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Abstract
Flux coupling analysis (FCA) aims to describe the functional dependencies among
reactions in a metabolic network. Currently studied coupling relations are qualitative
in the sense that they identify pairs of reactions for which the activity of one reac-
tion necessitates the activity of the other one, but without giving any numerical bounds
relating the possible activity rates. The potential applications of FCA are heavily inves-
tigated, however apart from some trivial cases there is no clue of what bottleneck in the
metabolic network causes each dependency. In this article, we introduce a quantitative
approach to the same flux coupling problem named quantitative flux coupling analysis
(QFCA). It generalizes the current concepts as we show that all the qualitative infor-
mation provided by FCA is readily available in the quantitative flux coupling equations
of QFCA, without the need for any additional analysis. Moreover, we design a simple
algorithm to efficiently identify these flux coupling equations which scales up to the
genome-scale metabolic networks with thousands of reactions and metabolites in an
effective way. Furthermore, this framework enables us to quantify the “strength” of the
flux coupling relations. We also provide different biologically meaningful interpreta-
tions, including one which gives an intuitive certificate of precisely which metabolites
in the network enforce each flux coupling relation. Eventually, we conclude by sug-
gesting the probable application of QFCA to the metabolic gap-filling problem, which
we only begin to address here and is left for future research to further investigate.
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Author summary

Metabolic networks are genome-scale complex systems of metabolites and reactions
among them. In order to model their dynamics, constraint-based approach specifies a
set of local rules like the preservation ofmass at every singlemetabolite. Consecutively,
these basic constraints result in emergent constraints which may link two reactions
in totally separated regions of the metabolic network. From an applied standpoint,
these global relations are just as important as the local ones, but unlike them, they
are not efficiently computable and even if proved by computation these computational
certificates are not as insightful.

In this article, we introduce the concept of fictitious metabolites which are nothing
but proxies for the ensembles of related metabolites and in this way, they resemble
metabolites structurally. They mask all the micro-interactions within and only display
their collective behavior which can relate two far away reactions linked together by
a chain of metabolites. Coupling relations among distant reactions are induced by
fictitious metabolites in the same way as they are induced among adjacent reactions
by regular metabolites. Therefore, our biological intuition applies to their general cer-
tificates seamlessly. Moreover, all the well-known local techniques can be transferred
to the next level to develop scalable tools which are not only faster but also more
interpretable at the system level.

1 Introduction

Constraint-based reconstructions of (genome-scale) metabolic networks are models
formally characterizing themetabolic activities of an organism. The relatively small set
of data given by such models is then analyzed in order to predict different biological
properties which are usually very hard to measure experimentally (Schilling et al.
1999a; Covert et al. 2001).

One instance of such in silico computational analysis is to investigate the effects
of blocking a reaction on the rest of the reactions in the metabolic network. This has
alreadymany applications in systems biology and bioinformatics, for instance explain-
ing the co-regulation of metabolic genes (Notebaart et al. 2008), or the identification
of potential drug targets by understanding the immediate consequences of knockouts
at the genome level (Haus et al. 2008).

However, because of the huge number of reactions the analysis of the dependencies
among them is too intractable to be approached fully experimentally. An alternative
approach though is to exploit the dependencies which are implied by the general
constraints imposed on the biochemically legitimate flux distributions in themetabolic
network of interest (Burgard et al. 2004).

The primary constraint assumed by most of the constraint-based models is the
steady-state condition whereby we assume that the metabolites are balanced at an
equilibrium (Varma and Palsson 1994). Solely, this constraint by itself may imply that
the rate of some reactions cannot vary independently. As a simple example consider
the metabolic network depicted in Fig. 1a. In this metabolic network the boundary
reactions R1 and R2 import and export one unit of the internal metabolites M1 and
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Quantitative flux coupling analysis 1461

Fig. 1 Reactions coupled by metabolites

M2, and the middle reaction consumes one unit of M1 in order to produce two units
of M2. The mass balance of M1 implies that R1 and R2 must be active at exactly the
same rate. Likewise, the activity rate of R3 must be twice the activity rate of R2 in
order to preserve the equilibrium at M2.

On the other hand, consider a “fictitiousmetabolite”M3 which is defined to be equal
to 2M1 + M2, namely each unit of M1 counts as two units of M3 and also each unit of
M2 counts as one unit of M3. We express the stoichiometry of each reaction in terms
of this new metabolite accordingly. In Fig. 1b, R2 does not change the concentration
of M3 (2(−1) + (2) = 0), R1 imports two units (2(1) + 0 = 2), and R3 exports one
unit of it (2(0) + (−1) = −1). As a consequence, the mass balance of this fictitious
metabolite which is conceived as a linear combination of some other metabolites,
implies that the activity rate of R3 equals two times the activity rate of R1.

Although in this toy example there seems no need for certificates to verify the flux
coupling relations, the key idea of introducing new fictitious metabolites as intuitive
certificates extends naturally to themost general setting. The only remaining challenge
is how to effectively identify the appropriate fictitious metabolites, for which we
propose the QFCA algorithm as one of the possible solutions.

Outline. In Sect. 2, we review the constraint-based analysis of metabolic networks
and formulate the flux coupling problem. In Sect. 3, we formally introduce the flux
coupling certificates and derive an efficient algorithm to compute them. In Sect. 4,
we discuss two of their biological interpretations, including fictitious metabolites as
explained here, and the subjects of most interest which are left for future research.
Finally in Sect. 5, we conclude by pointing out the major implications of this work.

2 Problem setup

2.1 Steady-state flux cone

Consider a given metabolic network consisting of m internal metabolites, M =
{Mi }mi=1, and n biochemical reactions,R = {Ri }ni=1. In what continues, we will estab-
lish the mathematical framework for modelling the data we have and the constraints
we assume.
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1462 M. Tefagh, S. P. Boyd

The stoichiometric properties of the metabolic network of interest are encoded by
an m × n stoichiometric matrix S. Each row of S corresponds to a unique internal
metabolite in M, and each column of it represents the stoichiometry of a reaction in
R. In the columns of S, consumed and produced metabolites are specified by negative
and positive entries, respectively. In addition, the magnitude of each entry determines
the relative rate of consumption or production. For instance, the stoichiometric matrix
of the metabolic network depicted in Fig. 1a is

S =
[
1 − 1 0
0 2 − 1

]
.

In this setting, we think of any vector v ∈ R
n as a flux distribution whose entries,

whichwe call flux coefficients, are the rates of the n reactions in themetabolic network.
In addition, activity in the two possible directions for each reaction is shown by the
sign of the corresponding flux coefficient. In other words, positive and negative flux
coefficients correspond to forward and reverse directions, respectively.

In the constraint-based reconstruction and analysis (COBRA) of metabolic net-
works, the primary constraints imposed on a flux distribution to be feasible are mostly
as follows (Schuster and Hilgetag 1994; Bonarius et al. 1997):

1. The steady-state constraint assumes that the metabolic network is in mass balance
condition, whichmeans that the concentration of each internal metabolite is almost
constant throughout the time-scale of interest (Gunawardena 2014). We say a flux
distribution v ∈ R

n is in steady-state condition, if

Sv = 0. (1)

2. The irreversibly constraint states that each irreversible reaction is thermodynami-
cally forced to proceed in only one fixed direction which is the forward direction,
by convention. Let I ⊆ R denote the subset of irreversible reactions. We say a
flux distribution v ∈ R

n satisfies the irreversibility constraint, if for all Ri ∈ I

vi ≥ 0. (2)

A flux distribution v ∈ R
n is called feasible if it satisfies constraints (1) and (2).

Since (1) is a homogeneous system of linear equations and (2) is a set of nonnegativity
inequalities, the set of all the feasible flux distributions is a polyhedral convex cone,
which we call the steady-state flux cone (Schilling et al. 1999b).

To the end of this paper, we will assume for notational convenience that the irre-
versible reactions are indexed as I = {R1, R2, . . . , Rk} for some k, unless stated
otherwise. Subsequently, we can denote the steady-state flux cone by C = {v =
(vI , vR) | Sv = 0, vI ≥ 0}, where vI ∈ R

k and vR ∈ R
n−k .

2.2 Blocked reactions and flux coupling relations

For any Ri ∈ R, we say Ri is a blocked reaction if for all the feasible flux distributions
v ∈ C there is zero flux through Ri , namely vi = 0.Otherwise, we call Ri an unblocked
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Quantitative flux coupling analysis 1463

reaction. We call a metabolic network consistent if it contains no blocked reactions
(Schuster and Hilgetag 1994).

After this preliminary definition, we are ready to define the three kinds of possible
flux coupling relations between two unblocked reactions. By inspection, each one is
a stronger condition than the previous one.

Definition 1 (Burgard et al. 2004) Let Ri , R j ∈ R be an arbitrary pair of unblocked
reactions.

Directional coupling: Ri is directionally coupled to R j , denoted by Ri −→ R j , if
for all feasible flux distributions vi �= 0 implies v j �= 0.

Partial coupling: Ri is partially coupled to R j , denoted by Ri ←→ R j , if for
all feasible flux distributions vi �= 0 implies v j �= 0 and vice
versa.

Full coupling: Ri is fully coupled to R j , denoted by Ri ⇐⇒ R j , if there exists
a constant c �= 0 such that for all feasible flux distributions

vi = cv j . (3)

Note that we have excluded the blocked reactions from the coupling definition
because otherwise, any blocked reaction would be directionally coupled to every other
reaction. Additionally, no unblocked reaction could be directionally coupled to any
blocked reaction. Consequently, there is no nontrivial information that flux coupling
relations can tell about the blocked reactions, and therefore, we omitted them from
the definition of flux coupling.

Despite the fact that we have excepted blocked reaction from the flux coupling
definition, there is an intrinsic relationship between the two concepts. One equivalent
definition of directional coupling is that a reaction Ri is directionally coupled to a
reaction R j if Ri is unblocked originally but will become blocked upon the removal
of R j from the metabolic network. Therefore, identifying all the reactions which
are directionally coupled to R j is essentially the same as finding the newly blocked
reactions after removing R j from the metabolic network.

In fact, one reason for the existence of blocked reactions in the first place is that
metabolic network reconstructions are incomplete models of their real-world coun-
terparts, and without the missing reactions many pathways can never carry nonzero
fluxes. For instance, we can be missing some reactions while detecting some other
ones which are directionally coupled to them. Then, the latter would be blocked.

2.3 Flux coupling equations

In this paper we call (3) a full coupling equation (FCE). We begin by observing that
any unblocked reaction Ri is fully coupled to itself by vi = 1vi as the corresponding
FCE.

Another observation is that, if there is a metabolite which is produced by exactly
one reaction and consumed by exactly one other reaction, these reactions are fully
coupled and the steady-state condition for this metabolite provides the corresponding
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Fig. 2 For t = 2, 3, 4,
Rt −→ R1 can be inferred from
the DCE corresponding to M1

FCE. In Fig. 1a, equilibrium at M1 proves v1 = 1v2, and equilibrium at M2 proves
v2 = 1

2v3. In Fig. 1b, equilibrium at M3 proves v1 = 1
2v3.

Unlike full coupling relations, directional and partial coupling relations are quali-
tative in the sense that there is no equation in analogy to FCE which quantizes them.
This motivates the search for at least some special cases where similar to the previous
observation, the steady-state condition of specific metabolites provide us with flux
coupling equations.

As illustrated in Fig. 2, suppose that there exists a metabolite which is either pro-
duced only by R j and consumed only by Ri1 , Ri2 , . . . , Ril , or consumed only by R j

and produced only by Ri1 , Ri2 , . . . , Ril . Either way, from the mass balance of this
metabolite we have that

v j = ci1vi1 + ci2vi2 + · · · + cilvil , (DCE)

holds for some ci1 , ci2 , . . . , cil > 0. From this equation, it is immediate that if
Ri1 , Ri2 , . . . , Ril ∈ I, then Rit −→ R j for all t = 1, 2, . . . , l, because vit �= 0
implies v j �= 0. This is a generalization of FCE relating the rates of a fully coupled
pair of reactions, and hence we call it directional coupling equation (DCE).

Moreover, the coefficients cit indicate the contribution of each Rit in the rate of
R j and the greater this multiplier, the stronger the impact of Rit on R j . In this sense,
DCE coefficients can compare and quantify the strength of the directional coupling
relations, just like the role of constant c in (3), for the case of full coupling relations.

Suppose that besides the previous DCE, we have another equation of the form

v j = c′
i1vi1 + c′

i2vi2 + · · · + c′
ilvil + c′

il+1
vil+1 , (EDCE)

where c′
il+1

�= 0. If vil+1 �= 0, then either v j �= 0 or one of vit �= 0 holds, which in
turn implies v j �= 0. As a result, if Ri1 , Ri2 , . . . , Ril ∈ I, then Rit −→ R j for all
t = 1, 2, . . . , l + 1. Accordingly, we call it an extended directional coupling equation
(EDCE).

Unlike FCE and DCE, just a single EDCE cannot prove any flux coupling relation
on its own, because it is too general and Ril+1 can be either reversible or irreversible.
However, this extra flexibility allows us to prove the directional coupling relations
Ril+1 −→ R j , where Ril+1 /∈ I. In such a case,
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Fig. 3 R2 −→ R4 can be inferred from the EDCEs corresponding to M1 and M2

(
1 + 1

c

)
v j =

(
ci1 + c′i1

c

)
vi1 +

(
ci2 + c′i2

c

)
vi2 + · · · +

(
cil +

c′il+1

c

)
vil +

c′il+1

c
vil+1 ,

as c −→ ∞ and c −→ −∞ generates two series of DCEs proving v j �= 0 whenever
vil+1 is either positive (forward direction) or negative (reverse direction).

2.4 Fictitious metabolites

The steady-state constraint (1) is a homogeneous system of linear equations whose
rows are conceived as local mass balance conditions for single metabolites. However,
any arbitrary linear combination of these linear equations is again a valid constraint
on the rate of reactions which are not necessarily close to each other in the metabolic
network. Note that if such linear combinations are added to the rows of the stoichio-
metric matrix S, then the rank of S is constant and its null space does not change at
all; hence the steady-state flux cone C remains the same too. Therefore, they can be
interpreted as fictitious metabolites, even though we never actually add them to the
metabolic network in practice.

Definition 2 Suppose that we are given a metabolic network with the stoichiometric
matrix S. We call λ ∈ R

n a fictitious metabolite if there exists ν ∈ R
m such that

λ = ST ν.

At this point, DCE and EDCE are inspired by the mass balance of a specific
metabolite. However, we showed that they can be used to prove directional coupling
and consequently partial coupling relations. Recall that a fictitious metabolite pro-
vided an FCE in Fig. 1b. Similarly, M3 is a fictitious metabolite providing the DCE
v4 = 1

2v1 + 1
2v3 in Fig. 3b. Furthermore in Fig. 3a, M1 and M2 provide the EDCEs

v4 = v1 + v2 and v4 = v3 − v2, respectively.
Earlier in Sect. 1, we brieflymentioned the idea of proving full coupling relations by

building fictitious metabolites whose corresponding FCEs verify the desired relations.
The next step is to follow the same intuition and push this idea even further to include
DCE and EDCE as well. The following theorem summarizes the desired result.

Theorem 2.1 (Fictitious metabolites) Suppose that in a given metabolic network spec-
ified by S and I, there are no irreversible blocked reactions. Then for any λ ∈ R

n, λ
is a fictitious metabolite if and only if
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Fig. 4 M1 and M1 + M3
provide EDCEs, M2 and
M2 + M3 provide DCEs, and
M3 provides an FCE

λT v = 0, ∀v ∈ C.

Remark Note that λT v = 0 is an arbitrary linear equation over the flux coefficients.
As a special case, when λ represents the coefficients of any FCE, DCE, or EDCE,
we will call the equation λ = ST ν the fictitious metabolite form of the flux coupling
equation λ. Later in Sect. 4, we will come back to this point and elaborate on how the
fact that λ is written as a linear combination of the rows of S motivates the name of
fictitious metabolite.

The proof of this theorem follows from the following lemma.

Lemma 2.2 Suppose that in a given metabolic network specified by S and I, there are
no irreversible blocked reactions. Then for any λ ∈ R

n,

λT v = 0, ∀v ∈ C ⇔ λT u = 0, ∀u ∈ ker(S), (4)

where ker(S) is the set of all vectors u ∈ R
n such that Su = 0.

Remark If there are no irreversible blocked reactions, then by (4) the affine hull of the
steady-state flux cone is the null space of the stoichiometric matrix. As an immediate
corollary, the affine dimension of C equals the nullity of S.

For the sake of example, consider the metabolic network depicted in Fig. 4. Similar
to Figs. 1 and 2, M3 provides the FCE v1 = v3 coupling R1 to R3, and M2 provides
the DCE v2 = v3 + v4 coupling R3 and R4 to R2. From these two equations, we get
another DCE v2 = v1 + v4 which is also given by merging M2 and M3 similar to
Fig. 1b. From M1 we have 2v1 = v2 + v5 must hold, which we can rewrite as the
EDCE v2 = 2v1 − v5 coupling R5 to R2. Also by substituting v1 with v3 from the
former equations, we get another EDCE v2 = v1 + v3 − v5 which is also given by
merging M1 and M3 into a fictitious metabolite.

2.5 Problem statement and prior works

In the sequel, the problem is given the stoichiometric matrix S and the subset of
irreversible reactions I of a metabolic network, how to

1. identify all the blocked reactions in order to exclude them from FCA,
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2. find all the coupled pairs of reactions and specify the type of coupling relation for
each pair,

3. and ultimately for each coupling relation give the appropriate FCE, DCE, or EDCE
in order to prove and quantize it.

We start by deriving a naive method for the first two items which are referred to
collectively as FCA.

A simple observation is that we can determine whether Ri ∈ R is blocked or not
by solving at most two linear programs (LP). For Ri ∈ I, the following LP

maximize vi
subject to v ∈ C

vi ≤ 1,
(5)

has optimal value 0 if and only if Ri is blocked. The only other possible optimal value
for (5) is 1 in which case Ri is unblocked. For Ri /∈ I, both (5) and

minimize vi
subject to v ∈ C

vi ≥ −1,
(6)

have optimal values 0 if and only if Ri is blocked. The only other possible optimal
value for (6) is −1 in which case Ri is unblocked.

From this observation, a simple solution to our problem is to first identify the
blocked reactions by (5) and (6). Then in analogy to (5), we determinewhether Ri −→
R j holds or not by solving the LP to maximize the flux through Ri after blocking
R j , i.e.,

maximize vi
subject to v ∈ C

v j = 0
vi ≤ 1.

(7)

For Ri ∈ I, Ri −→ R j if and only if the optimal value of (7) is zero. However in
analogy to (6), for Ri /∈ I we should also solve the LP for maximizing flux through
the other possible direction of Ri , i.e.,

minimize vi
subject to v ∈ C

v j = 0
vi ≥ −1.

Then Ri −→ R j if and only if the optimal values of both objectives are zero.
Let ni , and nr denote the number of irreversible and reversible reactions, respec-

tively. This naive method first identifies all the blocked reactions by ni + 2nr LPs
which can run in parallel. Then it solves ni ((ni − 1) + 2nr ) + nr (ni + 2(nr − 1))
additional LPs in order to find all the directional couplings which in turn determines
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all the partial couplings as well. Again one can solve these LPs in parallel. However,
to the best of our knowledge, this is not exploited yet in any existing algorithm.

Eventually, it only remains to find all the fully coupled pairs of reactions. We
already know that full coupling is a stronger condition than partial coupling, hence it
is enough to check if it holds only for the partially coupled reactions. For each pair of
Ri ←→ R j , they are fully coupled to each other if and only if the optimal values of

maximize vi
subject to v ∈ C

v j = 1,

and

minimize vi
subject to v ∈ C

v j = 1,

are equal, and if so then it also equals the constant c in (3).
In summary, if there are n p partially coupled pairs of reactions, this naive method

requires to solve
n(ni + 2nr ) + 2n p (8)

LPs in total in order to conduct FCA. An algorithm named feasibility-based flux
coupling analysis (FFCA) (David et al. 2011) takes a similar approach as the basis
for the generic case. However, it substantially reduces the number of required LPs to
solve from (8) for the naive method.

This additional efficiency is achieved by exploiting theorems such as the following
proposition which study the possible reversibility types for a coupled pair of reactions
and so are called reversibility-type prunings.We refer the interested reader to (Larhlimi
and Bockmayr 2006) to read more about them.

Proposition 1 (Larhlimi and Bockmayr 2006) Suppose that Ri and R j are unblocked
reactions. Moreover, R j is reversible and unblocked in both directions, i.e., there exist
feasible flux distributions u, v ∈ C such that u j > 0 and v j < 0. Then Ri −→ R j if
and only if Ri ⇐⇒ R j .

Note thatwe require not only R j /∈ I, but also both directions of R j to be unblocked.
If this is not the case, i.e., R j is not explicitly constrained to be but is effectively irre-
versible, we can detect it by solving (5) and (6). Without loss of generality, suppose
that R j can only happen at positive rates and is blocked in the reverse direction. Oth-
erwise, we multiply the corresponding column of S by −1. By adding such reactions
to I, we will assume to the end of this paper that if R j /∈ I is unblocked, then there
exist feasible flux distributions u, v ∈ C such that u j > 0 and v j < 0. This issue is
treated more extensively in the “Appendix”.

A subsequent work, fast flux coupling calculator (F2C2) (Larhlimi et al. 2012) also
preprocesses the trivial cases like Fig. 2, along with many others, where it is obvious
from M1 that upon removal of R1, all the reactions R2, R3, and R4 would become
blocked and hence Rt −→ R1 for t = 2, 3, 4.
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The purpose of this study is to generalize the latter approach to the most general
setting in order to prove that like the role of FCE in the case of fully coupled reactions,
DCE and EDCE have the same role for verifying the other flux coupling relations.
This is in sharp contrast to all the previous works which provide no straightforward
certificate to verify each flux coupling relation without solving any LPs.

3 Methods

3.1 Quantitative flux coupling analysis

In this subsection, our primary goal is to develop an algorithm finding all the blocked
reactions and the pairs of reactions which are directionally, partially, or fully coupled
by solving only a linear number of LPs in the worst case. To the best of our knowledge,
this is the first algorithmwhich is guaranteed to achieve this linear bound in the number
of reactions.

We begin by the identification of blocked reactions. Since for each unblocked
Ri ∈ R, there exists a feasible flux distribution vi with nonzero flux through Ri ,
vii �= 0, we can form a weighted sum of these vi ’s,

v� =
∑
i

civ
i ,

in order to get a feasible flux distribution v� with nonzero flux coefficients for all the
unblocked reactions. Furthermore, we can assume that all the nonzero entries of v�

are greater than one in absolute value by multiplying ci ’s with a large enough scalar.
Indeed, we should form this linear combination with appropriate coefficients ci ’s in

a way that for any R j /∈ I, different flux coefficients vij do not cancel away to v�
j = 0.

However, this is always possible as we can scale each feasible flux distribution vi such
that the entries of different civi ’s have different orders of magnitude so they never add
up to zero,

∑
i civ

i
j �= 0.

Let BI and BR denote the set of all the irreversible and reversible blocked reac-
tions, respectively. The critical observation here is that if we restrict attention to the
identification of BI , it is enough to solve the following optimization problem

maximize 1T min(vI , 1)
subject to v ∈ C,

(9)

where v ∈ R
n . The previous two paragraphs constructs a solution for this optimization

problem, hence the optimal objective value is achieved and equals k − |BI |.
We can reformulate this optimization problem as the following equivalent LP (see

OnePrune in Dreyfuss et al. 2013 or LP-7 in Vlassis et al. 2014)

maximize 1T u
subject to Sv = 0

vI ≥ u
1 ≥ u ≥ 0,

(10)
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where u ∈ R
k . This LP is always both feasible (e.g., u = 0, v = 0 is feasible) and

bounded (1T u ≤ k). Any optimal v� for (10) is also optimal for (9) and vice versa.
Since u� = min(v�

I , 1), the optimal u� has zero and one entries corresponding to the
blocked and unblocked irreversible reactions, respectively.

Now that we can identify BI by solving one LP, we assume that all the reactions in
I are unblocked or otherwise remove them from the metabolic network. As a result,
v�
i > 0 for all Ri ∈ I.
Suppose that Ri /∈ I is blocked or equivalently there does not exist v ∈ C such

that vi �= 0. We claim that Sx = 0 has no solutions for which xi �= 0. Otherwise, we
choose a large enough v� such that v = x + v� ∈ C. However, this cannot be true
because vi and v�

i are both zero as Ri is blocked and hence xi must be zero too.
Consequently, Ri /∈ I is unblocked if and only if there exists x ∈ R

n such that
Sx = 0 and xi �= 0, or equivalently Sx = 0 and xi = 1. However, this latter condition
can be expressed as the system of linear equations

{
Sx = 0

eTi x = 1,
(11)

where ei is the i th element of the standard basis of Rn .
In a nutshell, we can determine BR by only solving linear equations. Combining

this with our previous result, we can identify all the blocked reactions by solving only
one LP and nr systems of linear equations of the form (11).

Moreover, we can find all the flux coupling relations by repeatedly using this proce-
dure on metabolic networks with a reaction removed, in order to find all the reactions
directionally coupled to it. Thereafter, partial couplings follow from directional cou-
plings trivially.

Finally, we try to find all the fully coupled pairs of reactions without solving any
optimization problem and any LP in particular. We have seen that full couplings are
deduced from FCEs. Thus, we can check whether each Ri ⇐⇒ R j is true or not by
searching for a λ ∈ R

n such that λl = 0 ⇔ l �= i, j , and λT v = 0 for all v ∈ C. If
there exists such a λ, then it contains the corresponding FCE embedded in itself which
can be retrieved by

vi = −λ j

λi
v j .

Without loss of generality, assume that λi = 1 and thus λ j = −c. By applying
Theorem 2.1, there exists ν ∈ R

m such that λ = ST ν. Therefore, we can solve for ν

by
ST ν = ei − ce j . (12)

Nevertheless, there is a subtlety here that if we have not determined whether Ri ⇐⇒
R j or not yet, we do not know the value of c in advance. In the next Sect. 3.2, we will
revisit this obstacle in greater detail.

This derives the promised FCA algorithm which solves at most 1+ ni LPs, which
is linear in n. Later in Sect. 3.3, we will find out that even the same number of LPs is
also enough to infer all the corresponding DCEs and EDCEs too.
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3.2 Positive and negative certificates

In the previous subsection, we designed an efficient algorithm to carry out FCAwhich
is the first two tasks of Sect. 2.5, but the third one still remains. Fortunately, standard
results from the theory of Lagrange duality provide dual variables as optimality cer-
tificates for any optimization problem solved. And by the way we defined (9), its dual
problem turns out to be (13) which is the key to computing the desired flux coupling
equations. For more details on the derivation of this dual problem and a brief overview
of the theory of Lagrange duality, we refer the interested reader to the “Appendix” of
this article.

To recap the results of Sect. 1, recall that if v� and λ� are a primal-dual optimal pair
for the problems (9) and

maximize 1T min(λ, 1)
subject to ST ν = λ

λR = 0
λI ≥ 0,

(13)

then exactly one of v�
i and λ�

i equals zero for each Ri ∈ I. We think of λi �= 0 as a
positive certificate verifying that Ri is blocked and vi �= 0 as a negative certificate
verifying that Ri is unblocked. Last but not least, there is no additional computational
cost for getting the optimal dual variables since most LP solvers compute both v� and
λ� jointly when solving either (9) or (13).

Up to here, we can determine BI by just one LP of the form either (9) finding
negative certificates or (13) finding positive certificates. In order to determine BR , we
continue in the same manner by again defining negative and positive certificates in
analogy. We already know that any solution to (11) proves Ri /∈ I is unblocked, hence
we call it a negative certificate.

On the other hand, assume that Ri /∈ I is blocked thus there does not exists v ∈ C
such that vi �= 0. Since vi = 0 for all v ∈ C, if λ ∈ R

n is any vector of all zeros except
for its i th entry λi �= 0, then

λT v = 0, ∀v ∈ C.

However by Theorem 2.1, we know that this implies λ = ST ν for some ν ∈ R
m .

To sum up, Ri /∈ I is blocked if and only if there exists ν ∈ R
m such that ST ν = λ,

and λi �= 0 but the rest of the entries of λ are zero. Similar to what we had before, we
call such λ a positive certificate that Ri is blocked. As opposed to the previous case of
irreversible reactions, this time positive certificates can be found by just solving the
system of linear equations

ST x = ei . (14)

As a simple observation, (12) reduces to (14) after the removal of the j th column of
S and the j th entry of ei . For an index set A, let X A and x A denote the corresponding
columns of the matrix X and the corresponding entries of the vector x . Moreover, let
X (A) and x (A) denote the result of removing X A and x A from X and x , respectively.
By this notation, in order to solve the system of linear equations (12) for both ν and
c, it is enough to solve
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(S( j))T x = e( j)
i ,

and then ν = x is a solution of (12) for c = S j T x . The converse is also true that any
solution of (12) is a solution of the above equation. This simple trick overcomes the
previously mentioned obstacle of solving (12) when we do not know the value of c
beforehand.

To conclude this subsection, recall from Sect. 3.1 that Ri ⇐⇒ R j if and only if
there exists ν ∈ R

m such that ST ν = λ, where λ is the corresponding FCE. In this
case, we have already shown that λ can be found from (12) if we only know the value
of ν. And here we showed how to determine if such a ν exists. Accordingly, we call
this fictitious metabolite form of an FCE a positive certificate for Ri ⇐⇒ R j . This is
the first kind of QFCA positive certificates, but there remain two more which we will
examine in the next subsection.

3.3 Directional coupling equations

We have already proved the “if” parts of the following theorem in Sect. 2.3, and we
will give a constructive proof of the “only if” parts in this subsection.

Theorem 3.1 (Directional coupling equations) Suppose that in a given metabolic net-
work specified by S and I, there are no irreversible blocked reactions. Let R j be an
arbitrary unblocked reaction, and D j denote the set of all the irreversible reactions
which are directionally coupled to R j excluding itself. Then, D j is nonempty if and
only if there exists a DCE such that for all v ∈ C,

v j =
∑

d:Rd∈D j

cdvd , (15)

for some fixed cd > 0.
Furthermore, for any unblocked Ri /∈ I, Ri −→ R j if and only if there exists an

EDCE such that for all v ∈ C,

v j =
∑

d:Rd∈D j

c′
dvd + c′

ivi , (16)

where c′
i �= 0.

Remark Comparing (3) and (15), directional coupling can be thought of as full cou-
pling between a set of reactions D j and a single one R j . One aspect of this is the
following weak converse for directional coupling relations. If R j is implied by D j

and no other irreversible reaction, then the activity of R j implies that at least one reac-
tion in the set D j must be active too. The proof is immediate by (15). This converse
gives another way of thinking about directional coupling relations as the weak variant
of the stronger condition of full coupling relations.
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Back to the problem of computing the coupled reactions to an arbitrary reaction
R j , recall that Proposition 1 states if Ri −→ R j and R j /∈ I, then Ri ⇐⇒ R j . In
addition, we have already resolved the case of full coupling, hence from now on we
assume that R j ∈ I.

Let D j denote the set of all the directionally coupled irreversible reactions to R j

excluding itself. We have already argued that all we need in order to determine D j is
finding BI after imposing the additional constraint v j = 0. Analogues to (9), the zero
entries of any solution to

maximize 1T min(vI , 1)
subject to v ∈ C

v j = 0,

determine BI . Therefore, we call such v a negative certificate.
Applying the results of Sect. 3.2, we can also determine D j for R j ∈ I by solving

the following optimization problem

maximize 1T min(λ( j), 1)
subject to ST ν = λ

λi = 0, i /∈ I
λi ≥ 0, i ∈ I \ { j},

(17)

where ν ∈ R
m, λ ∈ R

n . Intuitively, this optimization problem is equivalent to (13)
after the removal of the j th column of S, and the j th entry of λ. In other words, this
is the problem of finding BI after the removal of R j , hence D j is precisely the set of
positive entries of λ.

Suppose that D1 = {R2, R3, . . . , Rl} for some 2 ≤ l ≤ k. From our earlier argu-
ments, we have λ = (λ1, λ2, . . . , λl , 0, . . . , 0) where λ2, λ3, . . . , λl > 0. Therefore,
for any feasible flux distribution v ∈ C, we get

v1 = −λ2

λ1
v2 − λ3

λ1
v3 − · · · − λl

λ1
vl .

Since R1 ∈ I, thus λ1 < 0. We see that for any such λ, λv = 0 is actually a DCE,
hence this proves the first part of Theorem 3.1. Up to now, this is the second kind of
QFCA positive certificates, corresponding to the directional coupling relations.

The only remaining case would be if Ri /∈ I and R j ∈ I. By definition, Ri −→ R j

if and only if after the removal of R j , Ri becomes blocked. Thus, we can resolve
this case by finding BR after the removal of R j and the irreversible reactions which
imply it, namely D j . Hence, the negative certificates can found by solving (11) after

substituting S and ei by S(D j∪{R j }) and e
(D j∪{R j })
i , respectively.

Tofinish the proof ofTheorem3.1, the third andfinal kind of positive certificates that
theQFCAalgorithmcomputes is the fictitiousmetabolite formof anEDCE.Therefore,
it is supposed to be of the form λ = ST ν such that λl = 0 for all l /∈ D j ∪ {i, j},
and li �= 0. Like the previous cases, we solve for this fictitious metabolite form of an
EDCE by the following analogue of (14)
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Table 1 A bird’s eye view of QFCA

Positive certificates Negative certificates A

BR S(A)u = 0 ∅
EDCE

(
S(A)

)T x = e(A)
i e(A)

i
T
u = 1 D j ∪ {R j }

FCE { j}

BI maximize 1T min(λ(A), 1) maximize 1T min(vI , 1) ∅
DCE subject to ST ν = λ subject to v ∈ C { j}

λi = 0, i /∈ I vA = 0

λi ≥ 0, i ∈ I \ A

(S(D j∪{R j }))T x = e
(D j∪{R j })
i .

In the end, by the definition of partial coupling Ri ←→ R j if and only if both
Ri −→ R j and R j −→ Ri . Therefore, this part reduces to the previous parts and we
determine a partial coupling relation by either a pair of positive certificates to prove
or a single negative certificate to disprove it. For an overview, see Table 1.

As a final remark, one can use the same negative certificates for the full coupling
relations too, because if such a negative certificate exists the pair of interest cannot
be fully coupled. However, only in the case that the reactions are partially but not
fully coupled, though there does not exist any such negative certificate, yet they are
not fully coupled to each other. We waive these elusive instances of partially but not
fully coupled reactions as they are rare and awkward (Marashi and Tefagh 2014).
Furthermore, there are always positive certificates which can be used instead of nega-
tive certificates, particularly for the full coupling which is itself defined by a positive
certificate, namely FCE.

4 Discussion

One possible biological interpretation of the positive certificates is from viewing the
dual variable ν as the vector of chemical potentials for different metabolites inM. In
this perspective, the dual variable λ is the vector of potential differences between the
products and the reactants for different reactions inR.

If there exists a potential vector ν for which all the reactions have nonnegative
potential differences and some reactions have strictly positive ones, then this is a posi-
tive certificate that the latter reactions must be blocked. Extending the same argument
for the flux coupling relations, if a potential difference vector λ is positive only for one
reaction Ri , then the activity of any reaction with strictly negative potential difference
implies the activity of Ri .

A thermodynamic constraintwhich has gained popularity inmany recent constraint-
based models is the loop-law (Beard et al. 2004), which itself is a special case of the
second law of Thermodynamics. For the interested reader, we note that though our
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approach can also be interpreted by the second law of Thermodynamics applied to
the whole system instead of single reactions, this is different from the loop-law which
asserts negative potential difference for every active reaction. Here, we do not intend
to delve in greater depth and seek to explore a different direction.

Another interpretation for λ that we give in here is to think of it as a fictitious
metabolite like the example depicted in Fig. 1b. Since by Theorem 2.1 we have ST ν =
λ, the dual variable λ is a linear combination of metabolites. As a consequence, it can
be treated as a metabolite itself. In particular, the steady-state constraint holds for λ

because for any feasible flux distribution v, it holds that

λT v = νT Sv = νT 0 = 0.

Considering the mass balance for this fictitious metabolite, if it is a dead-end
whereby we mean it is either only produced or only consumed in the metabolic net-
work, then all of the reactions producing or consuming it must be blocked.

On the other hand, if λ is nonpositive for all but one reaction Ri , it means that the
only reaction producing this fictitious metabolite is Ri (see Fig. 2). Hence, the activity
of any of the reactions consuming it implies the activity of Ri .

This point of view may be of biological interest as well. Here follows the fictitious
metabolite computed by QFCA to find the reactions coupled to “ribose-5-phosphate
isomerase” from E. coli core model (Orth et al. 2010).

M = 4 × 13dpg[c] + 2 × 2pg[c] + 2 × 3pg[c]
+ 4.8756 × 6pgc[c] + 3.8756 × 6pgl[c] + 2 × actp[c]
− 2 × adp[c] − 4 × amp[c] + 2 × dhap[c]
− 1.8756 × e4p[c] + 2 × f 6p[c] + 4 × f dp[c]
+ 2 × g3p[c] + 2 × g6p[c] + 2 × pep[c]
+ 2 × pi[c] + 1 × pi[e] − 5.7513 × r5p[c]
+ 5.8756 × ru5p − D[c] − 1.8756 × s7p[c]
+ 5.8756 × xu5p − D[c]

Looking up the full names of these metabolites, they are nearly all the metabolites
in this network which contain phosphate.

• 3-Phospho-d-glyceroyl-phosphate
• d-Glycerate-2-phosphate
• 3-Phospho-d-glycerate
• 6-Phospho-d-gluconate
• 6-phospho-d-glucono-1-5-lactone
• Acetyl-phosphate
• ADP
• AMP
• Dihydroxyacetone-phosphate
• d-Erythrose-4-phosphate
• d-Fructose-6-phosphate
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• d-Fructose-1-6-bisphosphate
• Glyceraldehyde-3-phosphate
• d-Glucose-6-phosphate
• Phosphoenolpyruvate
• Phosphate (pi[c])
• Phosphate (pi[e])
• alpha-d-Ribose-5-phosphate
• d-Ribulose-5-phosphate
• Sedoheptulose-7-phosphate
• d-Xylulose-5-phosphate

We have observed the same property for any other reaction in the instances we
looked through, namely, the associated fictitious metabolite found by QFCA is a
linear combination of the biologically relevant metabolites. In conclusion, the concept
of fictitious metabolite introduced here can be a subject of future research, especially
insightful for genome-scale metabolic networks where all the biological pathways
cannot be annotated manually.

5 Applications of QFCA

5.1 A quantitative approach to FCA

QFCA redefines coupling relations in a more informative setting than FCA without
losing any generality. The fact that the strength of all kinds of flux coupling relations
can be measured numerically has not been investigated up to now. More specifically,
(15) implies that

v j ≥ cdvd , ∀Rd ∈ D j ,

and (16) implies that

v j ≥ c′
ivi .

Conversely, we claim that all such lower bounds can be derived from some DCEs or
EDCEs.

Suppose that there exists a constant c �= 0 such that

v j ≥ cvi ,

for all the feasible flux distributions v ∈ C. Another way of putting this is to say that
the optimal objective value for the following LP is zero.

minimize v j − cvi
subject to v ∈ C
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This in turn is equivalent to the feasibility of the following dual problem.

maximize 0
subject to ST ν + e j − cei = λ

λi = 0, i /∈ I
λi ≥ 0, i ∈ I

However if ν� and λ� are dual feasible, then we have that

(1 − λ�
j )v j = (c + λ�

i )vi +
∑
d �=i, j

λ�
dvd ,

which is a DCE or EDCE that proves a stronger or at least equally strong inequality.
Historically, FCA itself was originally stated as flux ratio maximizations or min-

imizations (Burgard et al. 2004), which can also be done by DCEs and EDCEs as
we have just shown. The only competing approach is to consider the following linear
fractional program

minimize
v j
vi

subject to v ∈ C,

and followingCharnes–Cooper’s transformation (Horst andPardalos 2013), fix the rate
of Ri to 1 for Ri ∈ I and to both +1 and −1 for Ri /∈ I and then run flux variability
analysis (FVA) (Fell and Small 1986; Savinell and Palsson 1992; Gudmundsson and
Thiele 2010) to get lower and upper bounds on R j .

Although these bounds provide quantitative information on the dependencies
among reactions, this approach is complementary to what QFCA does. In the result of
FVA, except for the fully coupled reactions where the lower and upper bounds meet
at some specific value, we only get inequalities. However, QFCA gives equations like
FCE, DCE, and EDCE which can also turn into inequalities. From this point of view,
FVA is a complement to QFCA, not an alternative. Also it is worth mentioning, that
conducting this procedure requires quadraticallymanyLPs, namely 2(n−1)(ni+2nr ),
while QFCA is linear-time and only requires no more than n + 1 LPs to be solved.

5.2 Sensitivity analysis and themetabolic gap-filling problem

Genome-scalemetabolic network reconstructions are always susceptible to havemany
missing reactions creating a major challenge in the post-genomic era to pinpoint these
missing biological components (Rolfsson et al. 2011). In (Marashi and Bockmayr
2011), the authors discuss the significant sensitivity of FCA results to this incomplete
data. The main point is that we have no clue which blocked reactions can become
unblocked after the addition of some missing reactions to the metabolic network.
QFCA pinpoints the associated metabolites which cause any single flux coupling
relation or blocked reaction as was discussed in Sect. 4. Therefore, even if some
metabolites are suspect to involvemissing reactions, we still knowwhich flux coupling
relations or blocked reactions are for sure true anyway.
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More generally, suppose that we replace I by another close enough I ′, and S by S′
where a few entries have changed, and even some columns are added. What is key in
the fictitious metabolite form of the flux coupling equations is that if they satisfy the
conditions for positive certificates, it does not matter how they have been discovered in
the first place. We can pad zeros to ν corresponding to the added columns, and it might
be the case that S′T ν = λ still holds because ν is often sparse and it is only enough
that the stoichiometry of the metabolites for which νi �= 0 is not changed. Then again,
λ is often sparse, and it might satisfy the required irreversibility conditions since it is
only enough that the irreversibility of the reactions for which λi > 0 is not changed
for DCEs, and there is no requirement for FCEs and EDCEs.

To the best of our knowledge, all the other FCA methods rely on the optimality
of the solutions to LPs like (7) to prove flux coupling relations in the generic case,
in contrast to the easily verifiable certificates of QFCA. Consequently, their results
are potentially vulnerable to any single missing reaction unless we double-check the
optimality of the corresponding solutions. For QFCA the sanity-check, as explained
in the previous paragraph, is much more computationally efficient since feasibility
[e.g. for DCE, with respect to the constraint of (17)] is enough to test if positive
certificates are valid. Depending on the confidence of our model, one can search for
more robust positive certificates by sparse regularization.

In the metabolic gap-filling problem (Reed et al. 2006; Satish Kumar et al. 2007;
Orth and Palsson 2010; Thiele et al. 2014), we search for a reaction which needs to
be added so that at least one formerly blocked reaction can admit a nonzero flux.
In our sensitivity analysis, we used the fact that for each flux coupling relation or
blocked reaction, the corresponding QFCA certificates specify the liable metabolites.
Turning this argument around, fictitious dead-end metabolites implicitly mark the
responsible subnetworks for blocked reactions. In the metabolic gap filling problem,
we can restrict our search to these subnetworks because any reaction outside them is
provably irrelevant.

5.3 Implementation and runtime

All the examples in this study were conducted by the accompanying MATLAB©

package freely available for non-commercial use atGitHub1. This package implements
QFCA as described in Procedure 1, using Gurobi™ optimizer or the built-in linprog
of MATLAB© as the underlying LP solver. For convenience in comparing the results,
we use the same format for the output as F2C2, i.e., a 0-1 indicator vector b specifying
the blocked reactions by ones, and an n × n flux coupling matrix A with the possible
values 0, 1, 2, 3, 4 for its (i, j) entry indicating uncoupled, fully coupled, partially
coupled, reaction i is directionally coupled to j , reaction j is directionally coupled to
i , respectively.

From our earlier discussions in Sect. 3, QFCA flux coupling relations are computed
by solving at most n LPs in total. If the initial metabolic network is not consistent,
the preprocessing step associated with removing the blocked reactions requires one
additional LP.

1 https://mtefagh.github.io/qfca/.
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Procedure 1 QFCA
Input: M,R, S,I
Output: A, b
Identifying the blocked reactions and removing them from the metabolic network Sect. 3.2
Aggregating all the isozymes and removing the newly blocked reactions once more (Burgard et al. 2004)
Finding the fully coupled pairs of reactions and merging each pair into a single one (Larhlimi et al. 2012)
Computing the set of fully reversible reactions and the reversibility type pruning (David et al. 2011)
Identifying the directional and partial coupling relations by positive certificates Sect. 3.3

Fig. 5 QFCA average runtime is 7% and 68% of F2C2 average runtime, respectively

Further speed-up is achieved by implementing two preprocessing techniques which
prune some trivial cases by solving merely one LP, namely the reversibility type
pruning as explained in FFCA (David et al. 2011), and the aggregation of isozymes as
explained in flux coupling finder (FCF) (Burgard et al. 2004) (afterward, we compute
the blocked reactions since the reaction pairs that become blocked after merging
isozymes are fully coupled to each other). Also, we merge the fully coupled reactions
after identifying them in the sameway as F2C2 [see Figure 1 in (Larhlimi et al. 2012)].

Comparing the runtime of QFCAwith F2C2which is the state-of-the-art algorithm,
we see substantial improvements in performance (solving 43 LPs and 9 systems of
linear equations) when the metabolic network has mostly irreversible reactions, e.g.,
version 3 of the YEASTNET (Herrgård et al. 2008) (see Fig. 5a), and comparable per-
formance (solving 5458 LPs and 474 systems of linear equations) when the metabolic
network hasmany reversible reactions, e.g., Recon3D (Brunk et al. 2018) (see Fig. 5b).
Note that both algorithms yield the same result, i.e., all the directionally, partially, and
fully coupled pairs of reactions.

6 Conclusions

The main significance of this work is that all the flux coupling relations, initially
proposed by FCA, can be obtained by the more informative flux coupling equations
(see Sect. 2.3). In most cases, we should compromise performance in order to get
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more information, but in this case, it turns out that the more general approach is even
more efficient from the computational viewpoint as demonstrated by both a theoretical
worst-case analysis (see Sect. 3.1), and two real-world examples.On thewhole, besides
investigating the new concepts (see Sect. 4), we can reproduce many of the previously
done research more precisely (see Sect. 5.1), more robustly (see Sect. 5.2), and more
efficiently (see Sect. 5.3).

Appendix

Derivation of the dual problem for (10)

For the standard definitions from the theory of Lagrange duality used in this appendix,
we refer the reader to the fifth chapter of (Boyd and Vandenberghe 2004).

By definition, the Lagrangian for the LP (10) is equal to

L(u, v, λ1, λ2, λ3, ν) = −1T u + νT Sv + λT
1 (u − vI ) + λT

2 (u − 1) + λT
3 (−u),

where λ1, λ2, λ3 ∈ R
k , and ν ∈ R

m are the Lagrange dual variables. The Lagrange
dual function for this Lagrangian is defined as

g(λ1, λ2, λ3, ν) = inf
u∈Rk ,v∈Rn

L(u, v, λ1, λ2, λ3, ν).

Let p� denote the optimal objective value and assume λi ≥ 0 for i = 1, 2, 3. If u�

and v� are optimal, then

g(λ1, λ2, λ3, ν) = inf
u∈Rk ,v∈Rn

L(u, v, λ1, λ2, λ3, ν)

≤ L(
u�, v�, λ1, λ2, λ3, ν

)
= −1T u� + νT Sv� + λT

1

(
u� − v�

I

) + λT
2 (u� − 1) + λT

3 (−u�)

= −1T u� + λT
1

(
u� − v�

I

) + λT
2 (u� − 1) + λT

3 (−u�)

≤ −1T u�

= −p�.

Therefore, for any nonnegative λ1, λ2, λ3, and any ν, the negative Lagrange dual
function yields an upper bound on p�. In order to find the tightest bound, we should
solve the following Lagrange dual problem

maximize 1T λ2

subject to ST ν =
[

λ1
0

]

λ1 + λ2 ≥ 1
λ1 ≥ 0
λ2 ≥ 0,
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over the Lagrange dual variables. The proof follows from rewriting the Lagrangian as

L(u, v, λ1, λ2, λ3, ν) =
(
ST ν −

[
λ1
0

])T

v − λT
2 1 + (−1 + λ1 + λ2 − λ3)

T u.

Again, the dual LP is always both feasible (e.g., λ1 = λ2 = 0, ν = 0 is feasible) and
bounded (1T λ2 ≤ k).

For this primal-dual pair of LPs strong duality holds which means that the gap
between the dual optimal objective and the primal optimal objective p� is zero. In
other words, the bound given by the optimal dual variables is sharp.

It is easily seen that

λ�
2 = max(1 − λ�

1, 0),

has either zero or one entries just like the optimal u�. However, from zero duality gap

1T u� = 1T λ�
2,

hence λ�
2 and u

� have the same number of ones. Also by complementary slackness, λ�
2

is zero wherever u�
i �= 1. Altogether, λ�

2 and u
� are 0-1 vectors with the same sparsity

pattern, thus they are equal.
Ultimately, we can also rewrite the dual problem as (13) in analogy to the primal

problem (9), by substituting

λ =
[

λ1
0

]
.

Proofs of Sect. 2.4

Proof of Theorem 2.1 From the Lemma 2.2, we can assume the seemingly stronger
but equivalent right hand side of (4), which by definition means that λ ∈ ker(S)⊥.
From rank-nullity theorem we know that ker(S)⊥ = range(ST ). Thus, λ ∈ range(ST )

which in turn implies the desired result. The converse also holds because in the reverse
direction we have λ = ST ν and hence, for any v ∈ C,

λT v = νT Sv = νT 0 = 0.

��
Proof of Lemma 2.2 (⇐) is immediate from C ⊆ ker(S). For the other direction, sup-
pose that the left-hand side is true.

The proof goes by contradiction. Assume to the contrary that there exists u ∈ ker(S)

such that λT u �= 0. Let

v = u +
∑

i :Ri∈I
|ui |vi ,
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where for any Ri ∈ I, vi is an arbitrary feasible flux distribution with its i th flux
coefficient equal to one, namely vii = 1. One can easily show that the feasibility
constraints (1) and (2) hold for v, and hence v ∈ C.

On the other hand,

λT v −
∑

i :Ri∈I
|ui |λT vi = λT u �= 0,

by the way we constructed v. Therefore, at least one of the terms on the left hand side
is nonzero. The proof is complete since this is in contradiction with the assumption
that λT v = 0 for all v ∈ C. ��

Reversibility type correction

Earlier in Sect. 2.5, we have derived a naive method for reversibility type correction
by solving 2nr LPs. Recall that for R j /∈ I, our task is to figure out if both its forward
and reverse directions are unblocked, and as always we assume that all the blocked
reactions are already removed.

Following the same fashion, this time we try to search for positive certificates
proving that either the forward or reverse direction of R j becomes blocked when R j

is added to I (for the reverse direction we should also replace S j by −S j ). Applying
(13) to the resulting modified metabolic network, either λ� = 0 or λ�

j �= 0, otherwise
the same λ� can be considered as a positive certificate for the original metabolic
network where R j /∈ I proving that some reactions other than R j are blocked, which
is in contradiction to the assumption that we have already removed all the blocked
reactions.

If λ�
j < 0, then λ�

−λ�
j
is in fact a DCE which clearly shows v j > 0 for all v ∈ C.

If λ�
j > 0, then λ�

λ�
j
shows v j < 0 for all v ∈ C and becomes a DCE if we replace

S j by −S j permanently. If λ�
j = 0 and hence λ� = 0 for both directions, then R j is

truly reversible. As a consequence, we have just shown that in the modified metabolic
network either R j is not blocked in the selected direction or some other irreversible
reactions should also become blocked which means that R j is effectively irreversible
because some irreversible reactions are directionally coupled to it.

In this way, DCEs can also be used for reversibility type correction with two major
advantages over the naive method. The first one is that in order to derive DCEs with
either λ�

j < 0 or λ�
j > 0, it is enough to solve (17) as there is no constraint on the sign

of λ j . This is a twofold decrease in the number of required LPs and brings the total
number of them down to nr . The second advantage is that we also get the D j for free
by the same LP.
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