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Abstract—Long design cycles due to the inability to predict
silicon realities are a well-known problem that plagues analog/RF
integrated circuit product development. As this problem worsens
for nanoscale IC technologies, the high cost of design and multiple
manufacturing spins causes fewer products to have the volume
required to support full-custom implementation. Design reuse
and analog synthesis make analog/RF design more affordable;
however, the increasing process variability and lack of modeling
accuracy remain extremely challenging for nanoscale analog/RF
design. We propose a regular analog/RF IC using metal-mask
configurability design methodology Optimization with Recourse of
Analog Circuits including Layout Extraction (ORACLE), which
is a combination of reuse and shared-use by formulating the
synthesis problem as an optimization with recourse problem. Us-
ing a two-stage geometric programming with recourse approach,
ORACLE solves for both the globally optimal shared and ap-
plication-specific variables. Furthermore, robust optimization is
proposed to treat the design with variability problem, further en-
hancing the ORACLE methodology by providing yield bound for
each configuration of regular designs. The statistical variations of
the process parameters are captured by a confidence ellipsoid. We
demonstrate ORACLE for regular Low Noise Amplifier designs
using metal-mask configurability, where a range of applications
share common underlying structure and application-specific cus-
tomization is performed using the metal-mask layers. Two RF
oscillator design examples are shown to achieve robust designs
with guaranteed yield bound.

Index Terms—Configurable design, optimization with recourse,
robustness, statistical optimization.

I. INTRODUCTION

THE IC DESIGN and manufacturing costs are increasing
to the point that fewer products have the volume required
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to amortize the large upfront nonrecurring engineering costs
[1]. This is particularly the case for mixed-signal ICs that are
designed in sub-100-nm technologies, where the technology
advances are making application-specific system-on-chip de-
signs technically feasible, but the economic realities require
even higher product volumes. Design reuse and analog syn-
thesis methodologies [2]–[7] have substantially addressed the
design cost and risk challenges. For a given circuit topology
and specifications, simulation-based optimization [2]–[4] and
equation-based optimization [6], [7] have been effective for
automating the design process. However, the large process
parameter variability that is evident for nanoscale technologies
along with the complex nature of parasitic coupling can cause
the design risk, hence cost, to remain quite high, even for the
best synthesis approaches.

For this reason, it is advantageous to design configurable
analog/RF circuits [8], [9] that exploit circuit regularity. Im-
portantly, such circuits can be precharacterized for the sub-
tle device properties and coupling parasitics that are difficult
to predict prior to layout and manufacturing. These regular
analog/RF circuits reduce the design risk and accommodate
the tight time-to-market windows. While the design cost of
configurable circuits exploiting regularity can be high, the cost
is shared over multiple applications.

We propose an Optimization with Recourse of Analog Cir-
cuits including Layout Extraction (ORACLE) methodology,
which incorporates the shared-use and reuse benefits of config-
urable circuits, while offering performance that is comparable
to a fully customized design. Instead of a flow to optimize
a circuit for a single application, we propose an optimiza-
tion framework that supports a methodology for configurable
designs that “share” common structures. These common struc-
tures can then be precharacterized for subsequent application-
specific customization, thereby allowing the second stage of
optimization to accommodate extracted layout realities. We
formulate our configurable design problem as an optimization
with recourse problem. If we can formulate each of the sample
problems (scenarios) as geometric programming (GP) problem
[6], [7], the optimization with recourse problem can be then
reduced to a two-stage GP with recourse (GPR) problem and
solved efficiently.

Furthermore, to consider variability in the early stages of
design exploration, we propose to formulate the design with
variability problem as robust optimization, specifically robust
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GP, and capture the process variations using ellipsoidal uncer-
tainty expression. The process variation issue has been treated
by many statistical methods as classified in [10] into four broad
categories: direct yield optimization, design centering, worst-
case optimization, and infinite programming. The direct yield
optimization [11], [12] aims at direct yield formulation or esti-
mation through numerical integration or Monte Carlo analysis,
often resulting prohibitive computational cost. The design cen-
tering approaches [13]–[15] try to find the design point furthest
away from all constraint boundaries to be insensitive to process
variations. Either lower bound (for maximal inscribed ellipsoid)
or upper bound (for minimal circumscribed ellipsoid) of the
actual parametric yield is estimated using this approach. The
worst-case optimization techniques optimize worst-case circuit
performances over all process and environmental variations
(see, e.g., [16], [18]). Traditional worst-case optimization uses
the process parameters taking values within a certain range
which forms a tolerance “box,” and the circuit performance is
optimized for all of the “corners,” or the vertices of the formed
polyhedron. The state-of-the-art worst-case methods take the
statistical distribution of the process parameters into consid-
eration and evaluate the worst-case performance based on the
probability density function (pdf) [10], [14], [16]. The robust
GP proposed in this paper is one type of infinite programming,
which attempts to minimize one cost function while satisfying
all design constraints over the infinite set [19]. By formulation
of optimization with ellipsoidal uncertainty, the statistical dis-
tribution information of both the process parameters and design
variables can be included. More importantly, the problem size
grows linearly with number of uncertain parameters in robust
GP. Recent advances in robust optimization show that the robust
GP with ellipsoidal uncertainty can be solved efficiently and
accurately [20].

We demonstrate the ORACLE methodology by showing
the numerical examples for the regular Low Noise Amplifier
(LNA) designs using metal-mask configurability in SiGe and
CMOS process. We further demonstrate the applications of the
robust optimization formulation using two examples: a ring
oscillator (RO) and an LC oscillator. The numerical results re-
veal that designs can be achieved with guaranteed yield bound,
and the tradeoff curve of design cost and yield bound can be
analyzed. It is shown that much less overdesign is achieved
compared with the traditional corner-based optimization. We
also include an example of silicon implementation of a back-
end-of-line (BEOL) metal-mask configurable RF front end to
validate this methodology [9].

The remainder of this paper is organized as follows. A
brief overview of the regular analog/RF circuit design using
metal-mask configurability is given in Section II. GP and Ro-
bust Optimization are introduced in Section III. Optimization
with recourse and the ORACLE approach are introduced in
Section IV. In Section V, we propose to formulate the de-
sign with variability problem as robust GP with ellipsoidal
uncertainty, and the normal process variations are captured
by the confidence ellipsoid. The numerical examples of reg-
ular LNA designs and robust optimization of RF oscilla-
tors are explained in Section VI, followed by conclusions in
Section VII.

Fig. 1. Regular IC design via metal-mask configurability cross section.

II. REGULAR ANALOG/RF ICS OVERVIEW

Analog/RF IC designs are famous for the long design cycle
and unpredictable parasitics. The analog/RF IC design iter-
ations become more costly in nanoscale technology due to
the mask set cost. Design reuse of regular structure such as
BEOL metal-mask configurable circuit design can substantially
address the design cost and risk challenges. It is suggested to
divide the fabrication process into the device process and the
metal patterning process. A common underlying base circuit,
or implementation fabric, is designed to be shared across an
entire spectrum of potential applications. The implementa-
tion fabric is optimized for manufacturability and accurately
precharacterized in terms of devices and parasitics. A limited
set of BEOL metal-masks are then used for application-specific
customization, as depicted in the cross-sectional diagram of
SiGe process in Fig. 1.

Our example implementation fabric described here includes
RF components such as bipolar junction transistors (BJTs),
MOSFETs, resistors, capacitors, and inductors. The customiza-
tion of transistors (BJT or MOSFET) and resistors are realized
by using a different number of multipliers. The spiral inductor
and metal–insulator–metal capacitor are designed using top
metal layers and hence fully customized for each application to
minimize performance penalty. We chose to reserve a polysili-
con patterned ground shield for inductor implementation which
provides the lowest risk solution but incurs an area penalty.
The metal-mask configuration for the various RF components
is summarized in [9].

Traditional analog/RF IC design exploiting regularity is usu-
ally applied in an improvised way. In this paper, a systematic
two-stage design methodology has been developed for deter-
mining both the optimal sizing of the implementation fabric
for all possible applications and the optimal configuration for
each individual application. This design methodology enables
excellent control and characterization of devices and parasitics
prior to final BEOL metal customization, thereby substantially
lowering the design risk.

III. MATHEMATICAL BACKGROUND

A. GP

Let x1, . . . , xn be n real, positive variables. We will denote
the vector (x1, . . . , xn) of these variables as x. A function f is
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called a posynomial function of x if it has the form

f(x1, . . . , xn) =
t∑

k=1

ckxα1k
1 xα2k

2 , . . . , xαnk
n

where cj ≥ 0 and αij ∈ R. Note that the coefficients cj must
be nonnegative, but the exponents αij can be any real numbers,
including negative or fractional. When there is exactly one
nonzero term in the sum, i.e., t = 1 and c1 > 0, we call f a
monomial function.

A geometric program is an optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p
xi > 0, i = 1, . . . , (1)

where f0, . . . , fm are posynomial functions and g1, . . . , gp are
monomial functions.

Note that the geometric program in (1) can be formulated as

minimize cTy
subject to lse(Asy + bs) ≤ 0, s = 1, . . . ,m (2)

where the optimization variable is y = log x and y ∈ Rn, the
logarithm of coefficients in (1) become c ∈ Rn, As ∈ RKs×n,
bs ∈ RKs , and

lse(y) = log(ey1 + · · · + eyk)

is called the log-sum-exp function. The geometric program is a
convex optimization problem, i.e., the problem of minimizing
a convex function subject to convex inequality constraints
and linear equality constraints. This special type of convex
optimization can be globally solved with great efficiency. We
can use efficient interior-point methods to solve the problem,
and there is a complete and useful duality, or sensitivity theory
for it.

Recently, GP [35], [36] has found successful applications
in the field of circuit design, e.g., [6], [33], [41], [43]. Many
analog/RF circuit design problems have been successfully for-
mulated as GP [6], [7] and solved with great efficiency. (See
[36] and [42] for more complete lists of references.) Unlike
simulation-based methods such as Simulated Annealing and
Genetic Programming [3], [4], [17] which are often used in
local optimization and stochastic optimization, GP-based con-
vex optimization offers high speed and global optimality, while
usually suffers the problem of long setup time and limited
accuracy. Table I summarizes the performance comparison
among the local optimization, the stochastic optimization, and
the convex optimization used in analog synthesis methods.

B. Robust Optimization

The idea of robust optimization is to explicitly incorporate a
model of data uncertainty in the formulation of an optimization
problem. Various types of robust convex optimization prob-
lems, e.g., robust linear programs, robust quadratic programs,

TABLE I
COMPARISON OF ANALOG SYNTHESIS METHODS

and robust semidefinite programs, have been proposed (see,
e.g., [35], [37], [38], [39], and [40] for details).

A large class of robust optimization problems can be formu-
lated as

minimize supu∈U f0(y, u)

subject to supu∈U fi(y, u) ≤ 0, i = 1, . . . , m (3)

where y is the optimization variable the same as in (2), u
represents the uncertain problem data, the set U describes the
uncertainty in u.

Note that the robust optimization problem (3) is a convex
problem if fi, i = 0, . . . ,m are convex in y for each u ∈ U .
Even so, its computational tractability depends on the particular
functions fi and the description of the uncertainty set U . There-
fore, choosing a good model for the uncertainty often involves
a tradeoff between conservativeness and tractability. Most of
the research in the area has therefore focused on formulating
robust optimization problems that can be solved via convex
optimization.

IV. ORACLE METHODOLOGY

A. Methodology Overview

In regular analog/RF designs, a common implementation
fabric is shared by multiple applications through different
configurations of metal-mask layers. Unlike optimization for
a single application, the shared common structure can be
well characterized via simulation or measurement before it
is configured for multiple applications, thereby providing the
predictability that is needed for a risk-free robust design. The
proposed optimization infrastructure is applicable to config-
urable designs in general, but here is applied in regular analog/
RF IC designs using metal-mask configurability, as shown in
Fig. 2, to produce performance comparable to a fully cus-
tomized application-specific design.

We select device design variables and metal-mask design
variables as first stage design variables x and second stage
design variables z, and the scenario is an application corre-
sponding to a set of specifications. The design is accomplished
in two stages: 1) optimal implementation fabric design and
2) optimal individual metal-mask design. In the first stage,
we optimize the structure of the implementation fabric over a
domain of multiple applications. Then, device and component
properties are characterized via postsimulation or potentially
on-wafer measurement. By doing this, we can use the extracted
information to center the final design. In the second stage,
accurate device and component models are plugged into the
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Fig. 2. ORACLE design methodology for regular analog/RF ICs.

original problem and resolved to achieve the individual metal-
mask designs.

B. Problem Formulation

We formulate the regular analog/RF circuit design using
metal-mask configurability as an optimization problem with re-
course, also called two-stage optimization [22], [35], as shown
in Fig. 2. In the two-stage optimization, we are to choose the
values of two variables: x ∈ Rn and z ∈ Rq, which in con-
junction are the design variables for each of S applications, or
scenarios. The variable x must be chosen before the particular
scenario s is known; the variable z, however, is chosen after
the value of the scenario random variable is known. In other
words, z is a function of the scenario random variable s. To
describe our choice z, we list the values we would choose under
the different scenarios, i.e., we list the vectors

z1, . . . , zS ∈ Rq.

Here, z3 is our choice of z when s = 3 occurs, and so on. The
set of values

x ∈ Rn, z1, . . . , zS ∈ Rq

is called the policy, since it tells us what choice to make for x
(independent of which scenario occurs), and also, what choice
to make for z in each possible scenario. The variable z is called
the recourse variable (or second-stage variable), since it allows
us to take some action or make a choice after we know which
scenario occurred. In contrast, our choice of x (which is called
the first-stage variable) must be made without any knowledge
of the scenario.

The cost function and constraints depend not only on
our choice of variables, but also on a discrete variable s ∈
{1, . . . , S}, which is interpreted as specifying which of S
scenarios occurred. The cost function of each scenario is
given by

f : Rn × Rq × {1, . . . , S} → R

where f(x, zi, i) gives the cost when the first-stage choice x is
made, second-stage choice zi is made, and scenario i occurs.
We will take the overall objective, to be minimized the average

total cost over all policies, or to be minimized the maximum
cost of all policies.

C. GPR

If each individual optimization problem can be formulated
as a special type of convex optimization, namely, a GP, the
optimization with recourse problem can be solved using a two-
stage GPR approach.

Once individual optimization problems are formulated as GP,
Optimization with Recourse can be solved by a two-stage GPR
approach.

Suppose that the objective and constraint functions f are
posynomial functions of (x, z), for each scenario i = 1, . . . , S.
In order to find an optimal policy, we must solve a GPR of
the form

minimize F0(x, z1, . . . , zS)
subject to Fj(x, zi) ≤ 1, i = 1, . . . , S, j = 1, . . . , m

Gj(x, zi) = 1, i = 1, . . . , S, j = 1, . . . , p
xi > 0, i = 1, . . . , n
zi > 0, i = 1, . . . , q (4)

where Fj = ∪S
i=1f(x, 0, . . . , zi, 0, . . .) are posynomial func-

tions for j = 1, . . . ,m, and Gj = ∪S
i=1f(x, 0, . . . , zi, 0, . . .)

are monomial functions for j = 1, . . . , p. The new objective F0

is the expected value of the total cost (or other cost functions
which will be discussed later), and the new constraints are the
union of all individual design constraints. The two-stage GPR
problem can be treated as a much larger GP problem, since for
each i, f(x, z, i) can be transformed to be convex in (x, zi),
therefore linear-fractional functions preserve convexity.

The variables in the problem are x, z1, . . . , zS, i.e., the policy.
The total dimension of the variables is n + Sq, compared
with n + q as in a single scenario case. The computational
burden of solving the large geometric program equivalent for
the original problem can be quite prohibitive. This is because
we need to solve the set of n + Sq (symmetric, positive def-
inite) linear equations ∇2F∆nt = −∇F , where F (x, z, i) =
(F0 F1 · · · Fm)T, which incurs a cost of approximately
(1/3)(n + Sq)3 flops. As a function of the number of scenarios,
this grows like S3.
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Fig. 3. ORACLE for metal mask configurable circuit flow chart.

Since a posynomial function f is a twice differentiable
function of (x, z) for each scenario i = 1, . . . , S, we can exploit
the structure of the Hessian of F (x) to compute the Newton step
efficiently. Therefore, the overall complexity grows linearly
[35] in S, and this scalability is an important feature of GPR.

Furthermore, since the GPR problem can be viewed as a
much larger size GP problem, if it contains integer variables,
we can use the same methods as discussed in solving MIGP
problems to find the optimal solution of mixed integer GPR
problems.

In the formulated optimization problem, the new constraints
include all individual design constraints. While selecting the
new objectives, we have several choices depending on the
design goal. We can minimize the expected objective (average
or weighted average), or the maximum objective among all sce-
narios, which would result in large margins for most scenarios.
Another choice is to minimize the maximum design surcharges,
which is defined as the performance difference between mask
configurable design and the corresponding independent design.
The independent design represents the full-custom design for
each design scenario, and is therefore, the best we can achieve
for each scenario under our optimization formulation. In this
way, we can assess and minimize the cost to achieve mask
configurability.

Since the GP formulation of each individual design is the
basis for the GPR formulation of mask configurable design, in
Section VI-A, we will describe the separation of design vari-
ables and list design constraints used in a single design
GP formulation. Once the GP formulation of each design
is obtained, the GPR formulation of the entire metal-mask

configurable design can be readily obtained as previously
discussed.

D. Practical Design Flow

In summary, regular analog/RF circuits can be used to reduce
design risk and manufacturing cost. We proposed a novel design
methodology and supporting optimization infrastructure for
such configurable circuits. Fig. 3 shows the practical flow of
applying ORACLE in the regular analog/RF IC design using
metal-mask configurability.

A relatively coarse posynomial model is used in the fabric
(first stage) design because we need to quickly explore large
design spaces. The initial modeling inaccuracy can be corrected
during the metal-mask (second stage) design through local
design space fitting. Moreover, the extracted characterization
information helps refining the devices and components model
with parasitics included. The posynomial modeling accuracy in
the second stage can be very high and the silicon reality can
be much better predicted. By doing analog circuit design with
recourse, we make analog computer-aided design no longer an
open loop process and therefore a very practical design aid.

Unlike optimization for a single application, the shared com-
mon structure is well characterized via simulation or measure-
ment before it is configured for multiple applications, thereby
providing the predictability that is required for a risk-free robust
design. Simulation-based posynomial fitting techniques [29],
[43], [44] are particularly effective in our design methodology
because the silicon implementation fabrics can be accurately
modeled and characterized. By characterization of silicon and
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posynomial models obtained by simulation, the mask design
variables (the second-stage design variables) can be computed
precisely, therefore the chances of first-silicon pass are greatly
enhanced.

V. CAPTURE VARIABILITY BY ELLIPSOID UNCERTAINTY

A. Process Variation Sources and Modeling

The IC performance variability is impacted by two distinct
sets of factors: environmental factors and physical factors.
The environmental factors usually include variations in power
supply voltage and temperature. The physical factors include
variations in the electrical and physical parameters that char-
acterize the behavior of active and passive devices, such as
Vth, Tox, Leff , etc. The process parameter variability can be
measured through the ratio of the standard deviation (σ) and
the mean value (µ). The increasing parameter variability of
five technologies in the 250- to 70-nm gate length range is
summarized in [21].

To consider those variability, we model process parameters
as random variables with certain statistical distributions. We
may use a uniform distribution over the range of the specifica-
tions for environmental factors. For example, the temperature
can be modeled as a uniform distribution random variable
from −25 ◦C to 125 ◦C. The physical parameters are typically
represented by some joint pdf N(µ,Σ), where µ is a vector of
means and Σ is a variance/covariance matrix. The correlation
of those parameters cannot be ignored because of the mecha-
nism of those parameters and the increasing impact of intradie
variations.

B. Robust Optimization With Ellipsoidal Uncertainty

The circuit design with process variability problem can be
cast as an optimization problem with a specific model uncer-
tainty as in the robust optimization formulation (3). Therefore,
to include the process variability in the early stage of design, we
propose to formulate the circuit design with variability problem
as robust GP, which can systematically incorporate a model of
data uncertainty in a GP and optimize for all the given scenarios
under this model. In addition, the various sources of variations
are modeled as the ellipsoidal uncertainty.

To take into consideration some uncertainty or possible varia-
tion in the problem data (As, bs) in (2) in a tractable manner, we
assume that (As, bs), s = 1, . . . ,m are uncertain, but known to
belong to the image of a set U ⊂ RL under the affine mapping

(
Ãs(u), b̃s(u)

)
=



A0
s +

L∑

j=1

ujA
j
s , b

0
s +

L∑

j=1

ujb
j
s



 (5)

where Aj
s ∈ RKs×n, bj

s ∈ RKs , j = 0, . . . , L. The correspond-
ing robust geometric program in convex form can then be
formulated as

minimize cTy

subject to supu∈U lse
(
Ãs(u)y + b̃s(u)

)
≤ 0

s = 1, . . . ,m. (6)

Fig. 4. Enclose correlated process variations by confidence ellipsoid.

In addition, in this paper, we assume that the robust GP (6) has
ellipsoidal uncertainty, in which U is an ellipsoid

U =
{
ū + Pρ|‖ρ‖2 ≤ 1, ρ ∈ RL

}
(7)

where ū ∈ RL and P ∈ RL×L.
It is not known whether the robust GP (6) with ellipsoidal

uncertainty (7) can be reformulated as a tractable (convex) opti-
mization problem. However, a tractable approximation method
that yields a good compromise between solution accuracy and
computational efficiency has been proposed. Refer to [20] for
more details.

C. Confidence Ellipsoid

Recall that a normal random variable u ∈ Rn with mean ū
and positive definite covariance matrix Σ =Σ T > 0, i.e., u ∼
N (ū,Σ), has the pdf

pu(ξ) = (2π)−n/2(det Σ)−1/2e−1/2(ξ−ū)TΣ−1(ξ−ū). (8)

Obviously, pu(ξ) is constant for (ξ − ū)TΣ−1(ξ − ū) = γ, i.e.,
on the surface of ellipsoid

Eγ =
{
ξ|(ξ − ū)TΣ−1(ξ − ū) ≤ γ

}
. (9)

Here, Eγ is called a confidence ellipsoid of u. It is well known
that the nonnegative random variable (u − ū)TΣ−1(u − ū) has
a chi-squared distribution with degree n, i.e.,

Prob(u ∈ Eγ) = Fχ2
n
(γ) (10)

where Fχ2
n

is the cumulative distribution function of χ2
n.

If the process variations are normally distributed with the
density function (8), a prespecified amount of mass of proba-
bility 0 < α< 1 can be captured by the confidence ellipsoid
Eγ (9) with α = Fχ2

n
(γ), as shown in Fig. 4.

D. Yield-Guaranteed Robust Design

Suppose the uncertainty parameter u ∈ RL in the robust GP
(6) is random and normally distributed with the density function
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(8). Given 0 < α< 1, we say that ŷ ∈ Rn has yield no lower
than α if

Prob
(
lse

(
Ãi(u)ŷ + b̃i(u)

)
≤ 0, i = 1, . . . , m

)
≥ α.

The yield-guaranteed robust design can be obtained by let-
ting the ellipsoidal uncertainty set U defined in (7) to be the
confidence ellipsoid Eγ define in (9). Then, all the feasible
solutions of the robust GP (6) have yield no lower than Fχ2

n
(γ).

Therefore, in the robust GP framework, we can capture both
the independent and the correlated normal randomness by the
ellipsoidal uncertainty (9), and the resulting feasible solutions
always have guaranteed yield bound Fχ2

n
(γ).

E. Implementation Issues

In this section, we first show that narrow normal distributions
can be approximated by lognormal approximations. Then, we
give the generic formulation of GP in posynomial form with
incorporated process variations. Based on the lognormal ap-
proximation of narrow normal distribution, the robust design
with guaranteed yield bound can be achieved by reformulating
the GP in posynomial form with normal variations as the robust
GP (6) with the ellipsoidal uncertainty (9).

1) Approximate Narrow Normal Distributions by Lognormal
Distributions: Let u be normally distributed with mean µ and
variance σ2. Assume that u is narrow, i.e., σ - µ; therefore,
the mass of probability of u is mostly concentrated in the
small interval [µ − 3σ, µ + 3σ]. To approximate the narrow
normal random variable u by a lognormal random variable, of
which pdf is defined on positive real numbers, here, we assume
µ − 3σ > 0 such that most of u (with high probability) is
distributed within a positive interval. Therefore, for all ξ ∈ [µ −
3σ, µ + 3σ], we have log(ξ/µ) . ξ/µ − 1, since ξ/µ . 1.
Furthermore, for all ξ ∈ [µ − 3σ, µ + 3σ]

pu(ξ) = (2π)−1/2σ−1e−(ξ−µ)2/(2σ2)

. (2π)−1/2 ((σ/µ)ξ)−1 e−(log ξ−log µ)2/(2(σ/µ)2).

Therefore, narrow normal distributions can be approximated by
lognormal distributions

σ - µ : N (µ,σ2) . LN
(
log µ, (σ/µ)2

)
. (11)

(Recall that a random variable v has the lognormal distribution
v ∼ LN (µv,σ2

v) if its pdf has the form

pv(ξ) =
1√

2πσv

1
ξ
e−(log ξ−µv)2/(2σ2

v) (12)

where 0 < ξ < ∞, −∞ < µv < ∞, and σv > 0.) For example,
the normal distribution N (4.5 nm, (0.1 nm)2) of Tox can be
approximated as a lognormal distribution with less than 1.3%
error. (The proof of generic lognormal approximations of nor-
mal distributions can be found in [34].)

2) Incorporate Process Variations in GP of Posynomial
Form: Many optimization-based circuit designs result in geo-
metric programs of posynomial form. When process variations
are incorporated, the robust design with guaranteed yield bound
can be formulated as the following optimization problem:

minimize cTx

subject to Prob (fs(x, p) ≤ 1, s = 1, . . . ,m) ≥ α

(13)

where 0 < α< 1 is the required yield bound, x ∈ Rnx are
the design variables, p ∈ Rnp represents the process param-
eters, and

fs(x, p) ∆=
Ks∑

k=1



dks

np∏

i=1

(pi + δpi)biks

nx∏

j=1

(xj + δxj)ajks



 .

(14)

Here, the process variations in the process parameter pi and
design variable xi are modeled by the random variables δpi and
δxi, respectively. Another implicit assumption is that fs(x, p)
is posynomial in x and p when we let δpi = 0, i = 1, . . . , np

and δxj = 0, j = 1, . . . , nx.
a) Variance-linked-to-mean variations in process param-

eters: Consider the robust design (13) with required yield
bound α. Assume that δxj = 0, j = 1, . . . , nx in (14), i.e., no
variation in the design variables. We model the variance-linked-
to-mean normal variations in process parameters by

δpi/pi ∼ N
(
0,σ2

pi

)
, i = 1, . . . , np

where σpi - 1, i = 1, . . . , np are given. Let Σp = ΣT
p > 0 be

the covariance matrix of δpi/pi, i = 1, . . . , np. For values of
δpi with high probability, fs(x, p) can be inferred as follows:

fs(x, p) .
Ks∑

k=1

exp

[ (
cks +

np∑

i=1

biksqi

)

+
np∑

i=1

biksui +
nx∑

j=1

ajksyj

]
(15)

in which cks = log dks, qi = log pi, ui = δpi/pi, and yj =
log xj . Therefore, fs(x, p) ≤ 1 can be easily reformulated as
a log-sum-exp constraint

lse







A0
s +

np∑

j=1

ujA
j
s



 y, b0
s +

np∑

j=1

ujb
j
s



 ≤ 0 (16)

with appropriate Aj
s and bj

s , j = 0, . . . , np. We can reformulate
each constraint fs(x, p) ≤ 1 of (13) in form of the above
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log-sum-exp constraint and then obtain a robust GP of the form
(6) with the ellipsoidal uncertainty

U =
{
u ∈ Rnp |uTΣ−1

p u ≤ γ
}

(17)

where γ satisfying Fχ2
n
(γ) = α. Assume that ŷ ∈ Rnx is a

feasible solution of the resulting robust GP. Then, x̂j = eŷj ,
j = 1, . . . , nx satisfy (13), i.e., x̂ ∈ Rnx has yield no lower
than α.

b) Variance-not-linked-to-mean variations in design vari-
ables and process parameters: Consider the robust design (13)
with required yield bound α. Assume that the upper and lower
bounds for each design variable are given

0 < Lj ≤ xj ≤ Uj , j = 1, . . . , nx. (18)

We model the variance-not-linked-to-mean, normal variations
in process parameters and design variables by

δpi ∼N
(
0,σ2

pi

)
, i = 1, . . . , np

δxj ∼N
(
0,σ2

xj

)
, j = 1, . . . , nx.

Here, we assume that σpi - pi, i = 1, . . . , np. In addition, we
assume that σxj - xj , j = 1, . . . , nx. (Note that, in general,
we can verify if this assumption holds since in many circuit de-
signs it is easy to determine reasonable range of values for each
design variable, e.g., (18).) We also assume that pi − 3σpi > 0,
i = 1, . . . , np and xj − 3σxj > 0, j = 1, . . . , nx. Therefore,
by (11)

pi + δpi .LN
(
log pi, (σpi/pi)2

)
, i = 1, . . . , np

xj + δxj .LN
(
log xj , (σxj /xj)2

)
, j = 1, . . . , nx.

Recall that a lognormal random variable v ∼ LN (µ,σ2) can
be inferred from v = eµ+σu with u ∼ N (0, 1). Then, fs(x, p)
can be inferred from

fs(x, p)

.
Ki∑

k=1

exp

[ (
cks +

np∑

i=1

biksqi

)

+




np∑

i=1

biks
σpi

pi
ui +

nx∑

j=1

ajksσxjαj ûj





+
nx∑

j=1

ajksyj +
nx∑

j=1

ajksσxjβj ûjyj

]
(19)

in which cks = log dks, qi = log pi, and yj = log xj . Here,
ui ∼ N (0, 1), i = 1, . . . , np and ûj ∼ N (0, 1), j = 1, . . . , nx;
αj + βjyj , j = 1, . . . , nx are linear approximations of e−yj

subject to yj ∈ [log Lj , log Uj ], j = 1, . . . , nx, respectively.
(Many methods, e.g., least-square fitting, can be used to
find good linear approximations for e−yj within the interval
[log Lj , log Uj ].) Therefore, we can reformulate each constraint
fs(x, p) ≤ 1 in (13) as a log-sum-exp constraint [like (16)]

Fig. 5. Simplified SiGe LNA schematic.

to obtain a robust GP of the form (6) with the ellipsoidal
uncertainty

U =
{
ξ = (u, û)|ξTΣ−1

ξ ξ ≤ γ, ξ ∈ Rnp+nx

}
(20)

where γ satisfying Fχ2
n
(γ) = α, and Σξ = ΣT

ξ > 0 is the co-
variance matrix of ui, i = 1, . . . , np and ûj , j = 1, . . . , nx.
Assuming ŷ ∈ Rnx is a feasible solution of the resulting robust
GP, then x̂j = eŷj , j = 1, . . . , nx satisfy (13), i.e., x̂ ∈ Rnx has
yield no lower than α.

VI. REGULAR RFIC DESIGN EXAMPLES

A. Regular LNA Design Using Metal-Mask Configurability

An LNA is an important building block for any RF or wire-
less receiver. Depending on the system requirements, different
technologies may be used for LNA designs. SiGe has been a
promising process for future wireless communication systems
due to the quality of having a higher performance compared
to CMOS at lower price compared to GaAs, and is readily
integrated with standard CMOS devices. Therefore, we will
use a SiGe LNA example to illustrate the detailed optimization
procedure of regular design using metal-mask configurability.
Then, the numerical results of regular CMOS LNA will also
been shown.

1) Design Problem: The specific SiGe LNA topology we
consider in this paper is shown in Fig. 5. This topology has
been widely used due to its lower noise performance compared
with other topologies [24]. This circuit consists of an input tune
loop followed by a cascode common-emitter transconductance
stage with tuned output loop. Since the LNA is part of an RF
front end, it is also required to match the impedance with input
and output to maximize power transfer.

2) Design Variables: There are 12 independent physical
variables in a single design that we would like to optimize for
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the simplified SiGe LNA design. These design variables are
related to the sizing and biasing of the input BJT and inductors.
The cascode transistor Q2, the dc biasing circuitry (R1, R2, R3,
R4, Q3, and Q4), and decoupling capacitors (Cd1 and Cd2) are
heuristically sized for best matching and power consumption
performance.

The 12 independent design variables are divided into two
categories: device design variables and metal-mask design vari-
ables, which correspond to the front end and the back-end of the
SiGe fabrication processes.

1) Device design variables: the emitter length lE and width
wE of input transistor Q1, and the outer dimension D1,
D2, D3 of three inductors LE, LB, and LC. These vari-
ables are restricted to take values on a discrete grid. Since
the layout grid in modern technology is very small, we
ignore the grid constraints in this paper and consider these
variables to be positive real numbers.

2) Metal-mask design variables: m1 is the number of de-
vices of the same geometry used in parallel for input BJT,
which should be integer number; the number of turns
n1, n2, n3 of three inductors, which would be integer
multipliers of 0.25 (quarter turns); the value of the input
and output tune capacitors CB and CC, and the collector
current IC, which is considered as positive real numbers.

There are a number of parameters that we consider fixed, e.g.,
the supply voltages Vcc and gnd, and the various process and
technology parameters associated with the SiGe models.

3) Design Specifications and Parameters: In order to cast
the design of LNAs as GP, we need to show that the LNA
design specifications can be posed as posynomial functions
of the design variables. Being able to write circuit equations
in posynomial form is the key to use GP to design analog
circuits. To achieve equations in posynomial form, one needs
to make reasonable approximations. Since our equations show
excellent agreement with simulation results, we conclude that
our approximations are valid.

The LNA was designed to achieve simultaneous noise and
power match using the method reported in [24], [25], and
[26]. Under the power consumption constraint, it is desir-
able to achieve gain with input and output impedance match,
while maintaining the minimum noise and distortion level,
also minimizing the silicon area. Therefore, when formulating
the GP problem, we minimize area subject to the following
constraints:

1) noise match;
2) input impedance match;
3) gain requirement;
4) output impedance match;
5) nonlinear distortion requirement;
6) power constraint.

We use the Gummel-Poon BJT model to derive the initial
design equations, where electrical elements in this model are
monomial expressions of physical design variables. A simple
monomial fitting [35] technique can be employed to fit the
VBIC95 [46] BJT model to achieve better accuracy. For on-
chip inductors, all the elements in the lumped electrical model

can be expressed as monomial or posynomial function of layout
variables, as shown in [7] and [27].

The design parameters considered in the LNA design is the
center frequency ω0 and source impedance Rs, which is usually
50 Ω in RF systems.

4) Design Equations:
a) Noise match: The authors of [26] showed that the

minimum achievable NF for a bipolar device in a common-
emitter configuration when matched to its optimum noise figure
source impedance is given by

NFmin(JC) = 1 +
n

βDC
+

√
aJC + b +

c

JC
(21)

where

a =
2

VT
(rb + re)u

(
4π2τ2

Ff2 +
1

βDC

)
(22)

b =16π2τF(rb + re)u(Cje + Cjc)uf2 +
n2

βDC
(23)

c =8π2VT(rb + re)u(Cje + Cjc)uf2 (24)

where (rb + re)u are the base and emitter ohmic resistance
of a unit device, (Cje + Cjc)u are the base-emitter and base-
collector junction capacitance for a unit device, respectively.
JC is the dc collector current density, VT is kT/q, βDC is the
collector-base dc current gain, f is the frequency of operation,
and n is the junction grading factor ranging from 1 to 1.2.
To simplify the analysis, βDC, (rb + re)u, (Cje + Cjc)u, n
are assumed to be constant as a function of collector current
density. This is a valid assumption since the device is usually
biased at current densities considerably below peak fT, and
these parameters varies little with collector current.

For frequencies well below fT, the minimal collector current
density can be approximated to be

JC−opt ≈ 2π(Cje + Cjc)uVT

√
βDCf (25)

where JC−opt scales linearly with the operating frequency. This
is an important result to achieve scalable design for multiband
systems.

b) Input impedance match: The input impedance is given
by [24] and [25] as

Zin = jω(LE + LB) + Rb +
1

jωCin
+ 2πfTLE (26)

where LE, LB are the emitter and base inductances, respec-
tively; Rb is the BJT external base resistance, Cin is the
capacitance looking into the base of the amplifier; gm is the BJT
transconductance. The inductor parasitic resistance is ignored
here. By observing the input impedance of the amplifier with
the emitter degenerated inductor, we simply see a real and an
imaginary part. The real part is a function of Q1 sizing and
biasing. The emitter inductor LE is used to match the real
part of the input impedance to RS (typically 50 Ω). This is a
monomial equality constraint

LE
∼=

RS

2πfT
= RS

(
τF + VT

(Cje + Cjc)u
JC

)
. (27)
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Simultaneous noise and input impedance match is finally
obtained by the base inductor LB. It cancels out the reactance
due to the input capacitance Cin of the device, and, at the same
time, it transforms the optimum noise reactance of the amplifier
to 0 Ω. The source reactance is

Xin = 2πf(LE + LB) − 1
ω0Cin

. (28)

Ideally, this part should be 0 Ω exactly. However, due to our
model accuracy and implementation reality, we put a boundary
to make it capacitive, and this is translated into a posynomial
inequality constraint

ω2
0(LE + LB)Cin ≤ 1. (29)

c) Gain: The total voltage gain of the whole system is

Av = Qin
gm1

go
(30)

where Qin is the quality factor of the input loop, go is the output
conductance of the transistor

Qin =
1

2πfRsCin
(31)

go =
go2go1

gm2
+

Rd

4π2f2L2
d

(32)

where Rd is the transformed version of the parasitic resistor of
the inductor.

It follows that the gain requirement will be represented as a
posynomial inequality constraint:

2πfRsCin

gm1

(
go2go1

gm2
+

Rd

4π2f2L2
d

)
≤ 1

Gmin
. (33)

d) Output impedance match: To maximize output power
transfer, we try to match the output impedance to the load.
Normally we use an extra shunt capacitor CC to form output
match network.

The output impedance of the tune loop would be

Zout = j2πfLC +
1

j2πfCC
+ RC (34)

where LC is the collector inductances; RC is the equivalent
parallel resistance of the collector inductor.

The real part of the output impedance would match the load
impedance, therefore, RC = RS, which is a monomial equality
constraint.

The imaginary part can be inductive or capacitive. We will
also put a boundary for that to make sure that it never gets
capacitive. The imaginary part at the operating frequency f is
as follows:

Xout = 2πfLC − 1
ω0Cout

(35)

and the constraint to make it capacitive is a posynomial inequal-
ity constraint

ω2
0LCCout ≤ 1. (36)

TABLE II
OPTIMAL TWO-STAGE VARIABLES FOR 2.1-GHz SiGe LNA

e) Nonlinear distortion: The LNA nonlinear distortion is
measured in terms of input-referred third-order intercept point
(IIP3). A close form of IIP3 is difficult to obtain since the non-
linearity of all components contributes to the total distortion. It
is usually recommended to use a posynomial fitting method to
get the IIP3 expression [29], [43]. However, the authors in [28]
found the relation of IIP3 and the biasing current. The third-
order intermodulation (IM3) can be approximated as

|IM3| ∝
∣∣∣∣
A1(2πf)

IC

∣∣∣∣
3

(37)

where A1(2πf) denotes the first Volterra series coefficient. We
can see that the |IM3| is proportional to the cube of the inverse
of the bias current (IC). By putting a lower bound of IM3 (or
an upper bound of IIP3), we can find the minimum bias current
needed, which is another monomial inequality constraint.

f) Power constraint: Power is critical in LNA design. We
set the sizing ratio of input BJT and bias BJT to be N . The
power consumption can be approximated by

P = VccIc

(
1 +

1
N

)
.

If we put an upper bound on the power consumption, it would
result in another monomial constraint.

5) Numerical Results of SiGe LNAs: We use a 47-GHz fT

NPN BJT SiGe BiCMOS process to demonstrate ORACLE on
some LNA examples. The positive supply voltage was set at
2.5 V, and the negative supply voltage was set at 0 V.

a) Independent design and verification: We use the de-
sign variables described in Section VI-A2 and design con-
straints listed in Section VI-A3 for a SiGe LNA example with
2.1-GHz center frequency. The resulting geometric program has
12 variables, and 28 inequality constraints. The formulated GP
problem was solved efficiently by the MOSEK toolbox [23]
on the order of a millisecond. The optimal design obtained is
shown in Table II.

The target specifications and the performance achieved by
this design, as predicted by the program, are summarized in
Table III. For a given circuit topology and a set of design speci-
fications, this is the best we can get and used as the benchmark.
Note that some constraints are tight (power consumption, center
frequency and gain), while some constraints are not (Noise
figure, S-parameters, and IIP3).
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TABLE III
GP OPTIMIZED RESULTS AND SPECTRERF SIMULATED PERFORMANCE

Fig. 6. Noise performance comparison.

The simulation results are also shown in Table III. We used
Cadence’s SpectreRF as the simulator with advanced device
models. We conclude that GP optimization results and simu-
lation results have good agreement with each other.

b) Center frequency configurable designs: Next, we de-
scribe a mask configurable SiGe LNA design at 13 different
center frequencies, ranging from 900 MHz to 2.1 GHz with
separation of 200 MHz. Other specifications are the same as
listed in Table III. We use the average noise figure of all mask
configurable designs as the cost function. The resulting problem
has 96 variables and 364 constraints. The optimization process
generates 13 metal-mask configurable designs with the same
first-stage design results and 13 sets of second-stage design
results.

Independent designs are obtained for each scenario as com-
parison. We compare the achieved noise figure for independent
designs and configurable designs, as shown in Fig. 6. We
can see that the NF of configurable designs are very close to
independent designs and the maximum NF surcharge is less
than 0.1 dB.

Since the circuit performance of configurable designs is very
close to independent designs, the only penalty we pay for such
flexibility is the silicon area. This is inevitable because the area
of the implementation fabric would be larger than the maximum
of all independent designs. The extent of the area penalty is
a tradeoff with the amount of design risk. For example, in an
LNA, the inductor areas are quite dominant. Reserving a fixed
area for all inductors is the lowest risk approach, but incurs the
largest area penalty.

c) Power and gain configurable designs: As a second
example, we vary the power and gain specifications and observe
the design space tradeoffs for mask configurability. The center

frequency is fixed at 5.25 GHz. The power spec varies from
12.5 to 20 mW by every 0.5 mW, while the gain spec varies
from 10 to 24 dB by every 2 dB. There are eight different gain
requirements and 16 different power constraints. Therefore, in
total we generate 128 design instances using the average NF of
all designs as the cost function.

The achieved noise performance and NF surcharge of the
mask configurable design are shown in Fig. 7. The plots show
that the noise performance is more sensitive to power consump-
tion. The NF surcharge of mask configurable design is less than
0.1 dB. In this way, design space exploration can be achieved
in the early stages for the entire system design.

It is worth mentioning that the 128 designs with 901 variables
and 3584 constraints are solved in 1.5 s, using the 1.4-GHz
256-MB memory Pentium PC.

6) Numerical Results of CMOS LNAs: We applied the same
design methodology to a metal-mask configurable CMOS LNA
design, using the CMOS devices in IBM 6HP BiCMOS tech-
nology. Some of the design equations for CMOS LNA design
are summarized in [45].

In this example, instead of minimizing expected objective as
cost function, we minimize the maximum design surcharge as
defined in Section IV-C, which in this example is the difference
between NF obtained in independent designs and NF obtained
in configurable designs. We optimized a configurable design at
nine different center frequencies, ranging from 1.5 to 5.5 GHz
with separation of 500 MHz. The optimization generates nine
design instances, as shown in Fig. 8. This example demonstrates
that by using design surcharge as cost function, configurable
designs can achieve performance very close to independent
designs, with only area penalties.

B. Robust Oscillator Design Examples

To consider design variability in the early stages of design
exploration in the ORACLE methodology, robust GP formula-
tion is used to provide guaranteed yield bound. The following
two examples show the robust optimization of RF oscillators.

1) Robust Optimization of an RO: The first example we
will show is the robust optimization of an RO. The specific
RO topology we consider in this paper is shown in Fig. 9.
This is a widely used building block to characterize process
variations. The performance and design variable relation has
been extensively studied in [30]–[32].

To simplify the robust GP formulation, we consider three de-
sign variables and three performance specifications for this RO
design. The three design variables are the following: effective
width Weff = Wn + Wp, gate length L = Ln = Lp, and gate
over drive ∆V . They are related to the sizing and biasing of the
NMOS and PMOS transistors.

The RO was designed to achieve minimal dynamic power
consumption for a certain center frequency. The phase noise
performance should not be larger than a given specification. The
optimization has the following form:

minimize Power(Weff , L,∆V )
subject to PN(Weff , L,∆V ) ≤ PNmax

fresonant(Weff , L,∆V ) = f0 (38)
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Fig. 7. NF of configurable LNAs and NF surcharges.

Fig. 8. CMOS LNA optimization results.

Fig. 9. Topology of an RO.

where f0 is the given resonant center frequency and PNmax is
the maximum phase noise specification.

In this example, we consider four variance-not-linked-to-
mean, independent normal variations in process parameter and
design variables. They are the gate width variation ∆W , the
gate length variation ∆L, the gate oxide thickness variation
∆Tox, and the threshold voltage variation ∆Vth. Here, the
gate oxide thickness variation ∆Tox is reflected by coefficient
perturbation in the GP of posynomial form [i.e., δpi in (14)],
and other three parameter variations are reflected by design
variables perturbation [i.e., δxi in (14)]. (∆Vth is considered as
the gate overdrive voltage perturbation.) Then, the optimization
(38) can be formulated as the GP of posynomial form consid-
ered in Section V-E2b, which can be further reformulated as the

TABLE IV
RO DESIGN RESULTS COMPARISON

TABLE V
RO PERFORMANCE MEAN COMPARISON

robust GP (6) to achieve the robust design with guaranteed yield
bound.

In the numerical example, we use the process parameter
values extracted from the IBM 7HP 0.18-µm BiCMOS tech-
nology. The design is optimized when the confidence ellipsoid
captures 90% of process variations, and the center frequency
is relaxed within the interval [4 GHz, 6 GHz]. The design
resulting from robust GP is compared with the design resulting
from GP as listed in Table IV, and their performance means are
listed in Table V.

The 10 K points Monte Carlo analysis is used to evaluate
the performance variability and the parametric yield. The his-
togram of the phase noise performance of two designs resulting
from GP and robust GP optimization are shown in Fig. 10. It can
be concluded that the design using robust GP achieves higher
yield with more design cost compared with nominal design
using GP.

We further use the concentric ellipsoids Eγ (20) with various
values of γ to capture different degrees of process variations.
The tradeoff between the design cost and the yield bound is
shown in Fig. 11, where the design cost (power consumption in
this example) increases when higher yield bound is requested.
It is also observed that a drastic increase in the design cost will
be incurred to achieve yield close to 100%.

2) Robust Optimization of an LC Oscillator: The robust
optimization and corner-based optimization are also compared
using an LC oscillator example. The LC oscillator topology we
consider in this paper is shown in Fig. 12. Five design variables
and five performance specifications are considered for this LC
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Fig. 10. Phase noise histogram comparison.

Fig. 11. RO design cost versus minimum yield spec.

Fig. 12. Topology of an LC oscillator.

oscillator design. The five design variables are the following:
the biasing tail current Ibias, the lumped tank conductance
gtank, the lumped tank capacitance Ctank, the inductance L, and
the output swing voltage VSW. They are key design variables in
the lumped tank model.

TABLE VI
LC OSCILLATOR DESIGN RESULTS COMPARISON

The LC oscillator was designed to achieve minimal dynamic
power consumption for a certain center frequency [33]. The
optimization has the following form:

minimize Power(Ibias)
subject to PN(Ibias, gtank, Ctank, L, VSW) ≤ PNmax

fresonant(Ctank, L) = f0

LoopGain(Ibias, gtank) ≥ LGmin

VSW ≤ Vdd

VSW ≤ Ibias

gtank
(39)

where f0 is the given resonant center frequency, PNmax is the
maximum phase noise specification, LGmin is the minimum
loop gain specification and Vdd is the power supply voltage.

In this example, we consider three variance-linked-to-mean
correlated normal variations in process parameters. They are
the relative tank conductance variation ∆gtank/gtank, the rel-
ative tank capacitance variation ∆Ctank/Ctank, and the rela-
tive inductance variation ∆L/L. Then, the optimization (39)
can be formulated as the GP of posynomial considered in
Section V-E2a, which can be further reformulated as the robust
GP (6) to achieve the robust design with guaranteed yield
bound.

In the numerical example, we use the process parameter
values extracted from Hitachi 90-GHz 0.25-µm BiCMOS tech-
nology. The design is optimized when the confidence ellipsoid
capture 90% of process variations, and the center frequency
is relaxed within the interval [1.7 GHz, 2.5 GHz]. Note that
the process corners are provided by the foundry which reflect
the vertices of the regular polyhedron where the ellipsoid used
in the robust optimization is inscribed. We compare the robust
optimization results with the corner-based optimization results
as listed in Table VI.

We also use the concentric ellipsoids Eγ (17) with various
values of γ to capture different degrees of process variations.
The design costs (power consumption in this example) using
two optimization schemes will increase when the yield require-
ment increases, as compared in Fig. 13. The actual yield of
each design is found using 10 K points Monte Carlo analysis.
The design cost versus actual yield for the two optimizations
in compared in Fig. 14. It is shown in this example that about
20% overdesign is observed in the corner-based optimization
compared to robust optimization when ±3σ actual yield is
achieved.

VII. CONCLUSION

Regular analog/RF IC using metal-mask configurability can
be used to reduce design risk and manufacturing cost. In this
paper, we proposed an ORACLE design methodology and the
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Fig. 13. LC oscillator design cost versus minimum yield spec.

Fig. 14. LC oscillator design cost versus actual parametric yield.

enhanced robust optimization feature for such regular inte-
grated circuits. Our methodology and optimization procedure
is applied in a set of metal-mask configurable LNA designs and
the robust optimization of RF oscillators. Numerical examples
demonstrate that competitive performance can be achieved with
guaranteed yield. The regular design and supporting methodol-
ogy are used in the silicon implementation of three RF front-
end circuits in a 0.25-µm 1P6M SiGe BiCMOS process. The
measured results demonstrated the validity of such optimization
framework [9].
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