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Rank Minimization and Applications in System Theory 

M. Fazel, H. Hindi, and S. Boyd 

Abstract-In this tutorial paper, we consider the problem Of 
minimizing the rank of a matrix over a convex set. The Rank 
Minimization Problem (RMP) arises in diverse areas such as 
control, system identification, statistics and signal processing, 
and is known to be computationally NP-hard. We give an 
overview of the problem, its interpretations, applications, and 
solution methods. In  particular, we focus on how convex 
optimization can he used to develop heuristic methods for 
this problem. 

I. INTRODUCTION 
In many engineering dpplications, notions such as order, 

complexity, or dimension of a model or design can be 
expressed as the rank of a matrix. If the set of feasible 
models or designs is described by convex constraints, then 
choosing the simplest model can often be expressed as a 
Rank Minimization Problem (RMP). For example, a low- 
rank matrix could correspond to a low-order controller for 
a system, a low-order statistical model fit for a random 
process, a shape that can be embedded in a low-dimensional 
space, or a design with a small number of components. It is 
not surprising that rank minimization has such a wide range 
of applications across all disciplines of engineering and 
computational sciences: we are often interested in simple 
models. This idea is well captured by the principle known 
as Occam> ruzor, which states that “Among competing 
explanations for a phenomenon, the simplest one is the 
best.” 

There are several special cases of the RMP that have 
we11 known solutions. For example, approximating a given 
matrix with a low-rank matrix in spectral or Frobenius 
norm is an RMP that can be solved via singular value 
decomposition (SVD) [15]. However, in general, the RMP 
is known to be computationally intractable (NP-hard) [26]. .  
Therefore, we do not expect to find a computationally effi- 
cient @olynomial-time) method that can solve all instances 
of the problem exactly. And unless the number of variables 
in the problem is very small, global search methods, that 
have exponential time complexity, are not viable options. 
Therefore, what we discuss here are heuristics that solve 
the problem approximately but efficiently. 

The structure of the paper is as follows. In sections I1 
and I11 we define the RMP and demonstrate its meaning 
in different contexts and applications. In section IV, we 
give an overview of various heuristic solution methods. 
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In particular, we focus on recently developed heuristics 
based on convex optimization, i.e., the trace and log-det 
heuristics [7], [8]. Section V demonstrates the use of the 
heuristics for the problem of system realization with time 
domain constraints. 

11. THE RANK MINIMIZATION PROBLEM 
The general RMP can be expressed as 

(1) 
minimize RankX 
subject to X E C, RMp: 

where X E Rmx” is the optimization variable and C is a 
convex set denoting the constraints. 

As a generic example of the RMP, suppose we are trying 
to estimate or reconstruct the covariance matrix 

X =E(.  - Ez)(z - E t ) =  

of a random vector z E Rn, from measurements and 
prior assumptions. Here E(z) denotes the expectation of 
the random vector z. The constraint X E C expresses the 
condition that the estimated covariance matrix is consistent 
with (or not improbable for) our measurements or observed 
data and prior assumptions. For example, it could mean that 
entries in X should lie in certain intervals. The rank of X is 
a measure of the complexity of the stochastic model of z, in 
the sense that it gives the number of underlying independent 
random variables needed to explain the covariance of z. 
The RMP (1) is therefore the problem of finding the 
least complex stochastic model (i.e., covariance) that is 
consistent with the observations and prior assumptions. As 
we will point out in the next section, this problem has many 
practical applications. In other applications, rank can have 
other meanings such as embedding dimension, controller 
order, or number of signals present. 

In problem (l), we allow any constraints on the matrix 
as long as they describe a convex set. Thus, we cover a 
large number of constraints and specifications that come 
up in practice. For example, constraints on the accuracy 
of a model or the performance of a design are common; 
e.g., f ( X )  4 t, where f( .)  is a (convex) measure of 
performance, and t E R is the tolerance. We give examples 
of these constraints in the next section. 

111. APPLICATIONS OF THE RMP 
A .  Rank of a covariance matrix 

Problems involving the rank of a covariance matrix often 
arise in statistics, econometrics, signal processing, and other 
fields where second-order statistics for random processes 
are used. Second-order statistical data analysis methods, 
such as principal component analysis and factor analysis, 
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deal with covariance matrices estimated from noisy data. 
Because of noise, the estimated covariance matrices have 
full rank (with probability one). Finding a covariance matrix 
of low rank comes up naturally in these methods. A low- 
rank covariance matrix corresponds to a simple explanation 
or model for the data. For example, consider the following 
constrainedfactor anabsis problem: 

minimize Rank(C) 
subject to /IC - 211~ 5 r ,  

C 2 0  
C E c, 

where C E Rnxn is the optimization variable, 2 is the 
measured covariance matrix, C is a convex set denoting the 
prior information or assumptions on E, and 11 I I F  denotes 
the Frobenius norm of a matrix (other matrix noms can be 
handled as well). The constraint I/C - 511~ 5 r means that 
the error, i.e., the difference between C and the measured 
covariance in Frobenius norm, must be less than a given 
tolerance E. The constraint C 2 0 ensures that we obtain 
a valid covariance matrix. In the statistics terminology, the 
objective function, RankC corresponds to the number of 
factors that explain C. 

If C = R"'" (i.e., no prior information), this problem 
has an SVD-based analytical solution. However, extra con- 
straints such as upper and lower bounds on the entries of 
C result in a computationally hard problem. 

B. Rank of a Hankel matrix 

We saw in the previous section that the rank of a 
covariance matrix plays a central role in many statistical 
methods as a notion of complexity of the stochastic model. 
The rank of a Hankel matrix has similar significance in 
model identification problems in system theory and signal 
processing. It comes up commonly in problems that deal 
with recursive sequences, where the order of the recursion 
is expressed by the rank of an appropriate Hankel matrix. 

Problems involving minimizing the rank of a Hankel 
matrix also come up in system realization, e.g., in design- 
ing a low-order linear, time-invariant system directly from 
convex specifications on its impulse response. We discuss 
this problem is section V. 

C. Other examples 

RMPs have been studied extensively in the control 
literature, since many important problems in controller 
design and system identification can be expressed as an 
RMP. Minimum-order controller design is perhaps the 
most widely studied problem among these (sce, e.g.,[9], 
[l?]). Another problem is model order reduction in sys- 
tem identification. Other applications include reduced-order 
'H, synthesis and reduced-order p synthesis with constant 
scalings [4], problems with inertia constraints [13], exact 
reducibility of uncertain systems [ 11, and simultaneous 
stabilization of linear systems [14]. 

- 

Fig. 1: Illustration of the alternating projections method for the RMP. 

Low-rank matrix approximations are also sometimes used 
to save computational effort. As a simple example, suppose 
we want to compute y = Ax, where A E R'"'", for 
various values of x, and suppose m and n are large. This 
requires mn multiplications. If RankA = T ,  then A 
can be factored as A = RLT, where R E RmXP and 
L E RmX'. Thus, y = RLTz can be computed with only 
(m + n ) ~  multiplications. If T is much smaller than m and 
n, this could lead to significant savings in computation. The 
simplest matrix approximation problem is 

minimize Rank A 
subject to IIA - All 5 e ,  (2) 

where A is the optimization variable and r is the tolerance. 
This problem can readily be solved via SVD. However, 
often when A has a particular structure (e.g., Hankel or 
Toeplitz), A is desired to retain that structure. Such addi- 
tional constraints typically make the problem hard. 

IV. SOLUTION APPROACHES 

In this section we discuss solution approaches to the 
RMP. We list some existing approaches organized into three 
groups, and review them briefly. We then focus in detail on 
two heuristics based on convex optimization, i.e., the trace 
and Log-det heuristics. 

A.  Alternating projections method 
This method is based on the fact that the sequence of or- 

thogonal projections onto two closed, convex sets converges 
to a point in the intersection of the sets, if the intersection is 
non-empty [ I  11. If one or more of the sets are non-convex, 
convergence to the intersection is no longer guaranteed. In 
this case, we can have a situation where the sets intersect 
but the sequence of projections converges to a limit cycle, 
as depicted in figure 1. However, local convergence is still 
guaranteed and the method may be used as a heuristic. 
The altemating projections method can be applied to the 
RMF' (this is used in [2] for the low-order controller design 
problem). Wc first f i x  the desired rank T .  The goal is to 
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lind a matrix in the intersection of the following two sets, 
or determine that the intersection is empty: (i) the set of 
matrices of rank T ,  and (ii) the constraint set C. Note that 
the first set is nonconvex. Projection onto the set of matrices 
of rank T ,  i.e., finding the closest rank T matrix to the 
current iterate Xk-1, can be done by SVD. We denote the 
solution by x k .  Projection onto the constraint set c can 
be done by minimizing the distance from J i k  to the set C. 
In summary, given a desired value of rank T ,  we use the 
following algorithm to check whether there is any X E C 
such that Rank X 5 T :  

Choose XO E C. Set k = 1. 
repeat 

x k  = &U;tJT,  where Xk-1 = UCVT, 
xk = argminX,c I / x  - XkII, 
ek = IIxk - X k l l >  

until lek - ek-11 5 E .  

See [lo, chapter IO] and references therein for a detailed 
discussion of the altemating projection method and its 
variations, and their application to low-order control design. 

In general, this method is known to have slow conver- 
gence [24], although there have been recent variations that 
improve the speed [24, chapter 101. Also note that in each 
iteration, in addition to an SVD, we need to solve the 
problem of projection onto C. In some special cases, this 
projection has a simple analytical expression (see [24]). In 
these cases, we can afford a large number of iterations since 
the computation required per iteration is very low; but in 
general, each iteration involves solving a convex problem, 
e.g., a semidefinite program. 

E. Factorization, coordinate descent and linearization 
methods 

The idea behind factorization methods is that 
Rank(X) 5 T if and only if X can be factored as 
X = FGT, where F E Rmxr and G E Rnxr.  For each 
given T ,  we check if there exists a feasible X of rank 
less than or equal to T by checking if any X E C can be 
factored as above. 

The expression X = FGT i s  not convex in X ,  F ,  and G 
simultaneously, but it is convex in (X, F )  when G is fixed, 
and convex in ( X , G )  when F is fixed. Various heuristics 
can be applied to handle this non-convex equality constraint. 
We consider the following simple heuristic: Fix F and G 
one at a time and iteratively solve a convex problem at each 
step. This can be expressed as . Choose FO E RmX'. Set k = 1. 

repeat 

This is a coordinate descent method, since some variables 
(i.e., coordinates) are fixed during each minimization step. 

Another heuristic to handle the non-convex constraint 
X = FGT is to linearize this equation in F and G. 
Assuming the perturbations 6F,  6G are small enough so 
that the second order term is negligible, we get X = 
FGT + F6GT + 6FGT. This constraint can be handled 
easily since it is linear in both 6F and 6G. The method 
is useful if the initial choice for FGT is close enough to 
a rank T matrix for the small perturbations assumption to 
be valid. This method has been used in BMI problems that 
come up in low-authority controller design [12]. 

Some other heuristics, similar to the ones described 
here, have been applied to the problem of reduced order 
controller design in the control literature. This problem has 
a particular structure, allowing for different choices for the 
variables in a coordinate descent or linearization method. 
For example, the dual iteration method in [I61 and the 
successive minimization approach in [24] are coordinate 
descent methods applied to this problem, and [5] gives 
a linearization method based on a cone-complementarity 
formulation. 

C. Interior-point-based methods 

Consider a positive semidefinite RMP, i.e., a special 
case of the RMP with the extra constraint that X 2 0. 
Reference [3] proposes heuristics for this problem that 
use ideas from interior point methods for convex opti- 
mization [20]. One heuristic, called analytic anti-centering, 
is based on the properties of convex logarithmic barrier 
functions; specifically, that they grow to inlinity as the 
boundary of the feasible set is approached. Minimization of 
a log-barrier function using the Newton method produces 
a point in the interior of the feasible set, known as the 
analytic center. Now note that any rank-deficient solution to 
the positive semidefinite RMP must lie on the boundary of 
the semidefinite cone. The analytic anti-centering approach 
takes steps in the reverse Newton direction, in order to 
maximize the log-barrier function. This tends to produce 
points that are on the boundary of the feasible set, and 
hence rank deficient. Since this approach involves the 
maximization of a convex function, the solutions are not 
necessarily global optima. 

Note that in these methods the result is highly sensitive to 
the choice of the initial point. The initial point is typically 
chosen in the vicinity of the analytic center of the feasible 
region. The iterations may follow a completely different 
path to a different point on the boundary if the initial point 
is slightly changed. See reference [3] for more details and 
examples, and for the application of these methods to low- 
order control design. 

In the next section, we focus our attention on heuristics 
based on solving convex problems, and present a few useful 
properties of these methods. 
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D. Trace and Log-det heuristics 
A well-known heuristic for the RMP when the variable 

X E R"'" is positive semidefinite is to replace the rank 
objective in ( I )  with the trace of X and solve 

minimize T r X  
subject to X E C (3) 

X 2 0 .  
One way to see why this heuristic works is to note that 
Ti-X = Erzl Xi(X), where Xi(X) are the eigenvalues of 
X.Thisisthesameas IlX(X)ll1 =CY=, IXi(X)IforaPSD 
matrix where the eigenvalues are non-negative. It is known 
that to obtain a sparse vector, minimizing the el-nom of the 
vector is an effective heuristic [18], [8]. Thus, minimizing 
the t l -nom of X ( X )  renders many of the eigenvalues as 
zero, resulting in a low-rank matrix. The trace heuristic 
has been used in many applications; see for example [22], 
1231. Also see [19] for a special case where this heuristic is 
exact. Trace heuristic's popularity stems from the fact that 
problem (3) is a convex optimization problem, which can 
be solved very efficiently and reliably in practice. 

The log-det heuristic can be described as follows: rather 
than solving the RMP, use the function logdet(X + 61) 
as a smooth surrogate for RankX and instead solve the 
problem 

(4) 
minimize log det(X + 61) 
subject to X E C, 

where 6 > 0 can he interpreted as a small regularization 
constant. Note that the surrogate function logdet(X + 61) 
is not convex (in fact, it is concave). However, since it is 
smooth on the positive definite cone, it can be minimized 
(locally) using any local minimization method. We use 
iterative linearization to find a local minimum. Let X k  

denote the kth iterate of the optimization variable X .  The 
first-order Taylor series expansion of logdet(X+bI) about 
X,+ is given by 

logdet(X + 61) sz 
logdet(Xk + 61)  + n ( x k  f 61)-'(X - Xk). 

( 5 )  
Here we have used the fact that V log det X = X - ' ,  when 
X > 0. Hence, one could attempt to minimize logdet(X + 
61) over the constraint set C by iteratively minimizing the 
local linearization (5). This leads to 

Xk+l = argmin + 6 1 ) - ' ~ .  (6)  
X E C  

The new optimal point is and we have ignored the 
constants in (5) because they do not affect the minimization. 
Since the function logdet (Xf6I )  is concave in X ,  at each 
iteration its value decreases by an amount more than the 
decrease in the value of the linearized objective. Based on 
this observation, it can be shown that the sequence of the 
function values generated converges to a local minimum of 
logdet(X +U) .  

Note that the trace heuristic can be viewed as the first 
iteration in (6), starting from the initial point XI, = I .  

Therefore, we always pick X o  = I ,  so that XI is the result 
of the trace heuristic, and the iterations that follow try to 
reduce the rank of X I  further. 

I )  Generalized Trace and Log-det heuristics: The two 
heuristics given in the previous section are applicable di- 
rectly only to RMPs where the matrix variable is posi- 
tive semidefinite. However, using the following embedding 
lemma both heuristics are readily extended to handle general 
matrices. 

Lemma I :  Let X E R'""" be a given matrix. Then 
RankX 5 r if and only if there exist matrices Y = YT E 
Rmxm and 2 = ZT E Rnxn such that 

Rank Y -t Rank Z 5 2r, [ Z T  ] 2 0. (7) 
The proof is omitted here, in the interest of space and 

the tutorial nature of this paper. For the proof, see [8]. 
This result means that minimizing the rank of a general 

nonsquare matrix X ,  problem (l), is equivalent to mini- 
mizing the rank of the semidefinite, block diagonal matrix 
diag(Y, Z) :  

minimize $ Rankdiag(Y, Z) 

with variables X ,  Y and Z (we drop the constant factor 1/2 
from now on). 

Using this lemma, to have a generalized version of the 
trace heuristic we simply apply the trace heuristic to (8) 
by replacing Rank with Tr. The resulting heuristic can be 
shown [7] to be equivalent to the following problem, 

(9) 
minimize ((X(1, 
subject to X E C, 

where IlXlI. = CE;t"""'u;(X) is called the nuclear 
norm or the Ky-Fan n-norm of X ;  see, e.g., [MI. Here 
oi(X) are the singular values of X .  This n o m  is the dual 
of the spectral (or the maximum singular value) norm. The 
following theorem yields an interesting interpretation of the 
nuclear norm heuristic: in effect, this heuristic minimizes 
the conva envelope of the rank function over a bounded 
set (see [6] for the proof and more details). 

Theorem I :  On the set S = {X E Rmxn I llXll I l}, 
the convex envelope of the function d ( X )  = RankX is 

The convex envelope of f : C ---* R is defined as 
the largest convex function g such that g(z) 5 f(z) 
for all z E C (Figure 2). This means that among all 
convex functions, g is the one that is closest (pointwise) 
to f. In situations such as problem ( I )  where the objective 
function is non-convex, its convex envelope can serve as 
a tractable convex approximation that can be minimized 
efficiently. The minimum of the convex envelope can then 
serve as a lower bound on the true minimum, and the 
minimizing argument can serve as an initial point for a 

4.."(X) = IlXlI. = min{m,n) 4 X ) .  
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d") 
Fig. 2: Illusmtion of convex envelope of a function. 
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Fig. 3: The rank, trace, and log-det objectives in the scalar case. 

more complicated non-convex local search method, e.g., the 
generalized log-det heuristic that we will discuss next. 

In order to extend the log-det heuristic to the general case, 
we appeal to Lemma 1 again. Since the matrix diag(Y, 2) 
is semidefinite, the log-det heuristic (4) can be applied. This 
yields 

minimize logdet(diag(Y, Z )  + 61) 
Y X  subject to (10) 

x E c. 
Linearizing as before, we obtain the following iterations for 
solving (IO) locally: 

diag(Yk+i, zkti) = 
argminTr(diag(Yk, Zk) + c51)-' diag(Y, Z )  

Y X  subject to 

x E c, (11) 
where each iteration is an SDP in the variables X .  Y and 
n 
L.  

Figure 3 provides an intuitive interpretation for the 
heuristic. It shows the basic idea behind the T r X  and 
log det(X +U) approximations of R a n k  X. The objective 
functions for the trace and log-det heuristics are shown for 
the scalar case, i.e., when x E R and U(.) = 1x1. 

V. APPLICATION EXAMPLE: SYSTEM REALIZATION 

In this section, we discuss the problem of designing 
a low-order, discrete-time, linear time-invariant (LTI) dy- 
namical system, directly from convex specifications on the 
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Fig. 4: Step response specs (dashed) and actual step response. 
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iteration number 
Fig. 5: Log of the singular values of H ,  at each iteration 

This problem is an RMP with no analytical solution. 
Note also that the optimization variable H ,  is not positive 
semidefinite. We apply the generalized trace and log-det 
heuristics described before to this problem. Because of 
the approximate four-sample delay specification, we do not 
expect that the specifications can be met by a system of 
order less than four. 

After five iterations of the log-det heuristic, a fourth-order 
system is obtained with the step response shown in Figure 4. 
Thus, all the specifications can be met by a linear time- 
invariant system of order exactly four. In this example, we 
set 6 = lo@. Figure 5 shows the logarithm of the nonzero 
Hankel singular values. We see that the rank of the 16 x 
16 matrix H ,  drops to 5 after the first iteration, and the 
next four iterations bring the rank to 4, which in this case 

happens to be the global minimum. 
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