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Abstract. The highly flexible model structure of methods in data mining and machine learning
results in models that are often difficult to interpret. Their use in domains where interpretability
is an issue is therefore hampered. In order to bridge the gap between advanced modeling tech-
niques and their use in domains that demand interpretable results, the interpretability aspect
should be included in the design of the technique. The Interval Coded Score index (ICS) is a
recently proposed model that satisfies this condition and automatically detects thresholds on
variables to generate score systems. The method was extended for censored data (ICSc) but two
problems remain: (i) Given a prognostic index, how can observations be grouped in different
risk groups; (ii) Given the risk groups, how can survival curves be estimated for survival models
based on support vector machines or ICS models.
This work offers solutions to both of these problems. The ICSc model is used on the prognostic
index to detect thresholds on this index. A grouped index, that can be interpreted as a risk
group indicator, is the result. The method is then modified to ensure that observations with a
lower prognostic index are allocated to higher risk groups. The second problem is tackled by
simultaneously estimating multiple Kaplan-Meier curves, taking into account that the estimated
survival curve for higher risk groups should always be lower than the curve for lower risk groups.
The proposed approach is illustrated on the prognosis of breast cancer patients and compared
with the proportional hazard model. Both models are comparable w.r.t. discrimination, but
calibration is better for the ICSc risk groups.

1 Introduction

Methods within artificial intelligence and machine learning [1–4] have proved their use in
many domains, including clustering, classification, regression [5] and prognosis [6–9]. Their
ability to model complex data and to deal with the curse of dimensionality have made them
very popular data modeling tools. However, in domains where interpretability is an issue,
the black-box nature of these methods hampers their use in practice. In order to introduce
the use of more complex mathematical methods [1, 2, 4, 8, 10–12] in these domains, different
methods to obtain a score system have been proposed: optimal cut-points methods [13, 14],
post-processing of previously built regression models [15], classification and regression trees
[16], adaptive index models [17] and rule extraction methods [18]. All these methods result
in categorizations of variables, with differences on whether the thresholds are defined before,
during or after modeling, feature selection is included, thresholds are defined sequentially or
simultaneously and whether predictions are given. The resulting models are easy to apply,
but performance, interpretability of the results and use for different data types differ and



disadvantages remain: dependency on the choice and number of the thresholds, dependency
of later thresholds on the choice of former thresholds, multi-testing problems, no optimal
trade-off between sparsity and performance. The Interval Coded Score (ICS) method was
recently proposed to solve these issues for classification problems [19] and survival data [20]
(ICSc). The approach is based on transformation models [21–23] where a prognostic index is
trained to be as concordant with the observed outcome as possible. It is assumed that there
exists a monotonic relationship between this index and the outcome of interest. ICS models
additionally assume additive models and restrict the functional forms of the inputs to step
functions. As such, score models are generated with an automatic detection of the number
and position of thresholds.

For use in real-life applications, the resulting score should be accompanied by an esti-
mated survival function. Two approaches are possible. A first one assumes a baseline survival
function, that can be changed according to the observed variables. The advantage is that a
survival function can be estimated for each observation. However, an additional assumption,
such as the proportional hazards assumption in a Cox model [10], is needed in this case. In
this work, an alternative approach is taken. Observations are divided into different risk groups
depending on their prognostic index. For each risk group, a survival function is estimated. In
order to use this approach, two problems need to be tackled: (i) how to select the number of
risk groups and how to define the thresholds in the prognostic index to allocate each observa-
tion to a risk group; (ii) Given the risk groups, how to estimate a survival function for each
group, taking into account the assumptions of the model used to derive the prognostic index.
To solve the first issue, standard clustering methods can not be used since they are unable
to deal with censored data. Additionally, the number of clusters should be known in advance
(see [24] for an exception). This work proposes to use the ICSc method with the previously
developed prognostic index as a single input variable. A new index, which will be a grouped
version of the prognostic index, is the result and can be interpreted as a risk group indicator.
The method is modified with the inclusion of a monotonicity constraint (mICSc) to ensure
that observations with a lower prognostic index are allocated to a higher risk group.
Once the risk groups are defined, a survival function for each of these could be estimated
by means of a Kaplan-Meier (KM) curve [25]. However, this does not take into account that
the model assumed non-crossing survival curves when training the prognostic index. A mod-
ified KM estimator is therefore proposed. The method is based on the inverse-probability-of-
censoring weighted average estimator [26]. The resulting step functions are then smoothened
by means of a monotonic regressor. An overview of this work is presented in Figure 1. The ap-
proach of this paper is summarized in algorithm 1. All methods were implemented in matlab7

using CVX
8 [27].

The remainder of the paper is organized as follows. Section 2 starts with the description
of support vector machines for survival analysis. Section 3 discusses how this method can be
adapted to automatically obtain score systems for censored data (ICSc). Section 4 proposes
a modification of ICSc to allow to cluster survival data after a survival model has generated
a prognostic index, such that risk groups can be obtained. Section 5 proposes a new method
to estimate survival curves, that takes the monotonicity assumption of the ICSc method into
account. Section 6 illustrates the latter method on artificial data before applying the whole

7 http://www.mathworks.nl/products/matlab/
8 http://cvxr.com/cvx/
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Fig. 1. Overview of this work. The data set S = {(xi, yi, δi)}
n
i=1, representing the input variables (xi ∈ R

d),
the outcome (yi ∈ R) and the censoring indicator (δi ∈ {0, 1}) are transformed into a score or prognostic index
ŷi ∈ R by means of the ICSc approach given in Section 3. The method also results in a vector w indicating the
selected set of variables, the selected intervals and their contribution to the score. In order to obtain a small
number of risk groups, the scores are used as input variables for the mICSc approach (see Section 4). This
results in a risk indicator ẑi ∈ R, a clustered version of the scores ŷi, that can be interpreted as risk groups. For
each risk group s, a step function F̂ s(t) is calculated using the approach of Section 5.1 to obtain an estimate
of the survival function as 1− F̂ s(t). These step functions are smoothened according to the method of Section
5.2 to obtain smooth survival estimates 1− Ĝs(t).

procedure (see algorithm 1) on a large breast cancer dataset [28]. The results are compared
with a proportional hazard model (PH model) [10]. Section 7 finalizes the paper.

Throughout the paper, the following notation will be adopted. Let D = {(xi, yi, δi)}
n
i=1 be

a dataset with xi ∈ R
d a vector containing all input variables for observation i, yi = min(ti, ci)

the observed failure times, with ti and ci the true failure and censoring time, respectively. δi
is an event indicator equal to δi = I[yi ≤ ci], with I[z] the indicator function equal to 1 when
z is true and zero otherwise. The pth input variable is denoted as xp.

2 Support vector machines for censored data

Support vector machines (SVM) for classification or regression can not be used for the analysis
of survival data due to the occurrence of censored data. The outcome of survival analysis is



Algorithm 1 Necessary steps to automatically obtain a score system with survival estimates
for different risk groups.
1: Given the training data D = {(xi, yi, δi)}

n
i=1, train the ICSc model to obtain a score ŷi for each observation

i.
2: Use the mICSc model with the scores ŷi as a single input variable to obtain risk groups indicators ẑi that

can only take values in {ς1, . . . , ςns
}, where ns is obtained from the method.

3: Determine step functions F̂ s(t), s = 1, . . . , ns, that are monotonic w.r.t. the risk groups s as an estimate
of the cumulative distribution for all risk groups simultaneously.

4: Smoothen the step functions F̂ s(t) to obtain smooth estimates Ĝs(t) of the cumulative distribution func-
tions that are monotonic w.r.t. the risk groups.

the time until a predefined event occurs. However, observations can drop out of the study
and the outcome will not be observed exactly: the outcome is censored. The most frequent
censoring type is right censoring, and occurs when a lower bound on the outcome is known.
In the remainder of this work, only right censoring will be considered.

In order to deal with censored data, support vector machines for survival analysis take a
two-step approach [8]. In a first step, a prognostic index (also called utility, latent variable
or score) that is as concordant as possible with the observed survival times, is trained un-
der the assumption that a monotonic relation exists between the prognostic index and the
outcome of interest. The prognostic index is optimized such that as many comparable pairs
as possible are concordant. A pair of observations (xi, yi, δi) and (xj , yj , δj) is comparable
when both observations have an observed event time, or when only one of them is censored
and the censoring occurs later than the event. More formally, a pair {(xi, yi, δi), (xj , yj , δj)}
is comparable if:

(δi = 1 & δj = 1)
or

(δi = 1 & δj = 0 & yi ≤ yj) .

A comparable pair is considered concordant when the ranking in observed survival time yi
and yj is the same as the ranking in the prognostic index.

This work is based on the SVM survival model with ranking and regression constraints as
proposed in [9]:

min
w,b,ǫ,ξ,ξ∗
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wTw + γ
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∑
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ǫi + µ
n
∑
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(ξi + ξ∗i )

subject to










































wT (ϕ(xi)− ϕ(xj̄(i))) ≥ yi − yj̄(i) − ǫi, ∀ i = 1, . . . , n,

wTϕ(xi) + b ≥ yi − ξi, ∀ i = 1, . . . , n,

−δi(w
Tϕ(xi) + b) ≥ −δiyi − ξ∗i , ∀ i = 1, . . . , n,

ǫi ≥ 0, ∀ i = 1, . . . , n,

ξi ≥ 0, ∀ i = 1, . . . , n,

ξ∗i ≥ 0, ∀ i = 1, . . . , n .

(1)

with
j̄(i) = argmax

j

j

subject to

{

(xi, yi, δi) and (xj , yj , δj) comparable

yj < yi .

(2)



The first constraint in (1) is a ranking constraint. The second and third constraint are the re-
gression constraints. j̄(i) indicates the observation within the training set, that is comparable
with observation i, with a survival time the closest to that of observation i. The estimated
outcome ŷ⋆ for a new point x⋆ is then found as ŷ⋆ = wTϕ(x⋆) + b.

3 Interval coded score system for censored data

In order to obtain a score system, model (1) is adapted in three ways [19, 20]. Firstly, the model
is constrained to be additive [29]. Secondly, the estimated functional forms are restricted to be
step functions, closely related to constant B-spline functions [30]. The range of each variable
xp is divided into kp consecutive intervals. The functional form of this variable is then defined

as
∑kp+1

l=1 wp,lI[θp,l−1 ≤ xpi < θp,l], namely a linear combination of binary indicators denoting
whether the value of the variable is within each of the kp intervals. Lastly, in order to obtain
a sparse model representation, the total variation of the coefficients vector w is minimized
[31]. The problem to be optimized then becomes:

min
w,ŷ,b,ǫ,ξ,ξ∗

d
∑

p=1

kp+1
∑

l=1

χp,l|wp,l − wp,l−1|+ γ
n
∑

i=1

ǫi + µ
n
∑

i=1

(ξi + ξ∗i )

subject to


































































ŷi =
d
∑

p=1





kp+1
∑

l=1

wp,lI[θp,l−1 ≤ xpi < θp,l]



+ b, ∀ i = 1, . . . , n ,

ŷi − ŷj̄(i) ≥ yi − yj̄(i) − ǫi, ∀ i = 1, . . . , n,

ŷi ≥ yi − ξi, ∀ i = 1, . . . , n,

−δiŷi ≥ −δiyi − ξ∗i , ∀ i = 1, . . . , n,

ǫi ≥ 0, ∀ i = 1, . . . , n,

ξi ≥ 0, ∀ i = 1, . . . , n,

ξ∗i ≥ 0, ∀ i = 1, . . . , n .

(3)

Note that ŷ is eliminated before solving the model in w, b, ǫ, ξ, ξ∗. In first instance χp,l =
1, ∀ p = 1, . . . , d, ∀ l = 1, . . . , kp + 1. In order to further improve the sparsity of the model,
the method is iteratively reweighted [32] with χp,l =

1
ε+a|wp,l−wp,l−1|

. Here ε is a small positive

value (e.g. 0.0005) and the value of a is optimized for the problem at hand.

In order to make the score system easily applicable, the weights are normalized such that
the smallest non-zero absolute value of the coefficients (ν) becomes 1. All other normalized
coefficients are rounded to the nearest integer : w̃p,l = [wp,l/ν]. The final score for a new
observation x⋆ is then found as

ŷ⋆ =
d
∑

p=1





kp+1
∑

l=1

w̃p,lI[θp,l−1 ≤ xp⋆ < θp,l]



+ b . (4)

Application of this procedure results in the Interval Coded Score index for censored data
(ICSc) .



4 Obtaining risk groups

Once a score or prognostic index is trained, risk groups need to be defined for application in
practice. Most often, three risk groups are considered: a low, moderate and high risk group.
However, the choice for three groups is artificial and no statistical ground exists to support
this choice. A second problem is how the groups should be defined. A first possibility is to
use clustering methods to define clusters using the inputs of the observations and/or survival
time. However, these methods are based on a distance measure between all pairs of data
points. Clustering survival data is therefore difficult since calculating a distance in survival
time is not always possible due to censoring, corresponding to uncertainty about the survival
time. Using clustering mechanisms on the score obtained from the ICSc method for example
is not an option either. This score is only defined up to a monotonic relation and a distance
of a between the scores of two observations thus has another meaning depending on the
exact value of the score. Additionally, clustering mechanisms do not take into account that
the prognostic index defines a ranking on the risk groups: the higher (lower) the index, the
higher9 (higher)10 the risk. Another possibility is to define a grid of possible thresholds on the
prognostic index and select the combination of thresholds that leads to the largest difference
in survival curves (by means of the log-rank test for example) on bootstrap samples of the
original data. However, the number of groups still needs to be defined in advance.

In order to solve these issues, another approach that uses a shrinkage mechanism for
clustering as in [33], is proposed here. The goal is to find a categorization of the prognostic
index that maintains the concordance with the outcome as much as possible, without the need
to define the number of categories in advance. Since ICSc is a survival model that is able to
define relevant intervals on each of the input variables, and controls for the loss of information
as a result of the categorization, this method can be used as a clustering/categorization
method for survival data when the prognostic index is used as a single input variable. However,
an extra adaptation is necessary to ensure that the identified risk groups have a monotonic
relationship with the prognostic index. The outcome w of the ICSc model represents the
additional effect of each interval on the survival. To express that a higher prognostic index
indicates a lower risk (for models modeling the survival such as ICSc) it is necessary that w
increases with the prognostic index. The adapted method will therefore be referred to as the
monotonic ICSc model (mICSc) and is obtained from:

9 for methods that model the risk
10 for methods that model the survival
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ẑi =

(

k+1
∑

l=1

wlI[θl−1 ≤ ŷi < θl]

)

+ b, ∀ i = 1, . . . , n ,

ẑi − ẑj̄(i) ≥ yi − yj̄(i) − ǫi, ∀ i = 1, . . . , n,

ẑi ≥ yi − ξi, ∀ i = 1, . . . , n,

−δiẑi ≥ −δiyi − ξ∗i , ∀ i = 1, . . . , n,

ǫi ≥ 0, ∀ i = 1, . . . , n,

ξi ≥ 0, ∀ i = 1, . . . , n,

ξ∗i ≥ 0, ∀ i = 1, . . . , n,

wl − wl−1 ≥ 0, ∀ l = 2, . . . , k ,

(5)

where ŷi denotes the value of the prognostic index for observation i and χl is defined as
before. Again, ẑ is eliminated before solving the model in w, b, ǫ, ξ, ξ∗. Note that for models
that are modeling the risk (e.g. the PH model), the last constraint in equation (5) becomes:
wl −wl−1 ≤ 0, ∀ l = 2, . . . , k. The risk group indicator ẑ⋆ for a new point x⋆ with prognostic
index ŷ⋆ is then defined as ẑ⋆ =

∑k+1
l=1 w̃lI[θl−1 ≤ ŷ⋆ < θl] + b, with w̃ defined as before.

The risk groups are then defined by the unique ẑ values, where the highest value corresponds
to the first risk group (lowest risk/highest predicted survival). Figure 2 illustrates that this
approach can be interpreted as clustering on the level of ẑi. Observations with a score ŷi ≤ −1
all receive the same risk group indicator ẑi = 0 and form a cluster or risk group with the
highest risk. Observations with a score −1 < ŷi ≤ −0.5 all receive a value of ẑi = 5 and form
another risk group.

5 Estimation of survival curves

As discussed before, support vector machines for survival analysis assume a monotonic relation
between the score and the outcome of interest (here the survival function S, or cumulative
distribution function F = 1 − S). To obtain an estimate of the survival function, a separate
function needs to be estimated for each possible risk group. Since survival functions are non-
increasing functions in time, the estimated functions should be monotonic in time and in
risk groups (see Figure 3). Two different approaches will be provided in this Section. First,
the inverse-probability-of-censoring weighted average estimator of the cumulative distribution
(F̂RR) as proposed by Robins and Rotnitzky [26] will be adapted to include the monotonicity
constraints. This method has several advantages but the estimated survival functions are
step-functions. A second approach solves the problem in the dual space and smooth curves
are obtained. Although this second approach is appealing, direct application of this method is
time-consuming since it requires the estimation of O(nnt) unknowns, with nt the number of
time-points at which the survival curve needs to be estimated. Using the first method first and
smoothing the results by means of the second, only O(nsnt) unknowns need to be estimated,
with ns the number of different risk groups and ns ≪ n.



−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

11

r
i
s
k
 
g
r
o
u
p
 
 
4

r
i
s
k
 
g
r
o
u
p
 
 
3

r
i
s
k
 
g
r
o
u
p
 
 
2

r
i
s
k
 
g
r
o
u
p
 
 
1

prognostic index

ri
sk

 in
di

ca
to

r

Fig. 2. Illustration of mICSc with a prognostic index (modeling survival) as a single input. The prognostic
index or score ŷi is mapped on a risk group indicator ẑi =

∑k+1

l=1
w̃lI[θl−1 ≤ ŷi < θl] + b, with a restricted set

of possible values (here ẑi ∈ {ς1, . . . , ς4} = {11, 7, 5, 0}). The pluses indicate the observed pairs (ŷi, ẑi). The
coefficients vector w is restricted to be positive such that ẑ(ŷ) is a monotonically increasing function of ŷ. The
sparsity of the mICSc method makes it possible to interpret the results as risk groups.

5.1 Estimation of the survival curve by means of step functions

This Section proposes an approach to estimate survival curves for each of the risk groups
obtained by using any type of score system that assumes a monotonic relation between scores
and survival. The approach of Robins and Rotnitzky [26] to calculate the Kaplan-Meier es-
timate of the survival function is first described. An alternative implementation is proposed
and adapted to simultaneously estimate ns survival curves that are monotonic w.r.t. the risk
groups. Section 5.2. proposes a method to smoothen the results from this Section.

Estimation of a single survival curve The inverse-probability-of-censoring weighted av-
erage estimator of the cumulative distribution (F̂RR) [26] is defined as

F̂RR(t) =
1

n

n
∑

i=1

I[yi ≤ t]δi

Ĉ(y−i )
. (6)

F̂RR is a monotonically increasing step function, changing value at discrete time points τj , j =
1, . . . , nt. Ĉ is the Kaplan-Meier estimate of the censoring distribution, and Ĉ(y−i ) is the

function value at y−i = maxτj≤yi τj . In [34] it is proven that F̂RR = 1− ŜKM , with ŜKM the
Kaplan-Meier estimator when the unique event times are used as time points τj .

Proposition (Estimation of F̂RR as an optimization problem). Given a dataset D = {(xi, yi, δi)}
n
i=1

and τj , j = 1, . . . , nt the unique event times in D, sorted in ascending order. Then, F̂RR(t)
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Fig. 3. Illustration of the monotonicity constraints.

equals

F̂ (t) =

nt
∑

j=1

v̂jI[τj ≤ t], j = 1, . . . , nt , (7)

with v̂ = [v̂1, . . . , v̂nt ]
T equal to

v̂ = argmin
v

n
∑

i=1

nt
∑

j=1





I[yi ≤ τj ]δi

Ĉ(y−i )
−

j
∑

j
′
=1

vj′





2

. (8)



Proof. F̂RR(t) can only change value at t = τj , j = 1, . . . , nt. Since F̂ (t) is a step function
with steps at t = τj , j = 1, . . . , nt, it can only change value at t = τj , j = 1, . . . , nt (see Figure
4). The proposition is therefore proven if we can proof that F̂RR(τj) equals F̂ (τj), for all
j = 1, . . . , nt.
The estimate of vj , ∀ j = 1, . . . , nt is found by taking the derivative of the cost function

J =
n
∑

i=1

nt
∑

j=1





I[yi ≤ τj ]δi

Ĉ(y−i )
−

j
∑

j
′=1

vj′





2

w.r.t. vj . The optimal value of vj is then found as the value for which this derivative equals
zero:

∂J

∂vj
= −2

n
∑

i=1

nt
∑

j=1





I[yi ≤ τj ]δi

Ĉ(y−i )
−

j
∑

j
′
=1

vj′



 = 0

⇒

j
∑

j
′
=1

v̂j′ =
1

n

∑

i=1

I[yi ≤ τj ]δi

Ĉ(y−i )
.

The value of F̂ (t) at t = τj then equals

F̂ (τj) =

nt
∑

j
′
=1

v̂j′I[τj′ ≤ τj ]

=

j
∑

j
′=1

v̂j′

=
1

n

∑

i=1

I[yi ≤ τj ]δi

Ĉ(y−i )
,

which equals F̂RR(τj), ∀ j = 1, . . . , nt.

Note that the proposition above is not needed to estimate F̂RR(t) since it can be estimated
using equation (6). However, when two or more related cumulative distribution functions need
to be estimated, equation (6) can no longer be used. Additionally remark that vj will always
be positive since F̂RR(t) is a cumulative distribution function.

Estimation of ns different survival curves In case the observations in the dataset D are
grouped into ns groups, ns different cumulative distribution functions F̂ s, with s = 1, . . . , ns

need to be estimated. Let ςs, s = 1, . . . , nt denote the unique group indicators. All cumulative
distribution functions F̂ s, s = 1, . . . , ns can then be estimated independently using equations
(7-8) as

F̂ s(t) =

nt
∑

j=1

v̂sjI[τj ≤ t], j = 1, . . . , nt ,

with v̂ the solution of

v̂s = argmin
vs

n
∑

i=1

nt
∑

j=1

I[ẑi = ςs]





I[yi ≤ τj ]δi

Ĉs(y−i )
−

j
∑

j
′
=1

vs
j
′





2

.



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v
1

v
2

Time (t)

St
ep

fu
nc

tio
n 

F R
R

Fig. 4. Representation of a monotonic step function with nt steps by means of positive constants vj , j =
1, . . . , nt.

To ensure that the estimated cumulative distribution functions fulfill the assumption of mono-
tonicity w.r.t. the group indicator, the optimization problems for all functions need to be
solved simultaneously with addition of the following constraint

vsj − vs−1
j ≥ 0, ∀ j = 1, . . . , nt; ∀ s = 2, . . . , ns.

The steps vsj , s = 1, . . . , ns, j = 1, . . . , nt are further restricted to be positive, to ensure that
the solutions are valid cumulative distribution functions. All functions F s, s = 1, . . . , ns can
then be estimated as

F̂ s(t) =

nt
∑

j=1

v̂sjI[τj ≤ t], s = 1, . . . , ns , (9)

where v̂ is the solution of

v̂ = argmin
v

n
∑

i=1

nt
∑

j=1

ns
∑

s=1

I[ẑi = ςs]





I[yi ≤ τj ]δi

Ĉs(y−i )
−

j
∑

j
′=1

vs
j
′





2

,

subject to

{

vsj ≥ 0, ∀ j = 1, . . . , nt; ∀ s = 1, . . . , ns,

vsj − vs−1
j ≥ 0 ∀ j = 1, . . . , nt; ∀ s = 2, . . . , ns .

(10)

5.2 Smooth estimation of the survival function

The estimated cumulative distribution functions are step functions and a smoothing algorithm
is needed to obtain smooth survival curves. Standard smoothers can not be used, since it can
not be guaranteed that the smoothed versions of F̂ s(t) will remain monotonically increasing
with the risk group. It is therefore necessary to define a smoothing algorithm that incorporates
this monotonicity constraint.

The approach that we follow starts from a least-squares SVM (LS-SVM) regressor [3, ?],
with the values of F̂ s(τj), ∀ j = 1, . . . , nt; ∀ s = 1, . . . , ns, as outcomes and the times τ =



τ1, · · · , τnt and unique risk group indicators ςs, s = 1, . . . , ns as inputs. Let x̃l, l = 1, . . . , nsnt

be defined as x̃l = [ςs τj ]
T , with s = ⌊(l − 1)/nt +1⌋ and j = l−nt(s− 1), where ⌊a⌋ denotes

the largest integer not larger than a. The standard LS-SVM formulation can then be used as
follows

min
ṽ,b,ε

1

2
ṽT ṽ +

1

2
γ

nsnt
∑

l=1

ε2l

subject to ṽTϕ(x̃l) + b = Ψl − εl, ∀ l = 1, . . . , nsnt ,

(11)

with ϕ(·) a feature map and Ψl = F̂ s(τj), with s and j defined as before. The dual problem
then becomes a set of linear equations:

[

Ω + I
γ
1

1 0

] [

α
b

]

=

[

Ψ
0

]

, (12)

where Ω is a matrix with elements Ωl,r = k(x̃l, x̃r) = ϕ(x̃l)
Tϕ(x̃r), with k(·, ·) a kernel

function. The monotonicity constraints are added to the dual problem formulation such that
the desired result is obtained using the following parametric model:

min
β,θ

∣

∣

∣

∣

∣

∣

∣

∣

[

Ω + I
γ
1

1 0

] [

β
b∗

]

−

[

Ψ
0

]∣

∣

∣

∣

∣

∣

∣

∣

2

subject to

{

M(Ωβ + b∗) ≥ 0

M̃(Ωβ + b∗) ≥ 0 ,

(13)

with M ∈ R
(ns−1)nt×nsnt is a matrix with diagonal elements equal to 1 and elements on the

nth
t diagonal equal to −1 and all other elements equal zero; and M̃ ∈ R

ns(nt−1)×nsnt a matrix
with diagonal elements equal to −1 and the elements on the first diagonal equal to 1. The
first constraint enforces the monotonicity w.r.t. the risk groups and the second w.r.t. time.
An estimate of the cumulative distribution function for a score ς∗ at time τ∗ can then be
calculated as Ĝ([ς∗ τ∗]

T ) =
∑nsnt

l=1 βlk(x̃l, [ς∗ τ∗]
T ) + b∗. An estimate of the survival curve for

risk group s is then given by Ŝs(t) = 1− Ĝs(t).

6 Results

This Section starts with an illustration of the method to estimate survival curves for different
risk groups on artificial data. It is shown that our first approach results in the Kaplan-
Meier estimator for the different groups when the monotonicity constraints are valid. In
case this assumption is violated, the method will result in coinciding survival curves. A real
life application of the interval coded score system for survival analysis on the prognosis of
breast cancer patients follows. The quality of the model is assessed in terms of discrimination
[35] and calibration [36, ?]. The proposed approach is compared with the proportional hazard
model [10]. All parameters are tuned by means of 10-fold cross validation. The model selection
criterion to obtain a score system is the c-index [35]. The model selection criterion to estimate
survival curves is the Hosmer-Lemeshow χ2 [36] at 2 and 5 years using 10 groups. The RBF
kernel was used to obtain smooth estimates of the survival curves.



6.1 Artificial data

Consider a dataset with two groups of 100 observations. The true survival times of both
groups are Weibull distributed (f(t) = b−b2

1 b2t
b2−1 exp(−(t/b1)

b2)) with parameters (2, 1)
and (4, 1) for both groups respectively. The censoring times have an exponential distribution
(f(t) = b1 exp (−b1t)) with parameter b1 = 50. Figure 5 illustrates the results. The results of
model (9-10) coincide with the Kaplan-Meier estimates since these are already monotonic as
a function of the scores.
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Fig. 5. Artificial example 1. (a) The true survival functions are monotonic as a function of the groups. The
estimated survival curves (1−F̂ ) coincide with the Kaplan-Meier estimators. (b) The smoothed versions (1−Ĝ)
align closely with the true survival curve.



In a second example, consider two groups (each containing 100 patients) with Weibull
distributed survival times, with parameters (3, 2) and (3, 4), respectively. The true survival
curves are thus non-monotonic in function of the scores. The censoring times have an exponen-
tial distribution with parameter b1 = 50. Figure 6 illustrates the results. The estimates after
model (9-10) coincide with the Kaplan-Meier estimates when the monotonicity constraints
are valid. Violation of the constraint leads to equal estimated survival curves for both groups.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Su
rv

iv
al

 

 

KM: all

score 1: true S

score 2: true S

score 1: KM

score 2: KM

score 1: 1 − F̂

score 2: 1 − F̂

(a)

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Su
rv

iv
al

 

 

score 1: true S

score 2: true S

score 1: 1 − Ĝ
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Fig. 6. Artificial example 2. (a) The true survival functions are non-monotonic as a function of the scores.
The estimated survival curves (1− F̂ ) coincide with the Kaplan-Meier estimators as long as the monotonicity
constraint holds. Afterwards, the estimated survival curves for both groups coincide and equal the Kaplan-
Meier estimate of the whole dataset. (b) Smooth survival function estimates 1− Ĝ.



6.2 Prognosis of breast cancer patients

The complete methodology (see algorithm 1) is illustrated on the prognosis of breast cancer
patients. The training set consists of 1923 patients with complete information (age, tumor
size, number of positive lymph nodes, expression of the progesterone (PR) and human epider-
mal growth factor receptor 2 (HER2) and tumor grade) which were diagnosed with primary
operable breast cancer at the University Hospitals Leuven between January 2000 and June
2005. An external test set on 1192 patients containing complete information treated in New
Zealand (Auckland Breast Cancer Registry) between January 2000 and December 2005 is
available to test the resulting model. The obtained score model is summarized in Table 1 (see
[20] for a figure-based representation).

Table 1. ICSc score system to obtain a prognostic index (step 1 in Figure 1) for the prognosis of primary
operable breast cancer patients. If the answer on the question is yes, the points at the right of the question,
need to be added to the score.

variable question # points

Number of positive lymph nodes
number of positive lymph nodes = 1 -1
2 ≤number of positive lymph nodes ≤ 3 -2
number of positive lymph nodes = 4 -3
5 ≤number of positive lymph nodes ≤ 6 -4
number of positive lymph nodes = 7 -10
number of positive lymph nodes >= 8 -17

Progesterone receptor
positive PR 2

Human epidermal growth factor receptor
positive HER2 -2

Tumor grade
tumor grade = 2 -4
tumor grade = 3 -11

In order to divide the observations in a smaller number of risk groups, the prognostic index
obtained from Table 1 is used as a single input in the mICSc model. The mICSc methodology
will then automatically find the number of groups and the thresholds on the score. The c-
index is again used as model selection criterion. Six different risk groups are identified in this
way (see Figure 7). However, the group with the highest risk (risk group 6) contains only four
patients and, since a survival curve can not be estimated accurately based an a small number
of patients, is combined with risk group 5. Figure 8 (a) shows the estimated survival curves
together with the Kaplan-Meier estimates for all five groups. The estimated survival curves
and the Kaplan-Meier curves are very similar since the Kaplan-Meier estimates are already
monotonically increasing with the scores. Table 2 summarizes the results.

The ICSc model is compared with the proportional hazard model [10], using the variables
selected by the ICSc model. The mICSc method is applied with the prognostic index of the
PH model as input to define risk groups. Five different risk groups are obtained, but the
highest risk group contains only seven observations and is combined with risk group 4. The
mean estimated survival curve for each group is given in Figure 8(b)). Table 3 compares
both models. No significant differences are found between the discrimination abilities of the
methods.
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Fig. 7. The prognostic index ŷi of the breast cancer patients is mapped onto a set of 6 unique values ẑi by
means of mICSc (step 2 in Figure 1). The observations are represented by means of the stars. Patients with the
same values for their risk indicator (stars on the same step) are considered to belong to the same risk group.

Table 2. Risk groups obtained by means of the mICSc model (step 2 in Figure 1). Six risk groups were
obtained, but due to a low number of observations in the highest risk group (score ŷi lower than −29), this
group was merged with the risk group containing observations with scores ranging from −29 to −15. The
predicted survival (1− Ĝ) at 2 and 5 years of follow-up are reported for each risk group.

risk group score Ŝ(2 year) Ŝ(5 year)

5 ≤ -15 0.75 0.62
4 -14 to -4 0.95 0.86
3 -3 to -1 0.98 0.94
2 0 0.99 0.95
1 ≥ 1 ≥ 0.99 0.98

Figure 9 illustrates the calibration results on the test set. The ICSc model is well calibrated.
The PH model overestimates the survival in the risk group with the highest risk. This was also
noted on the training set. This is due to the proportional hazard assumption that restricts
the differences between the predicted survival curves. Since ICSc only assumes non-crossing
survival curves, this method has more flexibility in the estimation of the different survival
curves.

7 Conclusions

This work started with the introduction of a survival model that automatically leads to an
easily applicable score system. In contrast to existing score models, the number and position
of the thresholds are determined automatically by means of an incorporated control mecha-
nism, making the trade-off between performance and categorization. Secondly, this method
was adapted to define a clustering method for survival data, such that the number of clus-
ters/risk groups are automatically determined. Thirdly, the inverse-probability-of-censoring
weighted average estimator of the cumulative distribution was adapted to allow for the simul-



Table 3. Comparison of ICSc with the PH model

model c-index 95% CI c-index 95% CI
training set test set

ICSc 0.711 0.676-0.741 0.724 0.687-0.758
PH 0.710 0.678-0.740 0.716 0.680-0.752

ICSc risk groups 0.687 0.659-0.715 0.702 0.669-0.731
PH risk groups 0.669 0.641-0.695 0.688 0.658-0.716

taneous estimation of different survival curves that are monotonic w.r.t. the risk groups. The
method was illustrated on artificial and real-life data. The results of the proposed method
are comparable with the PH model w.r.t. discrimination (c-index), but calibration is better
for the ICSc approach. Additional advantages of the ICSc methodology are the incorporated
feature selection and the automatic generation of the thresholds such that the performance
of the resulting score is not dependent on the model developer.
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Fig. 8. Estimation of the survival curves for the different risk groups. (a) Estimated survival curves (1 − Ĝ,
steps 3-4 in Figure 1) for the ICSc risk groups; (b) mean estimated survival within the PH risk group. The
stair functions indicate the Kaplan-Meier estimators.
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Fig. 9. Calibration plots for the risk groups on the test set after ICSc (a-b) and proportional hazard regression
(c-d). The ICSc model is well calibrated. The PH model overestimates the survival in the risk group with the
highest risk. This is the result of the proportional hazard assumption. Since ICSc only assumes non-crossing
survival curves, this method has more flexibility in the estimation of the different survival curves.
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