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Abstract. Radiation therapy is widely used in cancer treatment; however, plans necessarily
involve tradeoffs between tumor coverage and mitigating damage to healthy tissue. Al-
though current hardware can deliver custom-shaped beams from any angle around the
patient, choosing (from all possible beams) an optimal set of beams that maximizes tumor
coveragewhileminimizing collateral damage and treatment time is intractable. Furthermore,
even though planning algorithms used in practice consider highly restricted sets of candidate
beams, the time per run combined with the number of runs required to explore clinical
tradeoffs results in planning times of hours to days. We propose a suite of cluster and bound
methods that we hypothesize will (1) yield higher-quality plans by optimizing over much
(i.e., 100-fold) larger sets of candidate beams, and/or (2) reduce planning time by allowing
clinicians to search through candidate plans in real time. Ourmethods hinge on phrasing the
treatment-planning problem as a convex problem. To handle large-scale optimizations, we
form and solve compressed approximations to the full problem by clustering beams (i.e.,
columns of the dose deposition matrix used in the optimization) or voxels (rows of the
matrix). Duality theory allows us to bound the error incurredwhen applying an approximate
problem’s solution to the full problem.We observe that beam clustering and voxel clustering
both yield excellent solutions while enabling a 10- to 200-fold speedup.
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1. Introduction
1.1. Problem Description
In external beam radiation therapy, clinicians seek
treatment plans that balance the competing objectives of
maximizing tumor coverage, minimizing radiation to
nontarget tissue, and achieving short treatment times.
Treatments may be planned for delivery in several ses-
sions, or fractions, and the planning process may try to
account for uncertainties in the radiation delivery process.

In the broadest terms, for each treatment session, the
planning process takes as inputs an estimate of the
patient’s anatomy and a model of the dose delivery
physics and outputs a treatment design, or plan, con-
sisting of a trajectory in the parameter space of the beam
delivery hardware and an estimate of the resulting dose
imparted to the patient, with the goal being tomake this
design optimal with respect to the aforementioned ob-
jectives (Craft et al. 2012b).

Even for the optimistic scenarios in which the un-
certainties in patient anatomy and radiation delivery
are not considered, two major categories of problems

remain. The first is the large search space of treatment
plans, stemming from the flexibility of modern radiation
hardware in delivering shaped beams from nearly any
angle around the patient. The size of the search space is
exacerbated by the fact that for many common treat-
ment modalities, the dose delivered to a point inside the
patient is a nonconvex function of the machine param-
eters (Craft 2007). Consequently, obtaining an exact,
globally optimal solution to the planning problem over
the full reachable space of the hardware is either com-
putationally intractable or impractical within the time
constraints of the clinic.
Nearly all formulations of the planning problem use

a discrete representation of the space of hardware pa-
rameters. As part of this discretization, the machine
parameters are often not useddirectly as the optimization
variables and are instead replaced with an abstraction:
discrete radiation sources (“beams”) parameterized by
position, shape, and intensity (i.e., fluence, a product of
the dose rate and delivery duration). Approaches to
render the problem computationally tractable involve
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restricting the search space into somemanageable set of
candidate beam and addressing the problem in three
stages: (1) determining the geometric setup of candi-
date beams, (2) optimizing intensity profiles for each
candidate beamwith respect to some clinical objectives,
and (3) generating a sequence of hardware parameters
that (approximately) delivers the optimized intensities
from the specified locations. Because candidate beams
are an abstraction, the exact sense depends on the radi-
ation type (e.g., electron, photon, or proton) and delivery
modality under consideration [e.g., intensity-modulated
radiation therapy (IMRT), volumetric-modulated
arc therapy (VMAT), or tomotherapy]. Concrete ex-
amples include an IMRT field, which can be further
subdivided into beamlets for fluence map optimi-
zation (FMO); a single beamlet from such a fluence
map; a VMAT aperture, the geometric setup of which
may have been obtained by refining the solution to
a FMO problem, as per the method described in
Craft et al. (2012b); and a pencil beam in intensity-
modulated proton therapy (IMPT).

The three stages of planning can be performed se-
quentially or jointly, depending on the choice of math-
ematical formulation. For instance, an intensity optimi-
zation problem nominally targeted at the second stage
can include constraints that enforce (or regularization
terms that promote) machine deliverability, thereby
easing the sequencing step. As another example, an
objective that promotes sparsity in beam intensities can
be used to jointly optimize intensities and select sources
from a given set of candidate beams.

The large body of work on planning algorithms spans
both convex formulations, such as fluence map opti-
mization problems used in IMRT planning (Romeijn
et al. 2003, Aleman et al. 2010), which are paired with
a set of small mixed integer programs to decompose
fluence maps into deliverable apertures (Baatar et al.
2009, Ernst et al. 2009), and nonconvex formulations,
such as direct machine parameter optimization used for
VMAT planning (Peng et al. 2012) or robust optimiza-
tion of beam angles and intensities (Bertsimas et al.
2010). However, all of these methods involve some-
what arbitrary choices of parameters (such as plan
isocenters, beam positions, or arc angles) that have a
major impact on plan quality and generally constitute
significant restrictions of the search space of candidate
beams (Dong et al. 2013a, Li and Xing 2013, Li et al. 2014,
Zarepisheh et al. 2014a).

In addition to the problem of trying to optimally utilize
the delivery hardware, a second source of major clinical
and computational challenges is the inherent multi-
objective nature of the treatment planning problem. Cli-
nicians must balance several clinical objectives—typically
at least one per anatomical structure in the plan, so at
least 10–20 objectives for most planning cases. Finding
an acceptable plan often involves significant time spent

generating and comparing plans optimal for different
objective tradeoffs, which can be interpreted as populating
and navigating a Pareto surface for a multiobjective op-
timization problem (Craft and Bortfeld 2008, Küfer et al.
2009, Chan et al. 2014).
In this paper, we address large-scale intensity opti-

mization problems in which we assume the geometric
configuration of the candidate beams to be given. The
methods we present do not depend on the radiation
physics or treatment modality; they apply directly to
beamlet and aperture intensity optimization problems
and can therefore be used as is in IMRT or IMPT
planning or to accelerate more complex planning al-
gorithms that involve an intensity optimization phase.
In tandemwith a voxel-separable convex formulation

that allows the use of state-of-the-art distributed opti-
mization methods, we propose cluster and bound
methods that allow an intensity optimization problem of
a given size to be approximated by one 20–100 times
smaller. These methods allow for a dramatic reduction
in the per-solve computational cost, which serves two
primary goals. The first is to enable plans to be optimized
over much larger sets of candidate beams in reasonable
time. The second is to allow (for modestly sized prob-
lems) plans to be generated in hundredths to tenths of a
second, which would enable clinicians to navigate clin-
ical tradeoffs in real time, or for a library with several
hundredor a few thousandPareto-optimal plans (or nearly
optimal plans) to be populated in a matter of minutes.
We find that the clustered problems generate solu-

tions that are close to those of their corresponding full
problems; however, because comparisons against true
optima cannot be performed in practice, we use lower
bounds obtained from the dual of the treatment plan-
ning problem to bound the maximum suboptimality
of plans generated through clustered approximations.

1.2. Outline
This paper is structured as follows. In Section 1.3, we
examine previous work related to solving large-scale
intensity optimization problems in treatment planning.
In Section 2, we introduce the class of convex treatment
planning problems compatiblewith themethods detailed
in this work, as well as their associated dual problems. In
Section 3,wedescribe two approximationmethods, voxel
clustering and voxel collapse, that form relaxations of the
planning problem at dramatically decreased computa-
tional cost. We further present optimality bounds for
plans generated by these approximation methods. In
Section 4, we describe an approximationmethod, column
clustering, that allows a restriction of the planning
problem to be solved at significantly lower computa-
tional cost and a paired method for generating opti-
mality bounds on plans generated in this fashion. In
Section 5, we present examples using these methods,
including a fluence map optimization of a prostate
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IMRT case and an aperture reweighting of a head and
neck VMAT case.

1.3. Related Work
1.3.1. Convex Programming in Treatment Planning.
Nonconvexity in treatment planning can arise from
the use of certain clinical objectives or phrasing the
problem in terms of machine parameters (specifically,
leaflet positions of a multileaf collimator as detailed
by Küfer et al. 2009) instead of optimizing over the
intensities of predetermined apertures or beamlets,
or using integer decision variables to select candidate
beams. To work around these challenges, a column-
generation approach that alternates between solving an
aperture intensity optimization problem and another
convex pricing problem to incorporate new candidate
apertures was developed (Peng et al. 2012, Zarepisheh
et al. 2014a).

The efforts in beam angle optimization (Zhang et al.
1999, Craft 2007, Lim et al. 2007, Aleman et al. 2008,
Ahmed et al. 2010), nonuniform arc therapy (Li and
Xing 2013, Zarepisheh et al. 2014a), noncoplanar
planning (Dong et al. 2013a, b), and optimized isocenter
selection (Li et al. 2014) all highlight the limitations to
plan quality incurred by conventional methods that only
consider restrictions of the planning space to a small
number of intensity-modulated fields or to apertures
distributed uniformly along coplanar arcs withmanually
chosen orientations and isocenters. In other words,
conventional IMRT and uniformly sampled coplanar
VMAT planning methods suffer from undersampling
the treatment hardware’s search space. The results from
these studies reinforce the potential value ofmethods that
can optimize intensities ofmanymorefields or apertures.

While some clinical objectives, such as the dose volume
constraints widely used as metrics in plan evaluation,
are neither separable nor convex in the optimization
variables, Romeijn et al. (2003) and Kessler et al. (2005)
propose that good convex approximations exist for all
clinically interesting objectives; furthermore, many of
these take on the simple form of fully separable piecewise
linear functions. We follow a strongly related approach
in which we restrict our formulation to consider fully
separable convex functions.

In Parikh and Boyd (2014), the authors describe how
intensity optimization problems in treatment planning
can be phrased as graph form problems so as to benefit
from highly parallel optimization algorithms; the freely
available open-source Proximal Operator Graph Solver
(POGS) that implements graph form Alternating Di-
rection Method of Multipliers (ADMM), which we use
in this work, is described in Fougner and Boyd (2015).

1.3.2. Planning Tradeoff Navigation. Besides the per-
solve cost, much of the computational burden in plan-
ning comes from the need to iterate throughmany plans

that correspond to different tradeoffs between the
multiple clinical objectives. Formulating a planning
problem with convex objectives and constraints ensures
that the set of achievable plans will be convex, which
simplifies the task of finding Pareto-optimal plans that
lie on the boundary of this set; by contrast, when the set
of achievable plans is nonconvex, there may be Pareto-
optimal plans that are not attainable by scalarization
methods commonly used in multiobjective optimi-
zation (Boyd and Vandenberghe 2004). Nevertheless,
even when it is straightforward to find an optimal plan
for a given clinical preference, the task of solvingmultiple
optimization problems remains, because tradeoffs be-
tween optimal plans can only be resolved by the plan-
ner’s clinical judgment.
Major research efforts in this area includemulticriterion

optimization (MCO) approaches that generate libraries of
optimal points along the Pareto surface and methods to
approximate this surface (Craft et al. 2006; Chen et al. 2010;
Siem et al. 2011; Craft 2012a, b; Bokrantz and Forsgren
2013; Rennen et al. 2013), approximation of the Pareto
surface, automated planning and Pareto surface navi-
gation (Li et al. 2013, Zarepisheh et al. 2014b), and
statistical learning (from previously planned cases) of
clinical preferences and anatomically driven predictions
of feasible designs, or even favorable beam directions
(Pugachev and Xing 2002, Appenzoller et al. 2012, Lee
et al. 2013, Moore et al. 2014, Boutilier et al. 2016).
Another approach discussed by Otto (2014) is to

solve for or estimate feasible dose distributions at rates
upwards of 20 times a second, allowing for real-time
navigation of the clinical tradeoffs.

1.3.3. Voxel Clustering. Reducing the dose grid reso-
lution is commonly done to lower the cost of dose
calculations and plan optimization, but studies such as
Scherrer et al. (2005) and Martin et al. (2007) have
demonstrated that random voxel sampling (which, in
expectation, approaches the voxel clustering problem)
or adaptive hierarchical clustering methods can lead to
dramatic reductions in computational cost with clini-
cally acceptable approximation error.
Such approximation methods provide one way to

address the challenges discussed in Sections 1.3.1 and
1.3.2: reducing per-plan solve time allows clinicians to
explore a greater number of clinical tradeoffs, or sample
a greater portion of the delivery hardware’s reachable
space, while keeping total planning time fixed.

1.3.4. Beam Clustering. We propose to efficiently op-
timize over large numbers of beams by clustering them
based on their numerical similarity. Related techniques
(that avoid the overhead associated with the clustering
calculation) include optimizing over subsets of a pool of
available beams, as in the column generation approach
formulated by Peng et al. (2012). Lu et al. (2008) take
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a similar approach of doing some intensive computation
up-front in order to estimate the principal components
spanning the space of clinically relevant tradeoffs. In
Banger and Oelfke (2010), the authors score effects of
beams on each voxel and cluster themby score vectors to
optimize beam angle choices, while optimal intensities
of beams and interbeam similarities are used to cluster
and select beam angles in Lim et al. (2009).

Both the beam and voxel clustering approaches are
special cases of nonnegative matrix factorization
(NNMF); the broader class of NNMF algorithms could
be pertinent here because they would preserve the
physical sense of the entries of the dose matrix. See, for
example, Udell et al. (2016) for a detailed discussion of
a broad class of low rank approximation methods or
Tropp (2004) for random matrix algorithms used for
dimensionality reduction in optimization.

2. Convex Treatment Planning
2.1. Formulation
For a case with m voxels inside a patient volume and
n candidate treatment beams, we consider the class of
inverse treatment planning problems of the form

minimize f (y)
subject to y ! Ax, x≥ 0, (1)

where the vectors of voxel doses, y ∈Rm, and beam
intensities, x∈Rn, are the optimization variables and
A ∈Rm×n is a case-specific dose deposition matrix with
nonnegative entries. (In the treatment planning liter-
ature, this matrix is also termed the “dose influence
matrix” or “dose information matrix.”)

The constraint y ! Ax expresses the physical re-
lationship between beam intensities and delivered dose.
The (element-wise) inequality constraint on x corresponds
to the fact that it is physically impossible to deliver beams
of negative intensity. The function f :Rm →R is assumed
to be convex, and is constructed to penalize voxel doses
according to clinical objectives.

Any desired treatment plan can be characterized (at
least partially) by a vector of nonnegative doses d ∈Rm

+
prescribed to each voxel. Convex objectives used in the
literature typically penalize the deviation of the calcu-
lated dose y from the prescribed dose d, or calculate a
penalty on y in relation to some dose statistics. Common
examples include one-sided and piecewise-quadratic
penalties, piecewise-linear penalties, and conditional
value at risk penalties; we refer the reader to Romeijn
et al. (2003) and Kessler et al. (2005) for comprehensive
surveys of objective functions in treatment planning.

In this work we consider the case of a fully separable
objective given by

f (y) !
∑m

i!1
wi fi (yi),

where each fi :R→R is a convex function parame-
trized by a target dose di and wi > 0 is a nonnegative
weight. We take di ! 0 for indices i corresponding to
nontarget voxels and di > 0 according to a clinical pre-
scription for target voxels.
The m voxels of the treatment plan are grouped into

N delineated structures, such as the planning target
volume (PTV), various sensitive structures termed
organs at risk (OARs), and unlabeled tissue. We as-
sume that each voxel index i is assigned uniquely to
a set Ss such that ⋃ N

s!1Ss covers all voxel indices and
Ss ⋂ Ss′ ! ∅ for s≠ s′. Structures can be prioritized to
resolve the identity of voxels assigned to multiple
structures during the clinical contouring process. We
choose our voxel penalties to be uniform within struc-
tures: for each structure index swehave di ! di′ ,wi ! wi′ ,
and fi ! fi′ for i, i′ ∈ Ss.

2.1.1. Optimality. We denote the optimal value of (1) as
p⋆. Any point (x, y) for which y ! Ax and x≥ 0 hold is
said to be feasible. If we further have that f (y) ! p⋆,
then the point is optimal. We can express the sub-
optimality of any feasible point (x, y) as

f (y) − p⋆

f (y) .

Because the objective f is a weighted sum of objec-
tives concerning each structure, the problem (1) can be
interpreted as a linear scalarization of a multiobjective
optimization; the particular scalarization is given by
the choice of weights w as described above. Each choice
of w represents a different tradeoff between the struc-
ture objectives, and solving (1) for thatw yields a Pareto-
optimal treatment plan for different clinical tradeoffs.

2.2. Dual Problem
We now derive the dual to our treatment planning
problem. The Lagrangian of the problem (1) is given by

L(x, y, ν,λ) ! f (y) + νT (y − Ax) − λTx,

with ν∈Rm as the dual variable associated with the
constraint y ! Ax, and λ∈Rn

+ as the nonnegative dual
variable associated with the inequality constraint x≥ 0.
The dual objective is defined as g(ν,λ) ! inf

x,y
L(x, y, ν,λ).

Applying this definition, we obtain the dual problem

maximize − f ∗(ν)
subject to ATν≥ 0,

(2)

where f ∗ is the convex conjugate of f . This formulation
implicitly carries the constraint ν ∈dom ( f ∗).

2.2.1. Dual Optimality and Suboptimality Bounds. We
denote the optimal value of (2) as d⋆, and we have d⋆ !
p⋆ when strong duality holds. (This condition holds for
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all the examples of clinically relevant convex objectives
discussed in Section 2.1.) Any ν∈dom ( f ∗) for which
the constraint ATν≥ 0 hold is said to be dual feasi-
ble and

−f ∗(ν)≤ p⋆,

for all dual feasible ν. Consequently, for some feasible
pair of variables (x, y), given any dual feasible ν, −f ∗(ν)
is a lower bound on p⋆ and when −f ∗(ν) is nonnegative
we can certify that the suboptimality of (x, y) as a so-
lution to (1) is at most

f (y) − p⋆

f (y) ≤ f (y) + f ∗(ν)
f (y) . (3)

2.3. Example Objective Function
The techniques presented in this work are applicable to
any fully separable convex objective f (y) ! ∑

wi fi (yi),
and the exposition throughout the sequel is developed
for this general class except where noted otherwise.
Here, we introduce a specific objective function that
we later use in our numerical experiments, and restate
the primal and dual problems for this choice of ob-
jective. Specifically, we let fi be the piecewise-linear
function

fi (yi) !
w−

i
wi

(yi − di)− +
w+

i
wi

(yi − di)+,

where the scalar operation ( · )+ is shorthand formax(0, · )
and similarly ( · )− is shorthand for −min(0, · ). This voxel
objective imposes linear penalties on both underdose
and overdose to the ith voxel, and we have introduced
positive parameters w−

i and w+
i to represent the relative

weights of the underdose and overdose terms.
The product wi fi (yi) can also be written as

wi fi (yi) ! bi |yi − di | + ciyi + ei,

where bi ! (w+
i +w−

i )/2, ci ! (w+
i −w−

i )/2, and ei !−cidi.
Summing the weighted objective contributions and
applying the constraints from (1) yields the following
intensity optimization problem:

minimize
∑m

i!1
bi |yi − di | + ciyi + ei

subject to y ! Ax, x≥ 0. (4)

This choice of f yields the dual problem

maximize − dTν
subject to ATν≥ 0, |ν − c| ≤ b,

(5)

where the absolute value and inequalities are under-
stood to hold elementwise.

We note (for later reference) that the choice of di ! 0
for nontarget voxels, in conjunction with the use of
piecewise linear objectives and the constraint x≥ 0,

implies that we can equivalently use a linear objective
for nontarget voxels—that is, wi fi (yi) ! wiyi. We fur-
ther note the incidental and possibly beneficial prop-
erty that this penalty promotes sparsity in nontarget
voxel doses and, by the relationship y ! Ax, sparsity in
the beam intensities.

2.4. Large-Scale Treatment Planning
Because solving (1) alone is sufficient to produce a
treatment plan, we now explain the value of the dual
problem (2) and the suboptimality bound (3) in large-
scale treatment planning. Suppose we have a treatment
planning problem that, despite the use of modern
hardware and the fastest available optimizationmethods,
is too large to be solved in a clinically acceptable time-
frame—for example, a plan in which we consider tens of
thousands of candidate beams and a dose grid of
several hundred thousand voxels. Although we can
write an optimization of the form (1) to represent our
problem, we cannot solve that exact problem in the
available time.
However, we may instead choose to solve smaller,

computationally tractable approximations to this prob-
lem that can still be phrased in the form given by (1).
In Sections 3 and 4, we will discuss two methods for
generating such approximations. When we solve an
optimization problem, we get both a primal optimal
and a dual optimal point. Thus, upon solving one of
our proposed approximations, we obtain a solution
(x̃⋆, ỹ⋆, ν̃⋆) (optimal for that reduced problem), from
which we can construct a solution (x̂, ŷ, ν̂) that is feasible
for the large-scale problem. By virtue of being primal
feasible, this solution will be physically achievable; by
virtue of being dual feasible, we can use (3) to mathe-
matically guarantee a maximum suboptimality for this
solution with respect to the large-scale problem. In
other words, if the suboptimality bound is P%, we can
guarantee that the treatment plan obtained by solving
the reduced problem is at most P%worse than the best
achievable plan for the full problem—without ever
paying the full computational cost of solving the large-
scale problem.

3. Voxel Clustering
3.1. Formulation
We consider approximations to the dose-deposition
matrix A obtained by clustering voxels (i.e., clustering
rows of the matrix). The approximate dose-deposition
matrix Avclu can be written as the product of an up-
sampling matrix U ∈Rm×k and a voxel-clustered ma-
trix A5 ∈Rk×n,

Avclu ! UA5 ≈ A.

From the above equation, we can see that voxel clus-
tering is a special case of approximate matrix factor-
ization. In particular, we have that A5 represents in k
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rows (or voxel clusters) an approximation of the in-
formation contained in the m rows (or voxels) of A,
whereas U maps each cluster to its associated voxels.
The entries of U are given as

Uiκ ! 1, voxel i assigned to cluster κ
0, otherwise,

{

implying that U contains exactly one nonzero entry
per row. For each cluster κ, the corresponding set Cκ !
{i |voxel i∈ cluster κ} contains the indices of the voxels
assigned to that cluster.

For a given set of voxel-to-cluster assignments given
by U, if we choose to represent the rows assigned to
each cluster by their mean, the explicit formula to
construct clustered matrix A5 is

A5 ! (UTU)−1UA.

We define a vector ω ! UT1 ! diag(UTU) whose en-
tries give the number of voxels assigned to each
cluster—that is, ωκ ! |Cκ |. To avoid ambiguities re-
garding the mapping of the voxel clusters to structures,
we restrict each cluster to contain only voxels from the
same planning structure.

We canwrite an approximation of our full problem (1)
as a smaller problem defined in terms of our clustered
matrix A5,

minimize
∑k

κ!1
w̃κ fκ (yκ)

subject to y5 ! A5x5, x5 ≥ 0,
(6)

with optimization variables x5 ∈Rn, y5 ∈Rk, weight
vector w̃ ∈Rk, and (implicitly) prescription d̃∈Rk. The
entries of d̃ are given by d̃κ ! di for voxel i in cluster κ,
which is uniquely defined for the reasons that di ! di′ !
ds for i, i′ ∈ Ss and that, by choice, the clustering respects
structure boundaries. Similarly, we have fκ ! fi and we
choose w̃κ such that w̃κ ! |Cκ |wi ! |Cκ |ws for voxel i in
cluster κ and structure s. Under these definitions, if
UA5 ! A holds exactly, then the problems (1) and (6)
are equivalent. Otherwise, by Jensen’s inequality, for
any x≥ 0 we have

∑k

κ!1
w̃κ fκ (yκ) !

∑k

κ!1
ws |Cκ | fκ

1
|Cκ |

∑

i∈Cκ

ãTi x

( )

≤
∑k

κ!1
ws

∑

i∈Cκ

fκ(ãTi x) !
∑m

i!1
wi fi (yi),

where ãi ∈Rn is the ith row of A. This shows that (6)
is a relaxation of (1).

Solving the reduced problem (6) instead of (1) will
produce a feasible, but not necessarily optimal, vector
of beam intensities x. However, by choosing k≪m
we make the voxel-clustered planning problem much
smaller than the original, and obtain a commensurate
reduction in planning time.

3.2. Bounding Procedure
Given a primal optimal point (x⋆5, y⋆5) for which the
voxel-clustered problem attains its optimal value p⋆5,
we seek upper and lower bounds on p⋆. To obtain an
upper bound, we set x̂ ! x⋆5. Because x⋆5 ≥ 0, x̂ is fea-
sible for (1). We define ŷ ! Ax⋆5, and an upper bound
is given simply by

pub ! f ( ŷ) !
∑m

i!1
wi fi( ŷi)≥ p⋆.

To obtain a lower bound, it is sufficient to recall that (6)
is a relaxation of (1); hence,

plb ! p⋆5 ≤ p⋆.

We can therefore guarantee the suboptimality of the
solution given by (x̂, ŷ) to be bounded by the expression

f (ŷ) − p⋆5
f ( ŷ) . (7)

3.3. Voxel Collapse for Nontarget Structures
We present a special case of voxel clustering that ap-
plies to choices of f that impose linear penalties on
nontarget voxels, as it provides an opportunity for
significant computational savings.
For the piecewise linear objective used in (4) and our

choice of prescribed dose di ! 0 for nontarget voxels,
as noted in Section 2.3, the objective contribution of non-
target voxels is simply the linear term wiyi. Because wi !
wi′ ! ws for i, i′ ∈ Ss, with trivial rearrangement, the ob-
jective contribution of nontarget structure s can be written
as a linear function of ȳs, the mean dose to that structure:

∑

i∈Ss
wiyi ! ws

∑

i∈Ss
yi ! ws |Ss |ȳs.

Let As ∈R|Ss |×n be the submatrix formed by gathering
the rows ãi of A corresponding to voxels in structure s.
If we denote as ās the average of the rows ofAs, we have
1TAs ! |Ss |ās. For a given x, the product āTs x ! ȳs is
simply the mean dose on structure s for a given x. Thus,
letting 7 be the set of target structures, 1 be the set of
nontarget structures, and Atarget ∈Rmt×n and ytarget ∈Rmt

be the submatrix of A and subvector of y formed by
gathering all target voxel rows, respectively, the prob-
lem (4) can be written as the smaller problem,

minimize
∑

s∈7

∑

i∈Ss
(bs |yi − ds | + csyi − es) +

∑

s∈1
ws |Ss |ȳs

subject to ytarget ! Atargetx,
ȳs ! āTs x, s∈1

with no approximation involved. (Here, we have also
applied the definitions bi ! bs, ci ! cs, and ei ! es.) This
substitution is effectively an |Ss | : 1 voxel clustering for
each nontarget structure s, and it reduces the prob-
lem dimension from Rm× n to R(mt + |1|)× n, where mt !∑

s∈7 |Ss | is the total number of target voxels and |1| is
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the number of nontarget structures. Of course, most
cases have many more target voxels than nontarget
structures, so mt ≫ |1| usually holds, so we expect a
speed-up in solve times that is proportional to m/mt
while yielding the exact solution.

When using the piecewise linear objective specified
in (4), to minimize approximation error while maxi-
mizing computational speed-up, voxel clustering should
be used for target structures, whereas voxel collapse
should be applied to nontarget structures.

3.4. Clustering Procedure
In Section 3.1, the cluster assignments represented by
the matrix U were assumed to be given, and we un-
derstood UA5 ≈ A to hold without specifying the
sense in which the productUA5 was to approximate A.

Several decisions are involved in the clustering
process, most notably: a rule for generating cluster as-
signments, given a set of vectors; a rule for computing
a prototype vector to represent each cluster; and an
algorithm (typically a heuristic) that carries out the two
rules. For instance, the well-known k-means clustering
seeks to partition m vectors into k clusters, where each
cluster is associated with a centroid defined as the mean
of its assigned vectors, and each vector is assigned to
the cluster that has the centroid that is nearest in the
ℓ2-norm. (In other words, we seek U and A5 that
minimize |A −UA5 |

2
2, subject to the constraint that each

row of U must contain exactly one nonzero entry with
value 1.) The problem is nondeterministic polynomial
time-hard and sensitive to the initial choice of centroids;
and a commonly used heuristic is Lloyd’s algorithm,
which can be summarized as the following algorithm:

Algorithm 3.1 (Lloyd’s Algorithm for k-Means (Lloyd 1982))
given points pi ∈Rr, i ! 1, . . . , q, cluster number k,

uninitialized centroids cκ ∈Rq,κ ! 1, . . . , k, and point
to cluster assignments represented as a vector u ∈Zm,
with ui ! κ if point i assigned to cluster κ.

repeat
1. Calculate centroids.

repeat
cκ ! ∑m

i
ai · (ui ! k)/∑

q

i
(ui ! k)

for κ ! 1, . . . , k
2. Update assignments.

repeat
ui ! argmin

κ
|pi − cκ |22

for i ! 1, . . . , q
until assignments stable or an iteration limit is

reached
return assignments u, centroids {c1, . . . , ck}.
For a thorough treatment of many popular and rele-

vant clustering methods, a comparison of their strengths
and drawbacks, as well as of their computational
complexities, we refer the reader to the reviews Jain et al.
(1999) and Xu and Wunsch (2005, 2010).

The clustering method used may generate cluster
assignments, given by U, and cluster prototypes, given
by A5, jointly. Alternatively, the method may simply
provide cluster assignments (such as grouping voxels in
regularly sized clusters based on geometric adjacency)
which may be used to construct the rows of A5. In this
work, we set A5 ! (UTU)−1UTA, which corresponds to
averaging the elements in each cluster, as stated in
Section 3.1. Given the cluster assignments encoded in
U, however, one could equally well calculate the mean,
median, or any convex combination of the clustered el-
ements. In particular, choosing a single element to rep-
resent the cluster is strongly related to work on random
sampling and importance sampling, both of which have
been studied in the context of dimensionality reduction
for radiation treatment planning (Martin et al. 2007).
Although the choice of clustering method (and its

parameters and initialization) likely influences the
quality of the approximate solutions obtained by solv-
ing (6), the choice of objective function f is also likely to
play a large role.We leave the interesting—and possibly
complicated—interplay between clustering methods
and objective functions as a topic for future investiga-
tion; the focus of the present work is onmethods to form
and solve approximate planning problems given a
clustered approximation to the dose matrix, as well
methods to obtain case-, objective-, and approximation-
specific optimality bounds.
In this work, we elect to use k-means clustering

applied block-wise to each anatomical structure and
implement a vectorized version of Lloyd’s algorithm
(Algorithm 3.2):
Algorithm 3.2 (Vectorized k-Means)

given data matrix P ∈Rq×r, cluster number k< q,
uninitialized centroid matrix C∈Rk×r, unin-
itialized distance matrix D ∈Rq×k, and initialized
point to cluster assignments represented as
a matrix U ∈ {0, 1}m×k, with uiκ ! 1 if point i
assigned to cluster κ, and 0 otherwise.

repeat
1. Calculate centroids. C ! (UTU)−1UTP
2. Update assignments.

D ! −2PCT + 1diag(CTC)T

uiκ !
1 κ ! argmin

κ′
{diκ′}

0 otherwise
,

{

i ! 1, . . .q,
κ ! 1, . . . , k

until assignments stable or an iteration limit is
reached

return assignments U, centroids C.
(Note the modification to Lloyd’s algorithm implied

by the update rule for D: Because the cluster assign-
ment for each i is determined by choosing the κ that
minimizes |pi − cκ |22, the contribution made to distance
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diκ by term pTi pi can be neglected without changing the
minimizer.) When clustering the dose matrix by rows
(voxel clustering), we use p ! m, q ! n, P ! A, choose k
to be appreciably smaller thanm, and the centroid matrix
C then corresponds to the matrix A5 introduced above.
To perform voxel clustering by structure, we make the
substitution P ! As ∈Rms×n for each structure-specific
submatrix As and choose a proportionally smaller k
(e.g., ks ! k ·ms/m). The centroid matrices Cs returned for
each structure swould then be vertically concatenated to
form A5. In order to cluster the dose matrix by columns
(beam clustering), we substitute p ! n, q ! m, P ! AT,
and choose k to be appreciably smaller than n.

4. Beam Clustering
4.1. Formulation
We turn to subproblems formed by clustering columns
(i.e., beams, beamlets, or apertures) of our full dose
deposition matrixA. The approximate dose matrixAbclu

can be written as the product of a column-clustered
matrix A# ∈Rm×k, and an upsampling matrix V ∈Rn×k,

Abclu ! A#VT ≈ A.

As with the upsampling matrix U defined in (3), the
entries of matrix V are given as

Vjκ ! 1 beam j assigned to cluster κ
0 otherwise.

{

Then, for a given set of beam-to-cluster assignments
given byV, a clusteredmatrixA# can be constructed as:

A# ! AV(VTV)−1.
We can write an approximation of (1) as a smaller
problem in terms of our clustered matrix A#,

minimize
∑m

i!1
wifi

(
y#i

)

subject to y# ! A#x#, x# ≥ 0,
(8)

with optimization variables x# ∈Rk, y# ∈Rm. Here, the
functions fi, their prescription parameters di, and the
weights wi are the same as those used in (1). Solving (8)
is equivalent to solving (1) with the added constraints

xj ! xj′ , j, j′ ∈Cκ, κ ! 1, . . . , k,

that is, the added condition that beam intensities must be
equal for beams assigned to the same cluster. From
this, it is clear that (8) is a restriction of (1). We label the
optimal value of (8) as p⋆#, and its dual problem has
the form

maximize − f ∗(ν#)
subject to AT

#ν# ≥ 0, (9)

for the dual variable ν# ∈dom ( f ∗)⊆Rm. Because this is
a dual of a restriction of the full primal problem, it is
a relaxation of the full dual problem.

4.2. Bounding Procedure
Given a solution (x⋆#, y⋆#, ν⋆#) for which the column-
clustered problem attains its optimal value p⋆#, we seek
upper and lower bounds on p⋆.
Because we have x⋆# ≥ 0, choosing x̂ ! V(VTV)−1x⋆#

and ŷ ! Ax̂ ! A#x⋆# yields a pair of variables (x̂, ŷ) that
are feasible for (1). (This choice can be interpreted as
evenly distributing the optimal intensity x⋆#κ assigned
to beam cluster κ among its constituent beams.) Thus,
an upper bound to the value of (1) is given by

pub! f (ŷ) ! p⋆#.

To obtain a lower bound, we seek a ν̂ that is dual
feasible for (2). Because ν⋆# is dual feasible for (9), we
have AT

#ν
⋆
# ! (VTV)−1VTATν⋆# ≥ 0, but not necessarily

ATν⋆# ≥ 0. To obtain a feasible ν̂ at reasonable compu-
tational cost, we propose solving a problem that takes
advantage of our infeasible estimate ν⋆#.
Let ν(0) ! ν⋆#. Because the entries of A are non-

negative, we have ATδ≥ 0 for any δ≥ 0 and AT(ν (0) + δ)
≥ 0 for δ sufficiently large. We seek the smallest such
δ [in the sense that |− f ∗(δ)| is small] that we can add to
the optimal solution of (9) to make it feasible on (2). In
other words, we desire the solution to

maximize −f ∗(ν(0) + δ)
subject to AT(ν(0) + δ)≥ 0, δ≥ 0, ν(0) + δ∈dom ( f ∗).
However, because this problem has the same dimension
as the full planning problem, we propose to solve one or
more problems that do not exceed the dimension (i.e.,
m× k) or complexity of the clustered problem.
Let ( ! {aj | aTj ν(0) < 0} be the subset of the columns

aj ofA that are associatedwith infeasible dual constraints.
If |(| exceeds the clustered dimension k, we form amatrix
Â(1)

# ∈Rm×k from the top k columns with the largest
margins of violation—that is, the k columns aj with the
most negative values of aTj ν(0). We then solve the problem

maximize −f ∗(ν(0) + δ)
subject to Â(1)T

# (ν(0) + δ)≥ 0, δ≥ 0,
ν(0) + δ ∈dom ( f ∗), (10)

and ignore the remaining columns of A because it is
guaranteed by the nonnegativity of δ that any feasible
entries of ATν(0) will only become feasible with greater
margin upon the addition of δ.
In other words, we take a greedy approach to esti-

mating the k columns aj for which the constraints
aTj ν≥ 0 are the most restrictive, in the hopes of solving
a problem (of the same size and cost as the clustered
problem) whose solution will satisfy aTj′ν≥ 0 for all n
constraints. Of course, when |(| ≤ k, solving (10) sat-
isfies all remaining constraints directly.
We check whether the optimal δ⋆(1) produced by (10)

satisfies AT(ν(0) + δ⋆(1))≥ 0. If this constraint holds, our
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task is complete. If the constraint fails to hold, we set
ν(t) ! ν(t−1) + δ⋆(t) and repeat the above procedure. We
do this for T such iterations, until

AT
(
ν(0) +

∑T

t!1
δ⋆(t)

)
≥ 0,

holds. At this point, we take ν̂ ! ν(0) +∑T
t!1δ

⋆(t) to be
our feasible dual variable, and the corresponding lower
bound is given by

plb ! −f ∗
(
ν(0) +

∑T

t!1
δ⋆(t)

)
.

Because we require δ nonnegative in each subproblem,
we are guaranteed to reduce the number of infeasible
constraints by at least k on each solve t. In theory, the
number T of subproblems we are required to solve to
obtain a feasible ν̂ could approach n/k; in practice, we
find that a single subproblem is sufficient. We sum-
marize the full procedure in Algorithm 4.1.

Algorithm 4.1 (Beam Clustering Lower Bound)
given an initial point ν⋆# optimal for (9).
ν(0) ≔ ν⋆#.
t≔ 1.
repeat

1. Fix dimension. Form ( ! {aj | aTj ν(t−1) < 0}. Then,
k(t) ≔min(k, |(|).
2. Approximate. repeat

âκ ! argmin{aTj ν(t−1) | aj ∈(}
(≔(\{âκ}

for κ ! 1, . . . , k(t).
3. Solve. Set the value of δ⋆(t) to a solution of the
convex problem

minimize
δ

f ∗(ν(t) + δ)
subject to Â(t)T

# (ν(t−1) + δ)≥ 0.
4. Update dual variable. ν(t) ≔ ν(t−1) + δ⋆(t).
5. Update iteration. t≔ t + 1.

until ATν(t) ≥ 0.
return lower bound −f ∗(ν(t)).

5. Examples
5.1. Voxel Collapse
The submatrices of A corresponding to nontarget
structures were averaged to form Acollapsed, defined as

Acollapsed ! Atarget
Anon−target collapsed

[ ]
!

Atarget

(1/|S1 |)1TAs1
⋮

(1/|SN |)1TAsN




,

where |St | is the number of voxels in structure st.

5.1.1. Small Problem Instance. A 268,228-voxel, 360-
aperture VMAT head and neck case was used for
reoptimization of the aperture intensities. The plan
comprised three target regions: the PTV, treated to 66

Gray; a second lesion treated to 60 Gray; and lymph
nodes also treated to 60Gray. The plan also contained 14
other structures, including the brain, brain stem, spinal
cord, optic nerve, optic chiasm, cochlea, and parotid
gland. Unlabeled tissue was also included in the
objective.
The optimization was formulated to solve (4) using

the piecewise linear objectives introduced in Section 2.3.
We have found that a good default setting for objective
weights is to set the underdosing penalty to w−

i ! 1 and
overdosing penalty to w+

i ! 1/20 for target structures.
We set wi ! 1/30 for nontarget structures. We sub-
sequently normalize all weights by the number of voxels
in its corresponding structure. Unless mentioned oth-
erwise, we use these weights by default throughout our
experiments. For this and all other examples, we graded
the resulting doses to each structure against Quantita-
tive Analyses of Normal Tissues Effects in the Clinic
(QUANTEC) reference guidelines (Bentzen et al. 2010)
as a first cut for obtaining clinically reasonable plans.
For this problem instance, we modified the default

weights for the spinal cord (wi ! 1.2), spinal canal
(wi ! 1.3), and brainstem (wi ! 3.5), as well as the
overdosing penalty for the primary target (w+

i ! 0.9) to
meet QUANTEC guidelines.
We then compressed the dose matrix for this case in

a lossless manner (relative to the choice of piecewise
linear objective), yielding a dose matrix of 11,253 voxels
and 360 apertures, or 24-fold compression. Planning
was performed at the nominal objective weights in-
troduced above, and the weight for each collapsed
(mean dose) term was multiplied by the size of the
corresponding structure, |Ss |, as specified in Section 3.3,
so that the objective value coincided exactly with that
of (4).
Additionally, we performed 61 warm-start trials by

reoptimizing for different objective weights while using
optimal variables generated from the previous solve to
initialize the optimizer.We exploredweights around the
nominal set of weights by choosing one structure and
scaling its objective weight by a fixed factor (e.g., a 20%
increase) until the resulting optimal dose vector y⋆ failed
to meet QUANTEC dosing guidelines. After each such
failure, we reset the chosen structure’s objective weight
back to its nominal weight and repeated the procedure
for another (unvisited) planning structure until all
structures had been visited. For target structures, we
scaled the overdose penaltywhile leaving the underdose
penalty at its nominal value. This procedure, which
samples a portion of the Pareto surface for the head and
neck case, yielded 61 warm-start plans when using
a fixed scaling factor of 1.2.

5.1.2. Large Problem Instance. We also planned amuch
larger case, a 589,467 voxel by 68,208 beamlet prostate
FMO problem. This matrix contains 865 million nonzero
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entries, which occupies 19 GB of storage in column
compressed sparse format. We were not able to run
experiments to completion with the full version of this
matrix on central processing unit (CPU), and the ma-
trix did not fit on a single graphics processing
unit (GPU).

Collapsing the nontarget structures yielded a dose
matrix of 6,054 voxels and 68,208 beamlets, or 3.1 GB
when stored as a dense matrix. Planning was per-
formed by using the default weights introduced above;
no modifications were needed to meet QUANTEC
dosing guidelines.

In addition, we iteratively replanned the case for
different objective weights using the same warm-
starting procedure described for the head and neck
case. This yielded 207 warm-start plans when using
a fixed scaling factor of 1.2.

5.1.3. Computational Details. Optimizations were per-
formed in the Python interface to POGS (Fougner and
Boyd 2015), which calls a C or CUDA solver. The CPU
version was implemented with OpenMP and was run
on 32 threads on a 32-core/64-thread, 2.20GHz Intel
Xeon CPU E5-4620; the GPU version was executed on
a nVidia TitanX. The same hardware was used for all
examples below.

A free, open-source Python implementation of the
clustered (and full) intensity optimization problems and
bounding methods described in this paper is available
at https://github.com/bungun/rad_cluster. The re-
pository includes one example each for the voxel-
clustered and beam-clustered methods; the scripts are
identical to those used to generate the results pre-
sented in the sequel, except that the clinical dose
matrices are replaced with randomly generated syn-
thetic data as placeholders.

5.1.4. Results. For the head and neck case, voxel
collapse resulted in a 200-fold speedup when work-
ing on the CPU and an 11-fold speedup on the GPU,
as documented in Tables 1 and 2. We note that the
GPUwas about 15 times faster to begin with and that
the setup (which included matrix equilibration and
Cholesky factorization) plus solution times became
comparable for the reduced size problems; however,
with the larger collapsed matrix in the prostate case,
we continue to observe a 20-fold speed advantage on
the GPU.
For the prostate case objective weight sweeps, we

obtained median solve times (and ranges) of 18.5 s
(4.9–128.3 s) on the CPU and 1.1 s (0.2–6.3 s) on
the GPU.

5.2. Voxel Clustering
5.2.1. Clustering. Vectors corresponding to the rows
of Atarget were clustered by using k-means clustering,
whereas voxel collapse was applied to the voxels of
each nontarget structure. Clustering was performed
separately for the rows (voxels) of each target struc-
ture’s submatrix As.
Although we implemented a naive version of the

k-means clustering as described in Algorithm 3.2,
accelerated variants exist, such as minibatch k-means
(Scherrer et al. 2005, Sculley 2010, Ganage et al. 2013,
Boutsidis et al. 2015).

5.2.2. Sketched k-Means. Although voxel clustering is
intended to be used in cases when the dimension m is
large, the dimension n may also be large if many can-
didate beams are under consideration. In such situa-
tions, it may be prohibitively slow to run the k-means
algorithm that produces a smallerA5 that would enable
efficient treatment planning. In such cases, we propose

Table 1. Timing Results for Voxel Collapse, CPU

Case State Dimensions Setup time(s) Solve time(s) Iterations

Head and neck Full 268,228 × 360 28.1 267.4 3,117
Head and neck Collapsed 11,253 × 360 0.4 1.0 203
Prostate Full 589,467 × 68,208 1,500 * *
Prostate Collapsed 6,054 × 68,208 260.0 190.1 258

*Unconverged after 7 hours, 16 iterations.

Table 2. Timing Results for Voxel Collapse, GPU

Case State Dimensions Setup time(s) Solve time(s) Iterations

Head and neck Full 268,228 × 360 7.8 15.5 1,210
Head and neck Collapsed 11,253 × 360 1.7 0.3 203
Prostate Full 589,467 × 68,208 * * *
Prostate Collapsed 6,054 × 68,208 15.6 8.9 258

*Case does not fit on a single nVidia TitanX GPU.
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sketching the matrix A by multiplication with a ran-
dom matrix Ω ∈Rn×r,

Asketch ! AΩ,

to obtain a smaller matrix Asketch ∈Rm×r. Clustering is
then performed on Asketch to obtain upsampling ma-
trix U ∈Rm×k and clustered matrix B ∈Rk×r such that
A ≈ UB. This U is then used to form A5. In our ex-
perience, drawing the entries of Ω from the normal
distribution 1(0, 1), choosing r ! max(k,n/20), and
running k-means on the sketched rows yields results
comparable to running k-means on the original rows.

5.2.3. Problem Instance. Voxel clusteringwas performed
on the dose matrix for the head and neck case introduced
in Section 5.1. Clusteringwas performed to approximately
10-, 20-, 30-, 50-, and 100-fold compression levels, yielding
compressed matrices of sizes 1,036 × 360, (534× 360),
(364× 360), (221× 360), and (111× 360).

For each instance, we solved (6) using the piecewise
linear objective discussed in Section 2.3, using our
default objective weights (Section 5.1), with the mod-
ification that the weights for each clustered (or col-
lapsed) metavoxel were multiplied by the number of
elements in its cluster (or structure) so that the objective
value of (6) coincided approximately with that of (1).
The objective weight sweep carried out in Section 5.1
to generate plans sampling the Pareto surface was

repeated for the clustered problem instances. (Because
these plans were solutions to approximations of the full
problem, we were in fact sampling the feasible region
near the Pareto surface.)

5.2.4. Computational Details. Clustering was per-
formed on a 32-core, 2.20-GHz Intel Xeon CPU E5-4620
processor in Julia (Bezanson et al. 2014), with point-to-
cluster distance calculations and comparisons vector-
ized as described in Algorithm 3.2 and cast as BLAS
operations (Lawson et al. 1979; Dongarra et al. 1988,
1990); we used the Julia language-default of eight
parallel threads for BLAS operations.

5.2.5. Results. Results for the voxel clustering approxi-
mations are summarized in Table 3. Encouragingly, the
largest maximum-suboptimality gap was 6% for the
100-fold compressed approximation, whereas all other
approximations yielded solutions that were guaranteed
to be within 1%–4% of the true optimal value.
In Figure 1, we observe that the dose-volume his-

tograms (DVHs) for the voxel-clustered plans are
nearly identical across compression levels (with the
100-fold compression plan deviating the most from the
others). The voxel-clustered plans are dosimetrically
comparable to the plan obtained using the uncom-
pressed dose matrix. In particular, we observed that
for a clustered plan with s% suboptimality, the doses

Table 3. Timing and Suboptimality Results for Voxel Clustering, CPU

Compression Dimensions
Suboptimality bound

(%)
Setup+solve time

(s)
Mean solve time, warm start

(s)

(Collapsed) 11,253 × 360 — 1.25 0.55
10 1,036 × 360 1.3 0.22 0.13
20 534 × 360 2.0 0.22 0.08
30 364 × 360 2.2 0.17 0.06
50 221 × 360 3.4 0.25 0.09
100 111 × 360 5.6 0.05 0.03

Figure 1. (Color online) Dose Volume Histograms for Head and Neck Treatment Plans Generated Using Voxel Clustering

Notes. Results are shown for five levels of k-means compression applied to the target structures, as well as the uncompressed plan (solid line)
shown for reference. Voxel collapse was used for nontarget structures in all plans. The same objective weights were used to generate each
solution.
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achieved for the clustered problems at the percentiles
specified by the QUANTEC guidelines were within s%
of the doses achieved for the full problem.

Solve times (cold start) ranged from 0.05 s at max-
imum compression to 0.22 s at minimum compression
on the CPU, representing a 6- to 25-fold speedup. Solve
times on the GPU averaged 0.52 s across compressions,
or about the same as the nonclustered, collapsed
problem—the clustered approximations of this prob-
lem are effectively too small to benefit from GPU ac-
celeration. GPU and CPU suboptimality bounds
agreed within 0.1%.

Warm-start solve times for the objective sweep av-
eraged in the hundredths to low tenths of seconds,
making it conceivable to sample thousands of points on
the Pareto surface and thereby form an MCO planning
library in a few minutes.

5.3. Beam Clustering
5.3.1. Clustering. Vectors corresponding to the col-
umns of Acollapsed (as defined in Section 5.1) were clus-
tered into k column clusters (i.e., aggregate beams) by
using k-means clustering. For a desired compression
factor φ, k ! &n/φ' initial clusters were generated by
assigning approximately nclu ! &n/k' columns to each
cluster. Because sequentially indexed columns of A cor-
respond to the dose deposition data for candidate beams
that are usually “nearby” in some sense (e.g., apertures on
the same arc with small angular separation or adjacent
beamlets in a fluence map), we would expect the nu-
merical content of such columns to be similar, so taking
sequential blocks of width nclu is a reasonable initiali-
zation for the clusters.

5.3.2. Problem Instance. The prostate case introduced
in Section 5.1was clustered to approximate compression

levels of 10-, 20-, 30-, 50-, and 100-fold compression,
yielding clustered matrices sized 6,054 × 6,821, 6,054 ×
3,410, 6,054 × 2,274, 6,054 × 1,364, and 6,054 × 682.
Planning was performed at the default objective

weights, and the objective weight sweep performed for
the voxel-collapsed version of the prostate case was
repeated for each instance of the clustered approxima-
tions to the case.

5.3.3. Results. For cold-start problems, in addition
to the unmeasured speedup obtained through voxel
collapse of nontarget structures, beam clustering
resulted in 8- to 64-fold speed gains on the CPU to solve
the clustered problem and find a bound and 8- to 600-
fold speedup for primal solve alone. On the GPU, we
obtained smaller speedups of 4- to 7-fold when con-
sidering the time for both the primal solve and the
bounding procedure or 6- to 45-fold when consider-
ing the primal solve time only. For both hardware
configurations, the bounds ranged from 11%–54%
without a strong correlation to the degree of clustering;
for the 10-fold compression level, the bounding pro-
cedure produced a feasible dual variable with a nega-
tive objective value; in this case, we took zero as a trivial
lower bound (because we know our objective value is
nonnegative), and had a suboptimality bound of 100%;
we discuss this failure of our bounding procedure in
the sequel. The bounds obtained and timing results are
summarized in Tables 4 and 5.
On both CPU and GPU, the lower bounding pro-

cedure failed to produce a nontrivial bound for the
cold-start runs of the 10-fold compression level; similar
failures occurred for about 20% of the warm-start runs
at all compression levels. Recalling that the column-
clustered dual problem is a relaxation of the full dual
(as the column-clustered primal problem is a restriction

Table 4. Timing and Suboptimality Results for Beam Clustering, CPU

Compression Dimensions Suboptimality bound (%) Primal solve time (s) Dual solve time (s)

(Collapsed) 6,054 × 68,208 — 121.6 —
10 6,054 × 6,821 100.0 15.2 0.0
20 6,054 × 3,410 10.8 6.7 0.0
30 6,054 × 2,274 29.2 1.9 3.0
50 6,054 × 1,364 37.7 0.7 4.3
100 6,054 × 682 53.7 0.2 1.7

Table 5. Timing and Suboptimality Results for Beam Clustering, GPU

Compression Dimensions Suboptimality bound (%) Primal solve time (s) Dual solve time (s)

(Collapsed) 6,054 × 68,208 — 9.0 —
10 6,054 × 6,821 100.0 1.3 0.0
20 6,054 × 3,410 11.4 0.7 0.0
30 6,054 × 2,274 29.1 0.3 1.4
50 6,054 × 1,364 37.7 0.2 1.1
100 6,054 × 682 53.7 0.2 2.0
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of the full primal problem, with the added stipulation
that intensities assigned to the same cluster be equal),
we remark that f ∗(ν⋆#)≤ p⋆ need not hold because we
have no guarantee that ν⋆# be feasible on the full
problem. In practice, our bounding procedure pro-
duces a feasible dual variable ν̂ when the constraint
ATν≥ 0 is enforced to a sufficiently tight numerical
tolerance; choosing this tolerance turns out to influence
the quality of the lower boundwe obtain. Aswe tighten
the tolerance, the lower bound obtained by evaluat-
ing f ∗(ν̂) decreases, and can even become negative,
which results in the failure we described above. If the
tolerance is too wide, then ATν̂≥ −ε can be satisfied
even by the output of the clustered problem, ν⋆#, and
yield an invalid lower bound. As a rule of thumb, we
take the tolerance achieved for the constraint AT

#ν≥ 0
when solving the clustered primal problem and require
that our bounding procedure produce a dual variable
that satisfies ATν≥ 0 to this same tolerance. In the fu-
ture, we may be able to obtain tighter suboptimality
bounds by more judicious choices of tolerances for our
bounding procedure.

It appears that the bounding procedure takes rela-
tively longer on the smaller cases; this probably cor-
responds to the smaller problems being deeper
relaxations than the less compressed instances and
yielding points ν⋆# that are further from being feasible
on the full dual. This trend is corroborated by the data
from the objective sweep (warm start) solves, sum-
marized in Table 6. Although the warm-start solve

times for the primal clustered problems are extremely
fast (again, offering the potential for real-time inter-
active planning or rapid, dense population of MCO
plan libraries), the effort required to bound the solution
is comparable to that needed for a warm-start solution
of the unclustered, voxel-collapsed problem. The true
errors are also 10%–20% on average, so the loose
bounds are not overly pessimistic.
However, when we examine the DVHs generated by

the beam-clustered plans, shown in Figure 2, we ob-
serve that the plans are highly dosimetrically similar
to the uncompressed plan, despite the loose sub-
optimality bounds.

6. Summary
In this paper, we have presented theory and examples
for three methods for approximately (or exactly, in the
case of voxel collapse) solving treatment planning
problems at significantly reduced computational cost.
In addition to the gains realized by using the presented
cluster and bound methods, a significant portion of
the planning speed is due to the highly parallelized
implementation of ADMM implemented by the POGS
solver, which is available as a tool based on our choice
of fully separable convex planning objectives.
Given our observations (Dong et al. 2016) that linear

penalties on OAR structures can produce clinically sat-
isfactory plans (in tandemwith piecewise linear penalties
on target structures), the voxel collapse method is an
obvious win, providing at least an order-of-magnitude

Table 6. Mean Timing and Suboptimality Results for Objective Sweep, Column-Clustered Prostate Case, 207 Warm Start
Solves, GPU

Compression Dimensions Average gap (%) Average true error (%)1 Average primal solve time (s) Average dual solve time (s)

(Collapsed) 6,054 × 68,208 — — 2.0 —
20 6,054 × 3,410 26.4 21.1 0.07 1.4
30 6,054 × 2,274 28.2 9.9 0.10 1.7
50 6,054 × 1,364 40.5 15.2 0.07 0.3

Note. Percent true error ! 100 · (pub − p⋆)/pub, p⋆ is solution obtained in Section 5.1.

Figure 2. (Color online) Dose Volume Histograms for Prostate Treatment Plans Generated Using Beam Clustering

Notes. Results are shown for three levels of k-means compression applied to the beams, as well as the uncompressed plan (solid line) shown for
reference. Default objective weights were used to generate each solution.
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speedup on CPU or GPU. These gains compound with
another order-of-magnitude (or greater) speedup ob-
tained by the clustering methods to yield planning
speeds that would be sufficiently fast for a real-time,
interactive planning environment.

Although the voxel collapse method effectively re-
stricts planning to the use of mean dose penalties on
OAR structures, a promising option would be to use
this technique to rapidly formmany plans on the Pareto
surface; linear combinations of these plans (based on the
full voxel content) could then be optimized to satisfy
more complex constraints—for example, dose volume
constraints.

The row (voxel) version of the cluster and bound
method produces fairly tight bounds at essentially no
added computational cost, so this tool could work well
to accelerate cases where finer dose grid resolution is
desired or could be used to compensate for the en-
larged column dimension in cases with many beams.

Because the bounds achieved in the column (beam)
version of the cluster and bound method were not
particularly tight, we will look to improve the bounding
procedure as well as the initialization of the clustering
process, because k-means is nonconvex and sensitive
to the choice of initialization.

Extrapolating from the very rapid performance we
observed on the 3-GB prostate case, we estimate that
for dose matrices that can fit on a single GPU (i.e.,
smaller than 12 GB, currently), each planning run will
cost no more than a few seconds, and often less than
a second.

Because we have shown that for dose matrices that
can fit on a single GPU, each planning run is on the
order of tens of milliseconds to (low) tens of seconds or
less, and that dose matrices can be compressed quite
significantly while still yielding reasonable plans, we can
now perform efficient planning with cases with dose
matrices that are an order ofmagnitude too large to fit on
a GPU when represented in their entirety, as illustrated
by the prostate case.

Although this work does not address beam de-
liverability, regularization terms (such as total varia-
tion penalty on beamlet or aperture intensities) can be
added while maintaining a separable formulation com-
patible with the POGS solver. Similarly, with the incor-
poration of intensity-sparsifying objectives, our work on
large-scale intensity optimization could be of some use in
the problem of beam angle selection: some of the com-
putation in the geometric setup phase could be deferred
to the intensity optimization phase by selecting an
overcomplete set of radiation sources and allowing this
pool to be narrowed while intensities are optimized.

Furthermore, we imagine that a robust approach go-
ing forwardwould be to optimize over tens of thousands
of apertures (i.e., for nonuniform arc therapy, station
parameter optimized radiation therapy, or 4π planning)

in lieu of the same number of beamlets. If we can effi-
ciently handle large-scale planning problems, it mitigates
the need for apertures to be carefully chosen; instead,
a very large number of reasonable apertures can be gen-
erated through some heuristic (e.g., one statistically
learned from previous treatment plans), and the active
apertures can be sparsified during planning.
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