is empty, so

fµ,Σ(σ) = sup
w∈W, σ(w,Σ)≤σ

wT µ = −∞.
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SinceW is closed and Σ is positive definite, for any s ≥ infw∈W
√

wT Σw, the set of portfolios
that achieve the risk level σ is nonempty, so fµ,Σ(σ) is finite. Therefore,

inf
µ∈M, Σ∈S

fµ,Σ(σ) = −∞, s < sup
Σ∈S

inf
w∈W

√
wT Σw

and infµ∈M, Σ∈S fµ,Σ(σ) is finite if s ≥ supΣ∈S infw∈W
√

wT Σw. Here we use the compactness
assumption of S. From the definition of the robust EF, we have

frob(σ) = −∞, s < inf
w∈W

σwc(σ) = inf
w∈W

sup
Σ∈S

√
wT Σw,

since no portfolio can achieve the given worst-case risk level σ.
For any S ⊆ S

n
++, the minimax inequality

sup
Σ∈S

inf
w∈W

√
wT Σw ≤ inf

w∈W
sup
Σ∈S

√
wT Σw

holds. Therefore, frob(σ) ≤ infµ∈M, Σ∈S fµ,Σ(σ), whenever σ < infµ∈M supw∈W wT µ.
We are now in a position to establish the inequality (11) when σ ≥ infµ∈M supw∈W wT µ.

Let Wσ be the set of admissible portfolios whose worst-case risk is equal to σ:

Wσ = {w ∈ W | σwc(w) ≤ σ}.

For any w in Wσ, it follows from the definition of the EF that

wT µ ≤ fµ,Σ

(√
wT Σw

)

, ∀ (µ, Σ) ∈M× S.

Since fµ,Σ is an increasing function, we have

wT µ ≤ fµ,Σ

(

sup
Σ∈S

√
wT Σw

)

= fµ,Σ(σwc(w)) ≤ fµ,Σ(σ), ∀w ∈ Wσ, ∀ (µ, Σ) ∈M× S.

Therefore, supw∈Wσ
wT µ ≤ fµ,Σ(σ) for any (µ, Σ) ∈M× S, which in turn means that

inf
µ∈M

sup
w∈Wσ

wT µ ≤ inf
µ∈M, Σ∈S

fµ,Σ(σ).

We use the minimax inequality (which holds for any Wσ ⊂ R
n andM⊂ R

n) to obtain

sup
w∈Wσ

inf
µ∈M

wT µ ≤ inf
µ∈M

sup
w∈Wσ

wT µ.

From the definition of the robust EF, we can write

frob(σ) = sup
w∈Wσ

inf
µ∈M

wT µ.

Taken together, the results established above show that

frob(σ) = sup
w∈Wσ

inf
µ∈M

wT µ ≤ inf
µ∈M

sup
w∈Wσ

wT µ ≤ inf
µ∈M, Σ∈S

fµ,Σ(σ), σ ≥ σinf .
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A.2.2 Convex uncertainty models

We turn to the convex case. The functions
√

wT Σw is convex in w for fixed Σ and concave
in Σ for fixed w. Since S is convex and compact, we can use the standard convex/concave
minimax theorem, to obtain

inf
w∈W

sup
Σ∈S

√
wT Σw = sup

Σ∈S
inf

w∈W

√
wT Σw.

Therefore,

frob(σ) = inf
µ∈M, Σ∈S

fµ,Σ(σ) = −∞, σ < σinf = sup
Σ∈S

inf
w∈W

√
wT Σw = inf

w∈W
sup
Σ∈S

√
wT Σw.

Moreover, infµ∈M, Σ∈S fµ,Σ(σ) is finite if σ ≥ σinf .
The functions wT µ is convex in w for fixed Σ and concave in µ for fixed w. Since M is

convex and compact, the standard convex/concave minimax theorem tells us that

sup
w∈W

inf
µ∈M

wT µ = inf
µ∈M

sup
w∈W

wT µ.

We note that
frob(σ) = sup

w∈W
rwc(w) = sup

w∈W
inf

µ∈M
wT µ, σ ≥ σsup.

As will be shown soon,

frob(σ) = inf
µ∈M, Σ∈S

fµ,Σ(σ), σ ∈ [σinf , σsup). (37)

Moreover,
inf

µ∈M, Σ∈S
fµ,Σ(σ) ≤ inf

µ∈M
sup
w∈W

wT µ, ∀σ > 0.

Since infµ∈M, Σ∈S fµ,Σ(σ) and frob(σ) are increasing, we have the inequality (12).
Suppose that the line that is tangential to the robust EF at (s, frob(s)) crosses the line

s = 0 at (0, r̄). Then,

sup
σ≥0

frob(σ)− r̄

σ
=

frob(s)− r̄

s
.

Here,

sup
w∈W

Sr̄(w, µ, Σ) ≥ fµ,Σ(σ)− r̄

σ
, ∀ (µ, Σ) ∈M× S,

so

inf
µ∈M, Σ∈S

sup
w∈W

Sr̄(w, µ, Σ) ≥ inf
µ∈M, Σ∈S

fµ,Σ(σ)− r̄

σ
.

It follows from (16) and (19) that

inf
µ∈M, Σ∈S

fµ,Σ(σ)− r̄

σ
≤ sup

w∈W
inf

µ∈M, Σ∈S
Sr̄(w, µ, Σ) = sup

σ≥0

frob(σ)− r̄

σ
=

frob(s)− r̄

s
.
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Therefore,

inf
µ∈M, Σ∈S

fµ,Σ(σ)− r

σ
≤ frob(σ̄)− r

σ
,

or equivalently, infµ∈M, Σ∈S fµ,Σ(σ) ≤ frob(σ). We can now see from (11) established above
that (37) is true.

A.3 Proof of Proposition 1

We start by noting that if the worst-case SR of w is positive, then it can be written as

inf
µ∈M, Σ∈S

Sr̄(w, µ, Σ) =
infµ∈M wT µ− r

supΣ∈S
√

wT Σw
.

The worst-case SRMP is equivalent to

maximize
infµ∈M wT µ− r

supΣ∈S
√

wT Σw
subject to w ∈ W.

(The optimal value of this equivalent problem is positive, so we can rule out portfolios with
negative worst-case SR.) Since 1T w = 1 for each w ∈ W, this problem is equivalent to

maximize
infµ∈M wT (µ− r1)

supΣ∈S
√

wT Σw
subject to w ∈ W.

(38)

The objective of this problem is homogeneous, so when it has a solution, say w⋆, w⋆ also
solves the problem

maximize
infµ∈M xT (µ− r1)

supΣ∈S
√

xT Σx
subject to x ∈ X .

From (18), we can see that the optimal value of this problem is positive, so this problem is
equivalent to

maximize inf
µ∈M

xT (µ− r1)

subject to x ∈ X , supΣ∈S
√

xT Σx = 1,

which is in turn equivalent to

maximize inf
µ∈M

xT (µ− r1)

subject to x ∈ X , supΣ∈S xT Σx = 1.

We can relax the equality constraint to obtain the equivalent formulation (17). Any solution
of (17), say x⋆, always satisfies the equality constraint supΣ∈S x⋆T Σx⋆ = 1. (If it does not,
then there is a positive constant α > 1 such that αx⋆ achieves a higher objective value.) Let
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x⋆ be the solution to (17). Then, we can see 1T x⋆ ≥ 0 from the definition of the cone X .
(Any point x ∈ X satisfies 1T x ≥ 0.) If 1T x⋆ > 0, then w⋆ = (1/1T x⋆)x⋆ solves (38), which
is equivalent to the worst-case SRMP (13). We conclude that w⋆ solves (13). Moreover, it is
the unique solution to (13), which follows from the uniqueness of the solution to (17), which
we will establish shortly.

Suppose that the problem has two solutions u⋆ and v⋆ which are not identical. The mean
x⋆ = (u⋆ + v⋆)/2 ∈ X of the two solutions is feasible for (17), since

√
x⋆T Σx⋆ < 1. However,

x⋆ achieves the same objective value as u⋆, a contradiction to the fact that any solution is
on the intersection of the boundary of the strictly convex set {x ∈ R

n | supΣ∈S xT Σx ≤ 1}
and the convex cone X . We conclude that (17) has a unique solution.

We next turn to the case of 1T x⋆ = 0. If the worst-case SRMP (13) has a solution, say
w̄, whose entries adds up to one, i.e., 1T w̄ = 1, then it is contradictory to the uniqueness of
the solution to (17).

A.4 Proof of Proposition 2

Let r̄ < supw∈W infµ∈M wT µ be fixed. It follows from (19) that

frob(σ) ≤ r̄ + S⋆(r̄)σ, σ > 0.

Therefore,
frob(σ) ≤ inf

r̄<supw∈W infµ∈M wT µ

r̄ + S⋆(r̄)σ, σ > 0.

From the strict concavity of the robust EF, we can see that

frob(σ) = inf
r̄<supw∈W infµ∈M wT µ

r̄ + S⋆(r̄)σ, σ ∈ (σinf , σsup).

A simple argument shows that both curves are right continuous at σinf . Therefore,

inf
r̄<supw∈W infµ∈M wT µ

r̄ + S⋆(r̄)σinf = frob(σinf).

By the definition of the robust EF, we have

frob(σ) = sup
w∈W

inf
µ∈M

wT µ, σ ≥ σsup.

A simple argument shows that when σsup is finite, S⋆(r̄) tends to zero, as r̄ tends to
supw∈W infµ∈M wT µ. Therefore,

frob(σ) = inf
r̄<supw∈W infµ∈M wT µ

r̄ + S⋆(r̄)σ = sup
w∈W

inf
µ∈M

wT µ, σ ≥ σsup.
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A.5 Proof of Proposition 3

Suppose that the line tangential to the robust EF at (σ̄, frob(σ̄)) intercepts the line s = 0 at
(0, r̄). Then,

frob(σ̄)− r̄

σ̄
= sup

σ>0

frob(σ)− r̄

σ
= sup

w∈W
inf

µ∈M, Σ∈S
Sr̄(w, µ, Σ).

Let (µ⋆, Σ⋆) be least favorable in terms of the market price of risk, i.e.,

sup
w∈W

Sr̄(w, µ⋆, Σ⋆) = inf
µ∈M, Σ∈S

sup
w∈W

Sr̄(w, µ, Σ).

From the concavity of fµ⋆,Σ⋆ , the left-hand side can be written as

sup
w∈W

Sr̄(w, µ⋆, Σ⋆) = sup
σ>0

fµ⋆,Σ⋆(σ)− r̄

σ
.

Therefore,
frob(σ̄)− r̄

σ̄
= sup

σ>0

frob(σ)− r̄

σ
= sup

σ>0

fµ⋆,Σ⋆(σ)− r̄

σ
.

Taken together, the results established above lead to

sup
σ>0

frob(σ)− r̄

σ
= sup

σ>0

fµ⋆,Σ⋆(σ)− r̄

σ
.

If fµ⋆,Σ⋆(σ̄) > frob(σ), we have the following contradiction:

sup
σ>0

fµ⋆,Σ⋆(σ)− r̄

σ
≥ fµ⋆,Σ⋆(σ̄)− r̄

σ̄
>

frob(σ̄)− r̄

σ̄
= sup

σ>0

frob(σ)− r̄

σ
.

Therefore, fµ⋆,Σ⋆(σ̄) = frob(σ), since frob(σ) = infµ∈M, Σ∈S fµ,Σ(σ̄). Thus far we have seen
that

sup
σ>0

fµ⋆,Σ⋆(σ)− r

σ
=

fµ⋆,Σ⋆(σ̄)− r

σ̄
.

In other words, the line tangential to the robust EF at (σ̄, frob(σ̄)) intercepts the line s = 0
at (0, r̄) is also tangential to the curve r = fµ⋆,Σ⋆(σ) at the same point.
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