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Robust Minimum Variance Beamforming

Robert G. Lorenz
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Fig. 1.

Beamformer block diagram.

Abstract—— This paper introduces an extension
of minimum variance beamforming that explic-
itly uses the a-priori uncertainty in the array re-
sponse. Sources of this uncertainty include im-
precise knowledge of the angle of arrival and un-
certainty in the array manifold; this uncertainty is
modeled via an ellipsoid. We choose weights that
minimize the total weighted power ocutput of the
array, subject to the constraint that the gain ex-
ceeds unity for all possible array responses in this
ellipsoid. We show that the robust weights can
be computed efficiently using Lagrange multiplier
techniques.

Numerical examples are presented.

1. INTRODUCTION

ONSIDER an array of n sensors. Let a(f) € C"

denote the response of the array to a plane wave of
unit amplitude arriving from direction 8; we shall refer
to a(-) as the arrey manifold. We assume that a narrow-
band source s(t) is impinging upon the array from angle
& and that the source is in the far-field of the array. The
vector array output y(t) € C" is then:

y(t) = a{0)s(t) + v(t), (1)

where a(f) includes effects such as coupling between el-
ements and subsequent amplification; v{t) is a vector of
additive noises representing the effect of undesired sig-
nals, such as thermal noise or interference. We denote
the sampled array output by y(k). Similarly, the com-
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.bined beamformer output is given by

ye(ky = w'y(k) = w*a(@)s(k) + w'vl(k),

where w; € C" is a vector of weights, i.e., design variables,
and (-)* denotes the conjugate transpose.

The goal is to make w*a(f) ~ 1 and w"u{t) small, in
which case, y.(t) recovers s(t), i.e., yc(£) = s{f). The gain
of the weighted array response in direction 8 is |w* a(8)|;
the expected effect of the noise and interferences at the
combined output is given by w” Byw, where R, = Evv*
and E denotes the expected value. If we presume o(8) and
R, are known, we may choose w as the optimal solution
of

minimize w'R,w )
subject to  w*a(fa) = 1.

Minimum variance beamforming is a variation on (2)
in which we replace H, with an estimate of the received
signal covariance derived from the sample covariance of
recently received samples of the array output, e.g.,

1 k
N . = nXh
Rky=5 2 i@ ec™ @
i=k—N+1
The minimum variance bheamformer (MVB) is chosen as
the optimal solution of
minimize w*Ryw (4)
subject to wTa(f) = 1. s
This is commonly referred to as Capon’s method [1].
Equation (4) has an analytical solution given by
R 'a(d
- ®)

a(@)* Ry "a(8)

Equation (4) also differs from (2) in that the power ex-
pression we are minimizing includes the effect of the de-
sired signal plus noise. The constraint w”a(f) = 1 in (4)
prevents the gain in the direction of the signal from being
reduced.

A measure of the effectiveness of a beamformer is given

by the signal to interference plus noise ratio, commonly
abbreviated as SINR, given by

oajw"a(f)®
w* Ryw

Wmy

SINR = (6)
where ag is the power of the signal of interest. The as-
sumed value of the array manifold a(4) may differ from
the actual value for a host of reasons including impre-
cise knowledge of the signal’s angle of arrival 6. Unfortu-
nately, the SINR of Capon’s method can degrade catas-
trophically for modest differences between the assumed
and actual values of the array manifold. We now review
several techniques for minimizing the sensitivity of MVB
to modeling errors in the array manifold.
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A, Previous work

One popular method to address uncertainty in the ar-
ray response or angle of arrival is to impose a set of unity-
gain constraints for a small spread of angles around the
nominal iook direction. These are known in the liter-
ature as point mainbeam constraints or neighboring lo-
cation constraints [2. The beamforming problem with
point mainbeam constraints can be expressed as

minimize w R,w (M)
subject to C'w = [,

where C is a n X L matrix of array responses in the L
constrained directions and f is an L x 1 vector speci-
fying the desired response in each constrained direction.
To achieve wider responses, additional constraint points
may be added. We may similarly constrain the deriva-
tive of the weighted array output to be zero at the de-
sired lock angle. This constraint can be expressed in
the same framework as (7); in this case, we let C be
the derivative of the array manifold with respect to look
angle and f = 0. These are called derivative mainbeam
constraints; this derivative may be approximated using
regularization methods. Point and derivative mainbeam
constraints may also be used in conjunction with one an-
other. The minimizer of (7) has an analytical solution
given by:

wopt = R, VC(C*R;'CY T (8)

Each constraint removes one of the remaining degrees
of freedom available to reject undesired signals; this is
particularly significant for an array with a small number
of elements. We may overcome this limitation by using a
low-rank approximation to the constraints [3]. The best
rank-k approximation to C, in a least squares sense, is
given by ULV", where T is a diagonal matrix consisting
of the largest k singular values, U is a n x k matrix whose
columns are the corresponding left singular vectors of C,
and V is a L x k matrix whose columns are the corre-
sponding right singular vectors of C. The reduced rank
constraint equations can be written as VETU w = f, or
equivalently:

Utw=x'v'y, 9

where { denotes the Moore-Penrose pseudoinverse. Using
(8). we compute the beamformer using the reduced rank
constraints as

wepe = Ry 'U(U™R,UY 'SV £

This technique, used in source localization, is referred to
as minimum variance beamforming with environmental
perturbation constraints (MV-EPC), see [2] and the ref-
erences contained therein.

Unfortunately, it is not clear how best to pick the ad-
ditional constraints, or, in the case of the MV-EPC, the
rank of the constraints. The effect of additional con-
straints on the design specifications appears difficult to
predict.

Regularization methods have also been used in beam-
forming. One technique, referred to in the literature as di-
agonal loading, chooses the beamformer to minimize the

sum of the weighted array output power plus a penalty
term, proportional to the square of the norm of the weight
vector. The gain in the assumed AOA of the desired sig-
nal is constrained to be unity. The beamformer is chosen
as the optimal solution of:

minimize  w* Ryw + pw'w (10)
subject to  w*a(f) = 1.

The parameter g > O penalizes large values of w and has
the general effect of defuning the beamformer response.
The regularized least squares problem (10) has an ana-
Iytical solution given by:

_ (Ry+p)al)
Wree = L0 (Ry + ul)-1a(8)

Gershman [4] and Johnson and Dudgeon [5] provide a
survey of these methods: see also the references contained
therein. Similar ideas have been used in adaptive algo-
rithms, see [6].

Beamformers using eigenvalue thresholding methods to
achieve robustness have also been used; see [7]. The
beamformer is computed according to Capon’s method
using a covariance matrix which has been modified to en-
sure no eigenvalue is less than a factor u times the largest,
where 0 € g < 1. The performance of this beamformer
appears similar to that of the regularized beamformer us-
ing diagonal loading; both usually work well for an ap-
propriate choice of the regularization parameter j.

We see two limitations with regularization techniques
for beamformers. First, it is not clear how to efficiently
pick g. Second, this technique does not take into account
any knowledge we may have about vartation in the array
manifold, e.g., that the variation may not be isotropic.

In §I-C, we describe a beamforming method that ex-
plicitly uses information about the variation in the array
response a{-), which we model explicitly as an uncertainty
ellipsoid. Prior to this, we introduce some notation for
describing ellipsotds.

(11)

B. FEllipsoid descriptions

A n-dimensional ellipsoid can be defined as the image of
a n-dimensional Euclidean ball under an affine mapping
from R™ to R", i.e.,

E={Aute|llu| <1}, (12)
where 4 € R"*" and ¢ € R™. The set £ describes an
ellipsoid whose center is ¢ and whose principle semiazes
are the unit-norm left singular vectors of A scaled by the
corresponding singular values. We say that an ellipsoid is
fat if this mapping is not injective, i.e., one-to-one. Flat
ellipsoids can be described by (12) in the proper affine
subspaces of R™, In this case, 4 ¢ R"*! and u ¢ R with
n<l

Unless otherwise specified, an ellipsoid in R™ will be
parameterized in terms of its center ¢ € R" and a sym-
metric non-negative definite configuration matrix P €
Rnxn as

E(e, Py ={P u+tc||lu] <1} (13)
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where PY? is any matrix square root satisfying
pi(pynT P. When P is full rank, the non-
degenerate ellipsoid £{c, P) may also be expressed as

(14)

The first representation (13) is more natural when £ is
degenerate or poorly conditioned. Using the second de-
scription {(14), one may quickly determine whether a point
is within the ellipsoid.

We will express the values of the array manifeld a € C*
as the direct sum of its real and imaginary components
in R*™; i.e.,

EP)={z|(z-c) P M z-c)<1}.

z; = [ Re(a1) --- Re(an) Im{a:) --- Im(an)]T. (18)
While it is possible to cover the field of values with a
complex ellipsoid in C", doing so implies a symmetry be-
tween the rea! and imaginary components which generally
results in a larger ellipsoid than if the direct sum of the

real and imaginary components are covered in R*".

C. Robust minimuwm variance beamforming

A generalization of (4) that captures our desire to min-
imize the weighted power output of the array in the pres-
ence of uncertainties in a(8) is given by:

minimize w*R,w (16)
subjectto Re w'a =1 Vae £,

where Re denotes the real part. Here, £ is an ellipsoid
that covers the possible range of values of a{f) due to im-
precise knowledge of the array manifold a(-), uncertainty
in the angle of arrival 8, or other factors. We shall refer
to the optimal solution of (16) as the robust minimum
variance beamformer (RMVB).

We use the constraint Re w*a > 1 for all a € £ in
(16) for two reasons. First, while normally considered a
semi-infinite constraint, we show in §II that it can be ex-
pressed as a second-order cone constraint. As a result,
the robust minimum variance beamforming problem (16}
can be solved efficiently. Second, the real part of the
response is an efficient lower bound for the magnitude
of the response, as the objective w* Ryw is unchanged if
the weight vector w is multiplied by an arbitrary shift
¢’®. This is particularly true when the uncertainty in the
array response is relatively small. It is unnecessary to
constrain the imaginary part of the response to be nom-
inally zero. The same rotation which maximizes the real
part for a given level of w* Rw simultaneously minimizes
the imaginary component of the response.

Our approach differs from the previously mentioned
beamforming techniques in that the weight selection uses
the a-priori uncertainties in the array manifold in a pre-
cise way. The magnitude of the RMVB response is guar-
anteed to be greater than unity for aill values of the array
manifold in the uncertainty ellipsoid £. Hence, an esti-
mate of the power of the desired signal o2, is given by
the weighted power out of the array, namely

2

84 = w' Ryw, (17)

where the sample covariance R, is computed as in {3).

Wu and Zhang (8] observe that the array manifold may
be described as a polyhedron and that the robust beam-
forming problem can be cast as a quadratic program.
While the polyhedron approach is less conservative, the
size of the description and hence the complexity of solving
the problem grows with the number of vertices. Vorobyov
et al. [9],[10] have described the use of second-order cone
programming for robust beamforming in the case where
the uncertainty in the array response is isotropic. In this
paper, we consider the case in which the uncertainty is
anisotropic 11}, [12], [13]. We also show how this problem
can be solved efficiently in practice. Prior to publication,
we learned of a work similar to ours by Li et. al [14].

D. Qutline of the paper

The rest of this paper is organized as follows. In §11
we discuss the RMVB. A numerically efficient technique
based on Lagrange multiplier methods is described; in
fact, RMVB can be computed with the same order of
complexity as its non-robust counterpart. A numerical
example is given in §111. QOur conclusions are given in §I1.

I1. ROBUST WEIGHT SELECTION

For purposes of computation, we will express the weight
vector w and the values of the array manifold a as the
direct sum of the corresponding real and imaginary com-

ponents
._| Rea
“~ 1 Ima |’

[ Rew ]

r=

Imw

The real component of the product w”a can be written
as z7 z; the quadratic form w* Ryw may be expressed in
terms of x as 27 Rz, where

_ | ReRy
R= [ ImR,

(18)

—ImR,
ReR, |

We will assume R is positive definite.

Let £ = {Au+ ¢ | |lul] € 1} be an ellipsoid cover-
ing the possible values of x, i.e., the real and imaginary
components of a. The ellipsoid £ is centered at c; the
matrix A determines its size and shape. The constraint

"Re w'a > 1 for all a € £ in (16) can be expressed

zTz>1 Vze&,

(19)
which is equivalent to
—uTATz < e -1 forall u st |Ju] <1. (20

Now, (20} holds for all ||u|| < 1 if and only if it holds
for the value of u that maximizes u” ATz, namely u =
—H-%;_!I' By the Cauchy-Schwartz inequality, we see that

{19} is equivalent to the constraint
ATz <cfz-1, (21)

which is called a second-order cone constraint [15]). We
can then express the robust minimum variance beam-
forming problem (16) as

TRz
ATz} < Tz — 1,

minimize
subject to

(22)
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which is a second-order cone program. See [15], {16], [17],
and [18]. The subject of robust convex optimization is
covered in [19}, [20], [21], [22],and [23)].

By assumption, R is positive definite and the constraint
|47 z|| < ¢¥z—1in (22) precludes the trivial minimizer of
zT Rx. Hence, this constraint will be tight for any optimal
solutior and we may express {22) in terms of real-valued
quantities as

minimize =7 Rz 23
subject to  eTax =1+ [|[ATz|. (23)

In the case of no uncertainty where £ is a singleton
whose center is ¢ = [Rea(2)” Ima(8)7)7, (23} re-
duces to Capon’s method and admits an analytical so-
lution given by the MVB (5). Compared to the MVB,
the RMVB adds a margin which scales with the size of
the uncertainty. In the case of an isctropic array uncer-
tainty, the optimal solution of (16) yields the same weight
vector {to a scale factor) as the regularized beamformer
for the proper the proper choice of u.

A. Lagrange multiplier metheds

It is natural to suspect that we may compute the
RMVB efficiently using Lagrange multiplier methods.
See, for example, {24}, {25] {16}, {26], {27, §12.1.1], and
[28]. Indeed this is the case.

The RMVB is the optimal solution of

zT Rz
|| ATl =

minimize

subject to (24)

(cTz—1)°

if we impose the additional constraint that ¢Tx > 1. We
define the Lagrangian L : R" x R — R associated with
(21) as:

L{z. 2} =27 Rr + A(YATz))? — (T2 — 1))

(25)
=zT(R+AQ)z + 22Tz — A,

v.vhere Q= AAT —cc”. To calculate the stationary points,
we differentiate L(x.y) with respect to x and A; setting
these partial derivatives equal to zero we have respec-
tively:

(R + AQ)z = —Ac (26)

and

2’ Qz+2Tz—1=0, (27

which are known as the Lagrange equations. To solve for
the Lagrange multiplier A\, we note that equation (26) has
an analytical solution given by

=-AR4+2AQ)!?
applying this to {27) yields

FOY = X2T(R4AQ)TIQR+AQ) e

“oAT(R+ AQ)" (28)
The optimal value of the Lagrange multiplier A* is then
a zero of (28).

We proceed by computing the eigenvalue/eigenvector
decomposition

vivT = R—1/2Q(R—]/2)T

to diagonalize (28), i.e.,
FOY = XEI+aD)IrI 4+ A
T -15 (29)
=2X e (I+An)~'e-1,
where ¢ = VT R~%?c. Equation {29) reduces to the fol-
lowing scalar secular equation

C: T

fO) = A”Z(HA 7 22(11%) 1, (30)

where v € R" are the diagonal elements of I'. The values
of v are known as the generalized eigenvalues of Q and
R and are the roots of ihe equation det(@ — vR) = 0;
Having computed the value of A* satisfying f(A*) = 0,
the RMVB is computed according to:

= - AR+ (31)

Similar techniques have been used in the design of filters
for radar applications; see Stutt and Spafford [29] and
Abramovich and Sverdlik [30].

In principle, we could solve for all the roots of (30) and
choose the one that results in the smallest objective value
T Rz and satisfies the constraint ¢7z > 1, assumed in
{24). In the next section, however, we show that this
constraint is met for all values of the Lagrange multiplier
A greater than a minimum value, Amin. We will see that
there is a single value of X > Amin that satisfies the La-
grange equations.

B. A lower bound on the Lagrange multiplier

‘e begin by establishing the conditions under which
(9) has a solution. Assume R = RT » 0, i.e., R is sym-
metric and positive definite.
Lemma I: For A € R™" full rank, there exists an
z € R" for which |ATz|| = ¢z ~ 1 if and only if
cT(AATY e > 1.

Proof: To prove the if direction, define

() = (T - 44T —A7'R) e (a2)
By the matrix inversion lemma, we have
cTz(a) =1 = cTee¥ —AAT -2~/ -1
(33)

=m‘

For X > 0, cT(AAT + A71R)" ¢ is a monotanically increasing
function of X; therefore, for cT(AAT)_lc > 1, there exists a
Amin € RY for which

T(AAT LA R e =1 (34)
Since

limy .o clz2(A) =1 = —cT(AAT —ccT)"le—1

1
T (A.A1 )‘I.:—l >0

1348



eTz(A) —1 > 0 for all A > Amin.
As in (28) and (30), let f{A) = [ATz|? —
ing (28), we see

(cTz — 1)%. Examin-

—eT(AAT —ecT) e -1

Jim )
1

1 s
T(AAT) Tc—1°

Evaluating (28), we see lim, .4 f(A} = —oc. For all A >
min

Amins€2x > 1 and f(A) is continuous. Hence f()\) assumes the
value of 0, establishing the existence of a A > Amin for which
cTr(A) — 1= [|AT =)

To show the only if direction, assume z satisfies [[ATzl € ¢Tz -1,
This condition is equivalent to

Tz ivzef ={Autec| |ul <1} (35)

For (35} to hold, the origin cannot be contained in ellipsoid £,
which implies ¢T(A4T) 3¢ > 1. O

Remark: The constraints (¢7z — 1)® = AT z|® and
Tz~ 1 > 0in (24), taken together, are equivalent to
the constraint ¢Tz — 1 = |JATz| in (23). For R= R" »
0, A full rank and T {AAT) ¢ > 1, (23) has a unique
minimizer z*. For A > Amin, (A" R+ Q) is full rank, and
the Lagrange equation {26)

AR Qi = —¢

holds for only a single value of A. This implies there is a
unique value of A > Amin, for which the secular equation
(30) equals zero.

Lemma 2: For £ = —A(R + A@) 'c € R™ with 4 €
R**™ full rank, ¢ (AAT) Ye> 1, and A > 0,eTr > 1 if
and only if the matrix {R+ A(AAT —ce”)) has a negative

eigenvalue.
Proof: Consider the matrix

A"1R 4+ AAT ¢
A= [ T : ] .

We define the inertia of Al as the triple In{AM} = {n4,n_,no},
where n+ is the number of positive eigenvalues, n_ is the number
of negative eigenvalues, and np is the number of zero eigenvalues
of AL, See Kailath et sl. [31. pp.729-730].

Since both block diagonal elements of Af are invertible,

In{M} = In{A 'R+ AAT} +In{A,;}

(36)
In{1} + In{As},

where A1 =1 —c?{A"'R + AAT) " Y¢, the Schur compiement of
the (1,1) block in A7, and Az = A~ R+ AAT — 7, the Schur
complement of the (2,2} block in M. We conclude ¢7(A"1R +
AATY™1c > 1 if and only if the matrix (A"*R 4+ AAT —cc”) has
a negative eigenvalue. By the matrix inversion lemma,

1

Try—~1 T Ty—1
= - - -1
T TRFAAT o1 - ¢ W AirAdT—ee) e

(37)

Inverting a scalar preserves its sign, therefore,

eTz—1=

~eTAT'R4+ AAT —ecT) le-150 (38)

if and only if AT*R + AAT — ee” has a negative eigenvaive. [0
Remark: Applying Sylvester's law of inertia to equa-
tions (28) and (30), we see that

1

Amin = )

Vi (39)

where ~v; is the single negative generalized eigen-
value. Using this fact and (30), we can readily verify
lim, ,+ f(A)= —oc, as stated in Lemma 1.

Two immediate consequences follow from Lemma 2.
First, we may exclude from consideration any value of
A less than Amin. Second, for all A > Amin, the matrix
R + A@Q has a single negative eigenvalue. We now use
these facts to cbtain a tighter lower bound on the value
of the optimal Lagrange multiplier.

We begin by rewriting (30) as

~E(=2—Xn) _ 1
; A+x)2 X (40)

By Sylvester’s law of inertia, exactly one of the general-
ized eigenvalues v in the secular equation (40) is negative.
We rewrite (40) as

E?(—Z = Ay5)

2=
(L+A7;)?

232+ A )
41
T
where j denotes the index associated with this negative
eigenvalue.
A lower bound on A can be found by ignoring the terms
involving the non-negative eigenvalues in (41) and solving

G(-2- M)
(14 2)2
This yields a quadratic equation in A

ANt=

AEy+ D+ 2y +E) +1=0, (42)

the roots of which are given by

—1£ |G|y + )72

A =
Vi
By Lemma 2, the constraint ¢’r > 1 implies R + AQ
has a single negative eigenvalue, hence, A > ~7; 1 We
conclude X\ > 5\, where
R —1 - |E (s = 212
5= €510y + &5) ) (43)
) ¥i
For any feasible beamforming problem, i.e., if Q@ =

AAT — e has a negative eigenvalue, the parenthetical
quantity in (43) is always nonnegative. To see this, we
note that ¢; = va_%c, where vy is the eigenvector as-
sociated with the negative eigenvalue +y;. Hence, v; € R?
can be expressed as the optimal sclution of

T
minimize vTR-3(AAT — &) (R_%) U (4a)
subject to |v]| =1
T
and 7; = vj (AAT - ecT) (R %) v, the corre-

sponding objective value. Since

'%c(v;R*%c)T—UQR"% T(Rq) Us:
(45)

2 T
CJ;—’UJ'

we conclude (y; — &3} = vJ AAT(R %)TLJ > 0.
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C. Solution of the secular equation

The secular equation (30) can be efficiently solved using
Newton’s method. The derivative of this secular equation
with respect to A is given by

(46)

As the secular equation (30) is not necessarily a mono-
tonically increasing function of A, it is useful to examine
the sign of the derivative at each iteration. The Newton-
Raphson method enjoys quadratic convergence if started
sufficiently close to the root A*. The reader is referred to
Dahiquist and Bjorck [32, §86] for details.

D. Summary and computational complezity of the RMVEB
compuiation

We summarize the algorithm below. In parentheses
are approximate costs of each of the numbered steps; the
actual costs will depend on the implementation and prob-
lem size [33]. As in (27} we will consider a flop to be any
single floating-point cperation.

RMVB computation

given R, strictly feasible 4 and c.
1. Calculate Q@ + AAT —cc”. (2n?)
2. Change coordinates. (2n3)
a. compute Cholesky factorization LLT = R.
b. compute L2,
e Qe LTV2QULTVHT,

3. PBigenvalue/eigenvector computation.  (10n?)
a. compute VIV = Q.

4. Change coordinates. (4n?)
a g VIR™2

5.  Secular equation solution. (80n)
a. compute initial feasible point X
b. find A* > X for which f(A) =0.

6. Compute z* « (R+A"Q) ¢ (n*)

The computational complexity of these steps are dis-
cussed below:

1. Forming the matrix product AAT is expensive; for-
tunately, it is also often avoidable. If the parameters of
the uncertainty ellipsoid are stored, the shape parameter
may be stored as AAT, hence only the subtraction of the
quansity ccT need be performed, requiring 2n® flops.

2. Computing the Cholesky factor L in step 2 requires
n®/3 flops. The resulting matrix is triangular, hence com-
puting its inverse requires n®/2 flops. Forming the matrix
@ in step 2.c requires n® flops.

3. Computing the eigenvalue/eigenvector decomposition
s the most expensive part of the algerithm. In practice,
it takes approximately 10n® flops.

5. Solution of the secular equation requires minimal ef-
fort. The solution of the secular equation converges
quadratically. In practice, the starting point A is close
to A"; hence, the secular equation generally converges in
7 to 10 iterations, independent of problem size.

6. Accounting for the symmetry in R and @, computing
z* requires n® fops.

In comparison, the regularized beamformer requires n
flops. Hence the RMVB requires approximately 12 times
the computational cost of the regularized beamiormer.
Note that this factor is independent of problem size.

3

III. A NUMERICAL EXAMPLE

Consider an 8-element uniform linear array, centered
at the origin, in which the spacing between the elements
is haif of a wavelength. If we assume that the response of
each element is isotropic and ignore coupling effects, the
response of the array @ : R — C® is given by:

a(f) = [ e~ THI2  g=B9/2 5H/2 T6/2 ]T’
where ¢ = wsin(f) and ¢ is the angle of arrival. The
responses of closely spaced antenna elements often differ
substantially from this model.

We will compare the performance of robust beam-
former with the regularized beamformer using diagonal
loading. In this example, we assume a-priori, that the
nominal AQA, fnom, is 120° and that the actual array re-
sponse in contained in an ellipsoid £(c, P), whose center
and configuration matrix are computed from samples of
the array response, sampled at integer values, according
to

130° 1 130°
c= 3. a®) P== 3 @®-@@®) -,
8=110° g=110°

(47)
with
a= supfa(@) ~c)"P " a(d) —c)
6 € [110°,130°] '

In this example, the array response of the desired sig-
nal is taken from £(c, P) and the SNR at each element
is 20 dB. Two uncorrelated interfering signals, sin and
sint2 also impinge on the array. The angles of arrival of
these interfering signals, fin1 and Hine2, are 150° and 90°;
the SNRs, 40dB and 20dB, respectively. We model the
received signals as:

y(£) = aasa(t) + af{fine )sine (£) + a{Bint2 }Sine2 (t) + v(t),
{48)

where a4 denotes the array response of the desired signal,
a{fint1) and a(fimz), the array responses for the interfer-
ing signals, s4(f) is the desired signal, gine1(t) and sin2(t)
the interfering signals, and »(t) is a complex vector of
additive white noises.

In this example, we will use the analytically com-
puted, steady state covariance, which reflects the cho-
sen array response, and which assumes that the signals
8a(t), sine1 (8), Sine2(t), and v{t} are all uncorrelated. Let
the noise power be given by Evv™ = g2, where { is an
nxn identity matrix and n is the number of antennas, viz,
8. Similarly define the powers of the desired signal, and
interfering signals to be Esas) = 03, E 8int185001 = Thaus
and E sinzSinea = 0542- Hence,

2 2 2
g, 2z Tint1 4 Tint2 b3
< =10°, SR =10' HE=100
Oa Tn a5
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Fig. 2. The response of the MVB (Capoun’s method), the RMVEB,
and the regularized beamformer employing diagonal [oading as a

function of angle of arrival §. The regularization term A corre-

sponds t0 a5 of the maximum eigenvalue of the covariance ma-

trix. Note that the RMVB preserves greater than unity gain for
all angles of arrival in the design specification of # € [120, 130].

The expected value of the covariance matrix is given by

ER=Eyy" = o3eaa]+ ohu1a(fm)a(fin)”

+ oli10(Bimz)a(fimz)* + 021

In practice, the covariance of the received signals plus
interference is often neither known nor stationary and
hence must be estimated from recently received signals;
as a result, the performance of beamformers are often
degraded by errors in the covariance due to either small
sample size or movement in the signal sources.

In Figure 2, we see the reception pattern of the ar-
ray employing the MVB, the RMVB, and the regularized
beamformer (10) computed using the nominal AQA and
corresponding covariance matrix A. The regularization
term, ¢ was chosen to be iz of the largest eigenvalue
of the received covariance matrix. By design, both the
MVB and the regularized beamformer have unity gain at
the nominal AOA. The RMVB is seen to maintain greater
than unity gain for all AOAs covered by the uncertainty
ellipsoid £(c, P). The response of the MVB is substan-
tially attenuated for § = 110°, when multiplicative un-
certainties are considered, it is not difficult to compute
scenarios in which the MVB has zero response to the de-
sired signal. The response of the regularized beamformer
is seen to be a detuned version of the MVB.

In Figure 3 we see the effect of changes in the regular-
ization parameter i on the worst-case SINRs for the reg-
ularized beamformers using diagonal loading and eigen-
value thresholding and the effect of scaling the uncer-
tainty ellipsoid on the RMVB. Using the definition of
SINR (6), we define the worst case SINR is as the mini-
mum objective value of the following optimization prob-
lem:

minimize M
w* Ryw
subject to a € £{c, P),

¥
(=]
T

SINR (dB)

'
[
L

-18 ;
-6 -4

loé%o “ e 2
Fig. 3. The worst-case performance of the regularized beamform-
ers based on diagonal loading (diagonal) as a function of the reg-
ularization parameter u. The effect of scaling of the uncertainty
ellipsoid used in the design of the RMVB is seen; for 4 = 1 the
uncertainty used in designing the robust beamformer equals the
actual uncertainty in the array manifold.

where 02 denotes the power of the desired signal and R,
is the expected covariance of the interfering signals and
noises:

Ru = oizntla(gintl)a(aintl)‘ + O'izmla(gintZ)a(gintQ)' -+ Uﬁf)

(50
The weight vector w and covariance matrix R used in its
computation reflect the chosen value of the array mani-
fold.

For comparison, the worst-case SINR of the MVB with
(three) unity mainbeam constraints at 110°,120° and
130° is -6.24 dB. The MV-EPC beamformer was com-
puted using the same 21 samples of the array manifold
as the computation of the uncertainty ellipsoid (47); the
design value {or the response in each of these directions
was unity. The worst-case SINRs of the rank-1 through
rank-4 MV-EPC beamformers were found to be -8.67 dB,
0.23 dB, -6.21 dB, and -17.60 dB, respectively.

For diagonal loading, the parameter u is the scale factor
multiplying the identity matrix added to the covariance
matrix, divided by the largest eigenvalue of the covariance
matrix A. As i — 0, the regularized beamformer reduces
to Capon’s method. The worst-case SINR for Capon’s
method is -10.26 dB. As it — 00, Wreg — @(fnom ).

For the robust beamformer, we use u to define the ratio
of the size of the ellipsoid used in the beamformer com-
putation Egesign divided by size of the actual array uncer-
tainty Eacrual. Specifically, if Lacuar = {Au+c | |lull £
1}, Egesign = {pAv + ¢ | Jivf} £ 1}. When the design un-
certainfy equals the actual, the worst-case SINR of the
robust beamformer is seen to be 0.32 dB; scaling the
uncertainty ellipsoid used in the design in either direc-
tion results in a decrease in the SINR of the response.
We summarize the effect of differences between assumed
and actual uncertainty regions on the performance of the
RMVE:

« If the assumed uncertainty ellipsoid is smaller than the
actual uncertainty, the minimum gain consiraint will gen-
erally not be met. If the ellipsoid used in computing the
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RMVB is much smaller than the actual uncertainty, the
performance may degrade substantially.
» If assumed uncertainty is greater than the actual un-
certainty, the performance is generally degraded, but the
minimum gain in desired lock direction is maintained.
The performance of the RMVB is not optimal with re-
spect to SINR; it is optimal in the following sense. For
a fixed covariance matrix R and an array response con-
tained in an ellipsoid £, no other vector achieves a fower
weighted power out of the array while maintaining the
real part of the response greater than unity for all values
of the array contained in £.

II. CoNcLUSIONS

The main ideas of our approach are as follows:

« The possible values of the array manifold are covered
by an ellipsoid that describes the uncertainty in the array
response.

+ The robust minimum variance beamfermer is chosen to
minimize the weighted power out of the array subject to
the constraint that the gain is greater than unity for all
array manifolds in the ellipsoid.

« The RMVB can be computed very efficiently using La-
grange multiplier techniques.
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