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Fig. 1. Beamformer block diagram 

Abstmct- T h i s  paper introduces an extension 
of minimum variance beamforming that explic- 
i t ly uses the a-priori  uncertainty i n  the array re- 
sponse. Sources of this uncertainty include im- 
precise knowledge of the angle of arrival and un- 
cer ta inty i n  t h e  array manifold; this uncertainty is 
modeled v ia  an ellipsoid. W e  choose weights that 
minimize t h e  t o t a l  weighted power o u t p u t  of the 
array, subject  to the constraint t h a t  the gain ex- 
ceeds uni ty  for all possible a r r a y  responses in t h i s  
ellipsoid. We show that the robust weights can 
be computed  efficiently us ing  Lagrange multiplier 
techniques. 

Numerical examples  are presented. 

I. INTRODUCTION 

ONSIDER an array of n sensors. Let a(@) E C" C denote the response of the array to a plane wave of 
unit amplitude arriving from direction 8; we shall refer 
to  a(.) as the a m y  manifold. We assume that a narrow- 
band source s ( t )  is impinging upon the array from angle 
8 and that. the source is in t,he far-field of the array. The 
vector array out.put y ( t )  E C" is t.hen: 

where a(0) includes effects such as coupling between el- 
ements and subsequent amplification; u ( t )  is a vector of 
additive noises representing t.he effect of undesired sig- 
nals, such as thermal noise or interference. \lie denote 
the sampled array output by y(k). Similarly, the com- 
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bined beamformer output is given by 

where w t C" is a vector of weights, i.e.. design variables, 
and (.)* denotes the conjugate transpose. 

The goal is to  make w'a(0) % 1 and w*s( t )  small: in 
which case, y c ( t )  recovers s ( t ) ,  i.e., y.(t)  s ( t ) .  The gain 
of the weighted array response in direct.ion 6' is Iw'a(8)I; 
the expected effect of the noise and interferences at the 
combined output is given by w*RywU_ where R, = E w '  
and E denotes the expected value. If we presume a(8)  and 
R, are known, we may choose us as t.he optimal solution 
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of 

(2) 
minimize R,w 
subject t.0 u,'a(ed) = 1. 

hlinimum variance beamforming is a variation on (2) 
in which we replace R, nith an est,imate of the received 
signal covariance derived from bhe sample covariance of 
recently received samples of tlie amax out.put; e.g.. 

1 *  
Rg(k)  = y(i)y(i)* E C"x". (3) 

i=k-N+1  

The minimum variance heamformer (MVB) is chosen as 
the optimal solution of 

(4) 
minimize w*R,w 
subject to w*a(Q) = 1. 

This is comnionly ieferred to  as Capon's method [l]. 
Equation (4) has an analytical solution given by 

R,'u(B) 
wmv = 

a(8)* R;'a(B) 
Equation (4) also differs from (2) in that  the power ex- 
pression we are minimizing includes the effect of the de- 
sired signal plus noise. The constraint w*a(S) = l in (.I) 
prevents the gain in the direction of the signal from being 
reduced. 

A measure of the effectiveness of a beaniformer is given 
by the signal to  interference plus noise iatio. commonly 
abbreviated as SINR. given by 

where uz is t.he power of the signal of inrerest. The as- 
sumed value of the array manifold a(8) may differ from 
the actual value for a host of reasons including impre- 
cise knowledge of the signal's angle of arrival 8. Unfortu- 
nately, the  SINR of Capon's met.hod can degrade ca tas  
trophically for modest differences betmeen t,he assumed 
and actual values of the array manifold. \lie now review 
several techniques for minimizing the sensitivity of hWB 
to modeling errors in t.he array manifold. 
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A .  P ~ w i o w  work sum of the weighted array output power plus a penalty 

nominal look direction. These are knoGn in the liter- as the Optima' so'ution Of: 

ature as point mainbeam constraints or neighboring IC- 
cation constraints [Z]. The beamforming problem with 
poiut mainbeam constraints can be expressed as 

(7) 
minimize w*R,w 
subject to C'w = f, 

where C is a n x L matrix of array responses in the L 
constrained directions and f is an L x 1 vector speci- 
fying the desired response in each constrained direction. 
To achieve wider responses, additional constraint points 
may be added. We may similarly constrain the deriva- 
tive of the aeighted array output to  he zero at the d e  
sired look angle. This constraint can be expressed in 
the same franiework as (7); in this case, we let C be 
the derivative of the array manifold nith respect to  look 
angle and f = 0. These are called derivative mainbeam 
comtraints; this derivative may be approximated using 
regularization methods. Point and derivat.ive mainbeam 
constraints may also be used in conjunction with one an- 
ot.her. The minimizer of (7) has an analytical solution 
given by: 

wUopt = R;'c(c'R;'c)-'~. (8) 
Each constraint, removes one of the remaining degrees 

of freedom available to  reject undesired signals: this is 
particularly significant for an array with a small number 
of elements. ]\'e may overcome t.his limit.ation by using a 
low-rank approximation t.o the constraints 131. The best 
rank-k approximat.ion to C1 in a least squares sense, is 
given by UCV*> where C is a diagonal matrix consisting 
of the largest k singular values, U is a n x k matrix whose 
columns are t.he corresponding left singular vectors of C, 
and 1' is a L x k matrix whose columns are the c o r e  
sponding right. singular vect.ors of C. The reduced rank 
constraint equations can be written as VCTU'w = f ,  or 
equiwlent,ly: 

U'W = C'V' f ,  (9) 
where t denotes t.he Moore-Penrose pseudoinverse. Using 
(e), we compute the beamformer using the reduced rank 
conswaints as 

wepc = RC1 U(LI*R,-'U)-'C'V'f 

This technique, used in source localizationl is referred to  
as minimum variance beamforming with environmental 
perturbation constraints (MV-EPC), see [Z] and the ref- 
erences contained therein. 

Unfortunately, it. is not clear how best to  pick the ad- 
dit.ional constraints, or, in the case of the MV-EPC, the 
rank of the constraints. The effect of additional con- 
straints on the design specifications appears difficult to  

(10) 
minimize w"R,w + jtw*w 
subject to w'a(8) = 1. 

The parameter j t  > 0 penalizes large values of w and has 
the general effect of detuning the beamformer response. 
The regularized least squares problem (10) has an ana- 
lytical solution given by: 

Gershman [4] and Johnson and Dudgeon [5] provide a 
survey of these methods; see also the references cont.ained 
therein. Similar ideas have been used in adaptive algo- 
rithms, see [6]. 

Beamformers using eigenvalue thresholding methods to 
achieve robustness have also been used; see [7]. The 
beamformer is computed according to Capon's method 
using a covariance matrix which has been modified to en- 
sure no eigenvalue is less t.han a factor j t  times the largest, 
where 0 5 j t  5 1. The performance of this beamformer 
appears similar t.o that of the regularized beamformer us- 
ing diagonal loading; both usually work well for an ap- 
propriate choice of the regularization parameter p. 

We see two limitations with regularization techniques 
for beamformers. First., it is not clear how to efficiently 
pick j t .  Second, this technique does not. take into account 
any knowledge we may have about variation in the array 
manifold, e.g., that  the variation may not be isot.ropic. 
In $ 1 4 ,  we describe a beamforming method that ex- 

plicitly uses information about the variat,ion in the array 
response a( . ) .  which we model explicitly as an uncertainty 
ellipsoid. Prior to this, we introduce some notalion for 
describing ellipsoids. 

B. Ellipsoid descriptiom 
A n-dimensional ellipsoid can be defined as the image of 

a n-dimensional Euclidean ball under an affine mapping 
from R" to R", i.e., 

E = {Au + c I llull 5 11, (12) 

where A E R"Xn and c E R". The set & describes an 
ellipsoid whose center is c and whose principle semiaxes 
are the unit-norm left singular vectors of A scaled by the 
corresponding singular values. We say that. an ellipsoid is 
pat if this mapping is not injective, i.e., one-to-one. Flat 
ellipsoids can be described by (12) in the proper affine 
subspaces of R". In this case, A E R"X' and u E R' with 
n < 1. 

Unless otherwise specified, an ellipsoid in R" will he 
parameterized in terms of its center c E R" and a sym- 

predict. 

forming. One technique, referred to in the literature as di- 

metric non-negative definite configuration matrix P E 
R ~ X "  as Regularization methods have also been used in beam- 

agonal loading, chooses the  beamformer to  minimize the &(c,P)  = {P"2u+c I llull 5 l} (13) 
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where P i / '  is any matrix square root satisfying 
P1'2(P'/Z)T = P. When P is full rank, the non- 
degenerate ellipsoid E(c,P) may also be expressed as 

E(c ,P)  = {z 1 (x - c ) ~ P - ' ( ~  - c) 2 1). (14) 

The first representation (13) is more natural when E is 
degenerate or poorly conditioned. Using the second de- 
scription (14), one may quickly determine whether a point 
is within the ellipsoid. 

M'e will express the values of the array manifold a E C" 
as the direct sum of its real and imaginary components 
in R'"; ;.e.; 

While it is possible to cover the field of values with a 
complex ellipsoid in C", doing so implies a symmetry be- 
tween the real and imaginary components which generally 
results in a larger ellipsoid than if the direct sum of the 
real and imaginary components are covered in R'". 

where t,he sample covariance R, is computed as in (3). 
\Vu and Zhang 181 observe t,hat the array manifold may 

be described as a polyhedron and that  the robust beam- 
forming problem can be cast as a quadratic program. 
While the polyhedron approach is less conservative, the 
size of the description and hence the complexity ofsolving 
the problem grows with the number of vertices. Vorobyov 
et al. [9],[10] have described the use of second-order cone 
programming for robust beamforming in the case where 
the uncertainty in the array response is isotropic. In t.his 
paper, we consider the case in which the uncertainty is 
anisotropic [Ill! 1121, [13j. \lie also show how this problem 
can be solved efficiently in practice. Prior- t o  publicat.ion. 
we learned of a work similar to  ours by Li et. al [14]. 

D. Outline of the paper 

The rest of this paper is organized as follows. In 511 
we discuss the RMVB. A numerically efficient technique 
based on Lagrange multiplier methods is described; in 
fact. Rhl\'B can be computed with t.he same order of 
complexitv as its non-robust, counterpart. .4 numerical . .  

C. Robust minimum variance beamforming example is given in §III. Our conclusions are given in $11. 

A generalization of (4) t.hat captures our desire to  niin- 11. ROBUST WEIGHT SELECTION 

For purposes of computation. we nil1 express the weight 
vector II, and the values of t.he array manifold a as the 

imize the weighted power output of the array in the p r e s  
ence of uncertainties in a(8) is given by: 

direct sum of the corresponding real and imaginary com- minimize w'R,w (16) ponents subject to  Re w*a 2 1 Va E E ;  

where Re denotes the real part. Here, E is an ellipsoid 
that  covers the possible range of values of a(8) due to  im- 
precise knowledge of t.he array manifold a(.), uncertainty 
in the angle of arrival O1 or other factors. \$'e shall refer 
t.o the optimal solut,ion of (16) as the robust minimum 
variance beamformer (RhlVB). 

We use t.he constraint Re w*a 2 1 for all a E E in 
(16) for two reasons. First, while normally considered a 
senii-infinite consrraint, we show in $11 that  it can be ex- 
pressed as a second-order cone constraint. As a result, 
the robust minimum variance beamforming problem (16) 
can be solved efficiently. Second, the real part of the 
response is an efficient lower bound for the magnitude 
of the response, as the objective w*Ryw is unchanged if 
t.he weight vector w is multiplied by an arbitrary shift 
e'*. This is particularly true when the uncertainty in the 
array response is relat,ively small. I t  is unnecessary to 
constrain the imaginary part of the response to  be nom- 
inally zero. The same rotation which maximizes bhe real 
part for a given level of w'Rw simultaneously minimizes 
the imaginary component of the response. 

Our approach differs from the previously mentioned 
beamforming techniques in that  the weight selection uses 
the a-priori uncertainties in the array manifold in a pre- 
cise m.ay. The magnitude of the RMVB response is guar- 
anteed to  be greater than unity for all values of the array 
manifold in the uncertainty ellipsoid E.  Hence, an esti- 
mate of the power of the desired signal ci, is given by 
the weighted power out of the array, namely 

5; = w*nyw$ (17) 

_-  [ Ima (18) ' 

The real coniponent of the product. w*a can be writ.ten 
as xTz( the quadratic form w*Ryw may be expressed in 
terms of x as x T R x ;  where 

R =  [ ImR, ReRy - ImRy R e R ,  I 
We ~ i l l  assume R is positive definire. 

Let E = { A u  + c I 11ull 5 1) be an ellipsoid cover- 
ing the possible values of x, i.e., the real and imaginary 
components of a. The ellipsoid E is centered at c; the 
matrix A determines its size and shape. The constraint 
Re w'a 2 1 for all a E E in (16) can be expressed 

X T Z > 1  V Z E E ,  (19) 

(20) 
Now, (20) holds for all llull 2 1 if and only if it holds 
for t,he value of u that  maximizes uTATx:  namely u = 

(19) is equivalent to t,he constraint 

which is equivalent to  

-JA=x 5 c r x -  1 for all u s.t.. llull 5 I .  

--. AT* By the Cauchy-Schwar-tz inequality, we see that. 

(21) 
T llATzll 5 c x -  1: 

which is called a second-oder cone constmint [E]. \%'e 
can then express the robust minimum variance beam- 
forming problem (16) as 

(22) 
minimize xT& 
subject to  IIATrII 5 cTx - 1. 
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which is asecond-order cone program. See 1151, 1161: [17], 
and [lS]. The subject of robust convex optiniizat.ion is 
covered in 1191, [ZO], [21], [22],and 1231. 

By assumption, R is positive definite and the constraint 
llA?xll 5 cTx-l in (22) precludes the trivial minimizer of 
xT&. Hence, this constraint will be tight for any optimal 
solution and we may express (22) in terms of real-valued 
quantities as 

(23) 
minimize x T R z  
subject to  cTx = 1 + IIATxll. 

In' the case of no uncertainty where E is a singleton 
whose cent,er is c = [Rea(8d)T  Irna(8d)'IT, (23) re- 
duces to Capon's met.hod and admits an analytical so- 
luiion given by the MVB ( 5 ) .  Compared to  the hlVB, 
thd RMVB adds a margin which scales with the size of 
the uncert,ainty. In t.he case of an  isot,ropic array uncer- 
tainty, the opt.imal solution of (16) yields the same weight 
vector (to a scale factor) as the regularized beamformer 
for the proper the proper choice of f i .  

A. Lagmnge multiplier meth.ods 
I t  is natural t,o suspect that  we may comput,e t,he 

RhlVB efficiently using Lagrange multiplier niet.hods. 
See, for example, [24]_ [25] [lFll 1261, 127: §12.1.1], and 
[ZS]. Indeed this is t.he case. 

The RBI\'B is t.he opt.imal solution of 

(2.1) 
minimize X ~ R X  

subject to  IIATzII' = (cTx - I)' 

if rs-e impose the additional constraint that. cTx 2 1. We 
define the Lagrangian L : R" x R - R associated with 
(21) as: 

L(x. A) . = 2R.T + X(llilTxJI' - (CTZ - 1 ) Z )  
(25) 

= xT(R + XQ)z + 2XcTx - A, 

where Q = .4Ar-ccT. To calcu1at.e the stationary points, 
w e  differentiate L(x.y) with respect to  x and X; setting 
t.hese part.ial derivatives equal to zero we have respec- 
tirely: 

(R + XQ)x = -Xc (26) 

which are k n o w  as the Lagmnge equations. To solve for 
the Lagrange multiplier A, w e  note that equation (26) has 
an analytical solution gken by 

z = -X(R + XQ)-'c: 

applying this to (27) yields 

(28) 
f ( x )  = x ~ c ~ ( R + x Q ) - ~ Q ( R + x Q ) - ~ c  

-2Xc'(R+ XQ)-'c - 1. 

The optimal value of the Lagrange multiplier A' is then 
a zero of (28). 

We proceed by computing the eigenvalue/eigenvector 
decomposition 

VrVT = R-'/2Q(R-'/z)T 

to  diagonalize (28), i.e., 

where E = VTR-'/'c. Equation (29) reduces to the fol- 
lowing scalar secular equation 

where y E R" are the diagonal elements of r. The values 
of y are known as the generalized eigenvalues of Q and 
R and are the roots of the equat,ion det(Q - yR) = 0; 
Having computed the value of A' satisfying f(X*) = 0; 
the RXIVB is comput.ed according to: 

x* = -X'(R + X'Q)-'c. (31) 

Similar techniques have been used in the design of filters 
for radar applications; see Stutt  and SpalTord 1291 and 
Abramovich and Sverdlik 1301. 

In principle, we could solve for all the roots of (30) and 
choose the one that  results in the smallest objective value 
xTRz and satisfies the constraint cTx > 1: assumed in 
(24). In the next section, however, we show t.hat this 
constraint is met for all values of the Lagrange multiplier 
X greater than a minimum value, Amin. We will see that 
there is a single value of X > Ami. that  satisfies the La- 
grange equations. 

B. A lower bound on the Lagmnge multiplier 

We begin by establishing t.he conditions under which 
(9) has a solution. Assume R = RT % 0, i.e., R is sym- 
metric and positive definite. 

Lemma I :  For A E RnX" Full rank, there exists an 
x E R" for which IIATxIl = crx - 1 if and only if 
C ~ ( A . ~ ~ ) - ' C  > 1. 
Proof: To prove the if direction. define 

.(A) = (ccT - A A ~  - x ' n )  C. (32) 

By the matrix inwrsion lemma; we have 

C'Z(X) - 1 = C'(CC' - AA' - Xr'n)-le- 1 
(33) 

FW x > 0. P(AA' + x - ' R ) - ' ~  i s  a monotonically increasing 

- - 
c T ( ~ ~ T + ~ - l ~ ) - l c - i '  

function of A; therefore, for cT(AAT) - 'c  > 1,  there exists a 
Ami. E R+ for which 

Z(AA* + X;:,n)-lc = 1. (34) 

Since 

i imAAa F+) - I = - F ( A A ~  - d - l c  - 1 

- 
- 7 ( A A + l C 4  '0, 
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.'.(A) - 1 > 0 for all A > A".L". 
As in (28) and (30). let f ( A )  = lIATzIlz - (c'z - 1)'. Examin- 
ing (28), we see 

iim f(x) = -Z(AA' - 2 - l ~ -  I 
*-e= 

1 
c'(AAT)-lc-  1 

> O  - - 

Evaluating (ZS), we see limAdA+, J ( A )  = -s. For all A > 
Ami,,,cTz > 1 and f ( A )  is continuous. Hence !(A) -"me5 the 
value of 0. establishing the existence of a A > Ami, for which 
='=(A) - 1 = IIATz(A)ll. 
To show the only if direction, w u m e  z satisfies IlA'zIl 5 c T z -  1. 
This condition is equivalent to 

nirn 

1'2 2 1 Vz E 8  = t a u + =  I llull 5 1). (35) 

For (35) to hold, the origin cannot be contained in ellipsoid 8. 
which implies c'(AA')-'c > 1. 0 
Remark: The constraints (cTz - 1)' = //ATxllZ and 
cTz - 1 > 0 in (24), taken together, are equivalent to  
the constraint cTx - 1 = jjATxll in (23) .  For R = RT % 

0 , A  full rank and cT(AAT)-'c > 1, (23) has a unique 
minimizer I*. For X > Amin3 (X-'R+ Q) is full rank, and 
the Lagrange equation (26) 

( X ' R  + Q)x* = -c 

holds for only a single value of A. This implies there is a 
unique value of X > Ami,, for which t.he secular equation 
(30) equals zero. 

Lemma 2: For x = -X(R + XQ)-'c E R" with A E 
R"X" full rank, cT(AAT)- ' c  > 1, and X > O?cTx > 1 if 
and only if the matrix (R+X(AAT-ccT)) has a negative 
eigenvalue. 
Proof: Consider the matrix 

W e  define the inertia of AI as the triple In(Af) = {n+,n-,nn), 
nhere n+ is the number of positive eigenvalues, n- is the number 
of negative eigendues; and no is the number of zero eigenvalues 
of Af. See Kailath et al. 131. pp.729-730]. 
Since both block diagonal elements of Af are invertible, 

rn{kf) = J ~ { x - ' R +  AA'] + In{ii,) 
(36) 

where AI = 1 - c'(A-'R + AA')-'c, the Schur complement of 
the (I ,])  block in AI. and A2 = A-'R + AA7 - ccr,  the Schur 
complement of the (2.2) block in M. \Ire conclude er(A-'R + 
AAT)- ' c  > 1 if and only if the matrix (A- 'R + AAT - cc') has 
a negative eigenvaiue. By the matrix inversion lemma, 

= la{l)  + Jn{&) ,  

Inverting a scalar preserves its sign, therefore, 

ZZ - I = -Z(A- 'R  + AA' - ccT)-'c - I > o (38) 

i f  and only if K ' R +  AAT - ccT has a negative eigenvaiue. 

Remark Applying Sylvester's law of inertia to  equa- 
tions (28 )  and (30),  we see that 

where 7, is the single negative generalized eigen- 
value. Using this fact and (30). we can readily verify 
lim,-,+ f ( X )  = -m, as stated in Lemma 1. 

Two immediate consequences follow from Lemma 2 .  
First, we may exclude from consideration any value of 
X less than Ami.. Second, for all X > Ami,, the matrix 
R + XQ has a single negative eigenvalue. We now use 
these facts to  obtain a tighter lower bound on the value 
of the optimal Lagrange multiplier. 

We begin by rewriting (30) as 

ml" 

Ef(-2 - Xyi )  - 1 - 2 (1+ AT<)* - A '  
i=l 

By Sylvester's law of inertia, exactly one of t.he general- 
ized eigenvalues 7 in the secular equation (40) is negative. 
We rewrite (30) as 

where j denotes the index associat.ed with this negative 
eigenvalue. 

A lower bound on X can be found by ignoring t.he terms 
involving t.he non-negative eigenvalues in (11) and solving 

This yields a quadratic equation in X 

AZ(c:Yj  + $1 + 2X(Yj  +e:) + 1 = 0,  (42 )  

the roots of which are given by 

-l+(c;l(yj+E:)-'/' 
A =  

Yj 

By Lemma 2 ,  the constraint cTz 2 1 implies R t XQ 
has a single negative eigenvalue, hence, X > -7,:'. We 
conclude X > i, where 

(43) 
. -1 - Ic;i(-/j +c;)--1/' 
A =  

7j 
For any feasible beamforming problem, 2.e.; if Q = 

AAT - ccT has  a negative eigenvalue. the parenthetical 
quantity in (43) is always nonnegat,ive. To see this, we 
note tha t  E j  = uTR-fc, where vj  is t.he eigenvect.or as 
sociat.ed with t.he negative eigenvalue yj. Hence: uj E R" 
can be expressed as the opt.inial solut,ion of 

(41) minimize GR-*(AAT- c c ~ )  (~-f)'u 
subject to  llull = 1 

and 7 j  = uj TR- f (AAT - c ~ ~ ) ( R - f ) ~ v j ,  the corre- 

sponding objective value. Since 

we conclude ( y j  - E ; )  = u T R - ~ A A ~ ( R - * ) ~ ~ ~  > 0. 
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C. Solution of the secular equation 

The secular equation (30) can be efficiently solved using 
Newton's method. The derivative of this secular equation 
with respect to X is given by 

n 

(46) 
r: f ' (A) = - 2 c  

i = l  (1 +Ay;)3' 

As the secular equation (30) is not necessarily a mono- 
t.onically increasing function of A, i t  is useful to  exaniine 
the sign of t.he derivative at each iteration. The Newton- 
Raphson method enjoys quadratic. convergence if started 
sufficiently close to  the root A'. The reader is referred to  
Dahlquist and Bj6rck [32, $61 for details. 

D. Summary and computational complezity of the RMVB 

In parentheses 
are approximate costs of each of t,he numbered steps; the 
actual costs will depend on the implementation and prob- 
lem size [33]. As in [2i] we will consider a flop to  be any 
single floating-point operation. 

RMVB computa t ion  

given R: strictly feasible A and c. 

computation 

We summarize the algorithm below. 

1. 
2. 

3. 

4.  

5. 

G. 

Calculate Q + AAT - ccT. (2n2) 
Change mniinotes. (2n3) 
a con1put.e Cholesky factorization LLT = R. 
b. compute L-'j2.  
c. 0 c L-1/2Q(L-!/2)T. 
Eigeni,alue/eigenvector computation. ( 10n3) 
a. compute miT = Q. 
Change coordinates. (4n2) 
a. q c Y ~ R - ' / ~ c .  
Secular equation solution. (son) 

Compute x* + (R + X*Q)-'c b3) 

a. compute initial feasible point 
b. find A' > for which f(X) = 0. 

The computational complexity of these steps are d i s  
cussed below: 
1. Forming t.he matrix product AAT is expensive; for- 
tunat.ely, it is also often avoidable. If the paramet.ers of 
t.he uncertainty ellipsoid are stored, t,he shape parameter 
may be stored as AAT, hence only the subtraction of the 
quantity ccT need be performed, requiring 271' flops. 
2. Computing the Cholesky factor L in step 2 requires 
n"/3 flops. The resulting matrix is triangular, hence com- 
puting it.s inverse requires n3/2 flops. Forming the mat,rix 
Q in step 2.c requires n3 flops. 
3. Computing t.he eigenvalue/eigenvector decomposition 
is the most expensive part of the algorithm. In practice, 
it takes approxiniately 10n3 flops. 
5. Solution of the secular equation requires minimal ef- 
fort. The solution of the secular equation converges 
quadratically. In practice, the starting point X is close 
to A'; hence, the secular equation generally converges in 
7 to  10 iterations, independent. of problem size. 

6. Accounting for the symmetry in R and Q, computing 
x* requires n3 flops. 
In comparison, the regularized beamformer requires n3 
flops. Hence the RMVB requires approximately 12 times 
the computational cost of the regularized beamformer. 
Note that  this factor is independent of problem size. 

111. A NUMERICAL EXAhlPLE 

Consider an &element uniform linear array, centered 
at the origin, in which the spacing between the elements 
is half of a wavelength. If we assume that  the response of 
each element is isotropic and ignore coupling effects, the 
response of the array a : R - C8 is given by: 

where $ = nsin(8) and B is the angle of arrival. The 
responses of closely spaced antenna elements often differ 
substantially from this model. 

We will compare the performance of robust beam- 
former with the regularized beamformer using diagonal 
loading. In this example, we msume a-priori, that  the 
nominal AOA. B,,,, is 120" and that the actual array re- 
sponse in contained in an ellipsoid &(c,P).  whose center 
and configuration matrix are computed from samples of 
the array response. sampled at integer values, according 
to  

nit,h 
a = - c)*P-'(a(e) - C) 

0 E [ l l O o ,  130'1 
In this example, the array response of the desired sig- 

nal is taken from &(c, P )  and the SNR at each element 
is 20 dB. Two uncorrelated interfering signals, sinti and 
sint2 also impinge on the array. The angles of arrival of 
these int,erfering signals, Biml and Batz,  are 150' and 90"; 
the SNRs, 4OdB and 20dB, respect.ively. We model the 
received signals as: 

where a d  denotes the array response of the desired signal, 
o(f3intl) and a(8intz), t.he array responses for the interfer- 
ing signals, sd(t) is the desired signal, si.tl(t) and sintz(t)  
the interfering signals, and u(t )  is R complex vector of 
additive white noises. 

In this example, we will use the analytically com- 
puted, steady state covariance, which reflects the chc- 
sen array response, and which assumes that the signals 
sd(t),sjntl(t):sintz(t), and u ( t )  are all uncorrelated. Let 
the noise power be given by Euu' = U Z I ;  where I is an 
n x n  identity matrix and n is the number of antennas, uiz, 
8. Similarly define the powers of the desired signal, and 
interfering signals to  be ESdSi  = 02,  Esintls:,,l = 
and E~i ,~zs: ,~~ = ufnt2. Hence, 
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Fig. 2. The response of the MVB (Capon's method), the RhtVB, 
and the regularized beamformer employing diagonal loading a 
function of angle of arrival 0. The regularization term X come- 
sponds to & of the maximum eigenvalue of the covariance ma- 
trix. Note that the RMVB  reserves rreater than unit" .bin for 

Fig. 3. The worst-cem performance of the regularized beamform- 
ers based on diagonal loading (diagonal) BF a function of the reg- 
ularization parameter p. The effect of scaling of the uncertainty 
ellipsoid used in the design of the RhlVB is seen; for p = 1 the 
uncertainty used in designing the robust beamformer equals the 
actual uncertainty in the array manifold. - . _  

all angles of arrival in the design specification of 0 E [110.1301 

where ui denotes the power of the desired signal and R, 
is the expected covariance of the interfering signals and 
noises: 

~h~ expected value of the co,.ariance is given by 

E R  = Eyy' = uiada; + ~~ . ,~a (9 i~ t~ )a (9 i , t1 ) '  

+ u:,,a(si.,2)a(si.,z)' + d I .  
(49) 

In practice. bhe covariance of the  received signals plus 
interference is often neither known nor stationary and 
hence must be estimated from recently received signals; 
as a result, the performance of beamformers are often 
degraded by errors in the covariance due t.o either small 
sample size or movement in the signal sources. 

In Figure 2, we see the reception pattern of the ar- 
ray employing the MVB. the RMVB, and the regularized 
beamformer (10) computed using the nominal AOA and 
corresponding covariance matrix R. The regularizat.ion 
term, @ was chosen to  be &, of the largest eigenvalue 
of the received covariance matrix. By design, both t.he 
hlVB and the regularized beamformer have unity gain at 
the  nominal AOA. The RMVB is seen t o  maintain greater 
than unity gain for all AOAs covered by the uncertainty 
ellipsoid & ( c , P ) .  The response of the hWB is substan- 
t.ially attenuated for 9 = llOD, ahen multiplicative un- 
certainties are considered, it is not difficult to  compute 
scenarios in which t,he hlVB has zero response t o  the de- 
sired signal. The response of the regularized beamformer 
is seen to  be a detuned version of the MVB. 

In Figure 3 we see the effect of changes in t.he regular- 
ization parameter @ on the worst-case SINRs for the reg- 
ularized heamformers using diagonal loading and eigen- 
value thresholding and the effect of scaling the uncer- 
tainty ellipsoid on the RMVB. Using the definition of 
SINR ( 6 ) ,  we define t,he worst case SINR is BS t.he mini- 
mum objective value of t.he following dptimization prob- 

subject bo a E &(c, P ) ,  

. .  
The weight vect.or w and covariance matrix R used in its 
computation reflect the chosen value of the array mani- 
fold. 

For comparison, t,he worst-case SINR of the MVB with 
(three) unity mainbeam const.raints a t  IlO", 120' and 
130' is -6.24 dB. The MV-EPC beamformer was coni- 
puted using the same 21 samples of the array manifold 
as the computation of the uncertaint,y ellipsoid (4T); the 
design value Cor the response in each of t.hese directions 
was unit,y. The worst-case SIN% of the rank-I through 
rank4 h!V-EPC beamformers were found to  be -8.6i dB, 
0.23 dB; -6.21 dB. and -17.60 dB, respect,ively. 

For diagonal loading, the parameter @ is the scale factor 
multiplying the identity matrix added to the covariance 
matrix, divided by the largest eigenvalue of the covariance 
matrix R. As @ -+ 0, t,he regularized beamformer reduces 
to  Capon's method. The worst-case SINR for Capon's 
method is -10.26 dB. As @ -+ 00, wreg - a(Onom). 

For the robust beamformer, we use @ to  define the ratio 
of the size of the ellipsoid used in the beamformer com- 
putat.ion &design divided by size of the actual array uncer- 
taindy Specifically, if = {Au + c 1 llz~ll 5 
l}, &design = { ~ A v  + c I / I D / /  5 1 ) .  When t,he design un- 
cert,ainty equals the actual, t.he worst-case SINR of the 
robust beamformer is seen to be 0.32 dB; scaling the 
uncertainty ellipsoid used in the design in either direc- 
t.ion results in a decrease in the SINR of t.he response. 
We summarize the effect of differences between assumed 
and actual uncertainty regions on t.he performance of t.he 
RMVB: 

If the assumed uncertainty ellipsoid is smaller than ahe 
actual uncertainty, the  minimum gain constraint will gen- 
erally not be met. If the ellipsoid used in computing the 

1351 



RhWB is much smaller than the actual uncertainty. the 
performance may degrade substantially. . If assumed uncertainty is greater than the actual un- 
certainty, the performance is generally degraded, but the 
minimum gain in desired look direction is maintained. 

The performance of the FWVB is not optimal with r e  
spect to S I N R  it  is optimal in the following sense. For 
a fixed covariance matrix R and an array response con- 
tained in an ellipsoid &, no other vector achieves a lower 
weighted power out of the array while maintaining the 
real part of the response greater than unity for all values 
of the array contained in E.  

11. CONCLUSIONS 
The main ideas of our approach are as follows: 
The possible values of the array manifold are covered 

by an ellipsoid that describes the unceitainty in the array 
response. . The robust minimum variance beamformer is chosen t.0 
minimize bhe weighted power out of t.he array subject to 
the const,raiiit that t.lie gain is greater than unity for all 
array manifolds in the ellipsoid. 

The RXlVB can be computed very efficiently using La- 
grange multiplier techniques. 
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