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Managing Power Consumption in Networks on Chips

Tajana Simunic, Stephen P. Boyd, and Peter Glynn, Member, IEEE

Abstract—In this paper, we present a new methodology for
managing power consumption of networks-on-chips (NOCs). A
power management problem is formulated for the first time using
closed-loop control concepts. We introduce an estimator and a
controller that implement our power management methodology.
The estimator is capable of very fast and accurate tracking of
changes in the system parameters. Parameters estimated are used
to form the system model. Our system model combines node and
network centric power management decisions. Node centric power
management assumes no a priori knowledge of requests coming in
from outside the core. Thus, it implements a more traditional dy-
namic voltage scaling and power management control algorithms.
Network-centric power management utilizes interaction with the
other system cores regarding the power and the quality of service
(QoS) needs. The overall system model is based on Renewal theory
and, thus, guarantees globally optimal results. We introduce a
fast optimization method that runs multiple orders of magnitude
faster than the previous optimization approaches while still having
the same accuracy in obtaining the power management control.
Finally, our controller implements the results of optimization in
either hardware or software. The new methodology for power
management of NOCs is tested on a system consisting of four
satellite units, each implementing an estimator and a controller
capable of both node and network centric power management.
Our results show large savings in power with good QoS.

Index Terms—Energy management, low power, regenerative
stochastic processes, system analysis and design.

I. INTRODUCTION

UTURE technology will make it possible to place an even

larger number of transistors on a single die, together with
many different layers of interconnect. Today’s system-on—chips
(SOCs) are designed as a tightly interconnected set of cores,
where all components share the same system clock, and the
communication between components is via shared-medium
busses. Even though design implementation is limited by
wire density, currently wires toggle approximately only 10%
of the time [2]. As the features sizes shrink, and the overall
chip size increases, the interconnects start behaving as lossy
transmission lines. Crosstalk, electro-magnetic interference,
and switching noise cause higher incidence of data errors. Line
delays have become very long as compared to gate delays
causing synchronization problems between cores. A significant
amount of power is dissipated on long interconnects and in
clocking network. Lowering the power supplies and designing
smaller logic swing circuits is one way to help with the overall
power consumption, but it comes at the cost of higher data
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errors. In fact, power savings obtained by only scaling down
supply voltage levels are not sufficient to compensate for higher
complexity, larger interconnect capacitance and resistance,
higher operating frequency, and increased gate leakage [5].

One solution to these problems is to treat SOCs as micro-net-
works, or networks On chips (NOCs) where the interconnections
are designed using an adaptation of the protocol stack [1], [2],
[7]. Networks have a much higher bandwidth due to multiple
concurrent connections. They have regular structure, so the
design of global wires can be fully optimized and as a result
their properties are more predictable. Overall performance and
scalability increase since the networking resources are shared.
Scheduling of traffic on shared resources prevents latency in-
creases on critical signals. Networking model decouples the
communication layers so that design and synthesis of each
layer is simpler and can be done separately. In addition, de-
coupling enables easier management of power consumption
and performance at the level of communicating cores.

This work presents a new methodology for managing power
consumption in NOCs. The power management optimization
problem is formulated and solved for the first time using a
closed-loop control model with a combination of node and
network centric power management approaches. Each com-
municating core has a power manager (PM) that consists of
an estimator and a controller. The estimator tracks changes
in the state of the local core, incoming traffic to the core
(node-centric) and the special requests for power management
coming from the other cores on the network (network-centric).
All estimated parameters define the system model. Our model
expands the Renewal model presented previously in [14] to
combine node and network centric approaches into one, in
addition to including expanded state space needed for dynamic
voltage scaling (DVS) in NOCs. We guarantee globally op-
timal control based on this model. Our new fast optimization
methodology improves optimization speed by multiple orders
of magnitude over the old approaches. Finally, we also present
both hardware and software implementations for the optimal
controller. We implemented our approach on a sample system
of four cores in one NOC and document savings of a factor of
four due to our methodology.

The rest of the paper is organized as follows. Section II dis-
cusses related work. We introduce our approach for managing
power in NOCs in Section III. The estimator, introduced in Sec-
tion IV, tracks all changes in system behavior and feeds that in-
formation to our Renewal system model presented in Section V.
The controller, discussed in Section VI, implements both power
management and voltage scaling decisions obtained from the
optimization step. A sample design of a power management
system for NOC is presented in Section VII, along with the
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experimental results. Finally, the Section VIII summarizes the
contributions of our paper.

II. RELATED WORK

Design of NOCs is a relatively new field with numerous chal-
lenges. The first challenge is the design of the communica-
tion network between the cores in a NOC. More recently, there
have been a few publications that define the NOC architec-
ture based on the packet communication model [4]. The work
presented in [3] uses fat tree router topology to form an inte-
grated packet switched network with message passing protocol
and 32-b packet sizes. Much larger packet sizes (256 data and
38 control bits) and tiled architecture are suggested in [2]. The
communication layers in NOCs can be partitioned much like
the structure proposed by the OSI Reference Model for com-
puter networks in [1] and [7]. MESCAL provides tools for cor-
rect-by-construction protocol stack [1]. The layers of protocols
encapsulate original computation cores to maximize reusability.
Adapters are used to bridge the differences between communi-
cation needs of the cores. An example implementation is the
Maia processor [8], which consists of 21 satellite units con-
nected via two-level hierarchical reconfigurable network. Large
energy savings were observed due to the ability of Maia to re-
configure itself according to application needs.

Reduction of energy consumption in NOCs is another chal-
lenge that needs to be considered, in tandem with the design
of the on-chip communication network [7]. Power savings ob-
tained by only scaling down supply voltage levels are not going
to be sufficient to compensate for a higher complexity, a larger
interconnect capacitance and resistance, a higher operating fre-
quency, and an increased gate leakage [5]. Previous work for
energy management of NOCs mainly focused on controlling
the power consumption of interconnects [6], while neglecting
managing power of the cores. An outline of possible approaches
for energy savings in NOC cores is presented in [7]. Two
approaches are suggested: node-centric and network-centric,
but no specific implementation issues are discussed. In this
paper, we present an optimal way to implement both node
and network centric approaches using a closed-loop control
model.

Many of the cores that are of interest in NOC design al-
ready have multiple power and performance states which can
be exploited. Dynamic power management (DPM) and DVS al-
gorithms presented to date [10]-[13], [15]-[25] have been de-
signed with portable systems in mind, not NOCs with very fast
response times. In addition, they are targeted devices such as
hard disks or wireless LAN that in our case is equivalent to
node-centric level in NOCs, thus, there is not accounting for
network-centric power management. Most DPM and DVS algo-
rithms are deterministic in nature. Deterministic design method-
ology used in today’s designs is being replaced by statistical
modeling, to account for unreliability of the on-chip communi-
cation and nondeterministic nature of user’s requests. As a re-
sult, there is a need to develop stochastic model of NOCs to be
used as the basis for optimization of power consumption under
QoS constraints.

In the past, stochastic models for DPM at the system level
have been formulated using Markov models with open-loop
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control, where statistics of the device are collected and charac-
terized ahead of time, and the control is derived based on those
with no adaptation at run time [10], [12], [13]. An exception is
the adaptive approach presented in [11], that uses only mem-
oryless distributions to describe the history-dependent system
behavior. In contrast, our model of NOCs is based on Renewal
theory concepts, which enables us to use nonexponential
distributions to describe both node and network centric core
behaviors. We accurately adapt to any changes in the system at
run-time with the first closed-loop power management system
for NOCs. When changes in any of the model parameters are
detected at run-time, our new fast optimization method quickly
reevaluates both the power management and the voltage scaling
control. Section III gives an overview of our approach for
power management in NOCs.

III. POWER MANAGEMENT IN NOCSs

NOC:s consist of a set of cores connected with the communi-
cation network. Fig. 1 shows a sample NOC we will be refer-
ring to throughout this paper. The NOC consists of four cores:
MPEG audio, video, speech processing, and communication
core. The cores communicate with each other via router using a
networking protocol. The design of the networking protocol for
NOC:s is beyond the scope of this paper, but has been addressed
in [2] and [3]. In this paper, we enhance each core’s ability to
control its power states by enabling closed-loop integrated node
and network centric power management with DVS.

In order to compute the power manager’s (PM’s) control, we
need to develop a system model. We model NOC using Renewal
theory as a queuing network with a number of service points
representing cores. Management of energy consumption under
QoS constraints is formulated as a closed-loop stochastic con-
trol problem.

Control theory defines three different entities in a closed-loop
control system: a system under control, an estimator, and a con-
troller. PM, as shown in Fig. 2, contains the controller and the
estimator. The estimator observes the requests coming into the
core’s queue (Core Traffic in Fig. 2), the state of the core and the
incoming power management requests from the network (Net-
work PM Request in Fig. 2). Based on the observations, it tracks
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any changes in the system parameters. When a change is de-
tected, it estimates the new parameter value, and recalculates the
power management control using our fast-optimization method.
The controller implements power management control calcu-
lated by the estimator. It gives commands to the core that deter-
mine its performance and energy characteristics (frequency and
voltage) in the active state, and chooses when to transition the
core into one of the available low-power states when the core is
idle.

To illustrate our power management system operation, we
will use the NOC shown in Fig. 1 with streaming MP3 audio
example. Let us assume that initially all cores in the NOC are
in the sleep state. The MP3 core’s controller starts the transi-
tion from the sleep into the active state as soon as the user re-
quest arrives to it via core traffic input. Right at the beginning
of initialization of MP3 decoder, the MP3 core PM also sends a
network request via network PM request port to the communi-
cations core to start its wakeup process. Thus, any performance
penalty that might have been present without network centric
power management is now masked. Next, the MP3 core receives
encoded MP3 stream data from the communications core via
core traffic input. MP3 estimator watches for the changes in
the incoming data and decoding rates or a discrepancy between
measured and desired MP3 QoS parameters at runtime. Upon
detection, it recalculates the power management control using
our system model and our fast optimization method and, thus,
closes the optimization loop. The results of the detection are
both new power management and DVS control. For example,
when a new MP3 decoding session starts, the MP3 estimator
needs to match the incoming data rate with the decoding rate
so that there is no buffer overflow (modeled as a queue in our
system), and so QoS requirements, such as frame delay, are met.
This is done by setting appropriate processing speed and voltage
during the decoding time. In addition, once the current MP3 ses-
sion ends, the estimator uses the calculated power management
policy to decide when the MP3 core should go into a low-power
state. Once the communication’s core services are not required
anymore, the communication core’s PM is notified via a net-
work PM request. At that point, if no other requests are pending,
the communications core can enter a sleep state without any ad-
ditional idle time. As a result, the amount of energy wasted while
the core is idle is reduced. Section IV describes in more details
our closed-loop power management system.

IV. ESTIMATOR

The main task of the estimator is to observe the system be-
havior and based on that to estimate the parameters needed for

optimization and control. The quality of power management de-
cisions strongly depends on estimator’s ability to track changes
of critical parameters at runtime. NOC power management re-
quires estimation of workload characteristics, core parameters,
and buffering behavior.

A. Workload Characteristics

Each core’s workload includes request arrivals to the active
state (buffer is not empty), the idle states (buffer is empty), and
the network request arrivals. We distinguish between active and
idle state arrivals, as they are characterized by two different dis-
tributions, and they also signify a different type of a decision on
the part of the PM. In the active state, PM decides only on the
appropriate frequency and voltage setting, where as in the idle
state the primary decision is which low-power state core should
transition to. The distribution of network requests only affects
the decisions made by the PM in the idle and the low-power
states.

Pyorkloaat = 1 — e_Aworkloadet . (D

Request Arrivals to Nonempty Buffer (Active State): In the
active state, the workload is modeled using exponential distri-
bution with request interarrival rate Ayworkioad @ shown in (1).
For example, the workload’s stochastic model in the active
state can be defined by the frame interarrival time distribution
for multimedia requests. We measured MPEG2 video (CIF
size) and MP3 audio frame arrival times by monitoring the
accesses to the WLAN core and found a good fit with the
exponential distribution.

Detecting the change in rate is a critical part of optimally
matching processing frequency and voltage to the requirements
of the user. For example, the rate of MP3 audio frames coming
from the WLAN core can change drastically due to the envi-
ronment. The servicing rate can change due to variance in the
computation needed between MPEG frames. The most optimal
method of tracking rate changes is using the maximum-likeli-
hood estimator shown in (2) (see [28] for details)

c—1
H )\Oe—AOAt] H}D:c )\ne—k,,,Atj
j=1

Pmax = w ' (2)
H )\Oe—AoAt]‘
Jj=1

Maximum-likelihood ratio computes the ratio between the
probability that a change in rate did occur (numerator in (2) and
the probability that the rate did not change (denominator). This
estimator guarantees optimal results with parameters defined as
follows: w is the size of the window that holds the last set of
interarrival times At, c is the point in the past when the change
in rate occurred, \,, is the new rate, and )\, is the old rate.

A more efficient way to compute the maximum-likelihood
ratio at runtime is to calculate the natural log of Py, as shown
in (3). Note that in this equation only the sum of decoding (or
interarrival) times needs to be updated upon every service com-
pletion (or arrival). A set of possible rates, A, and the window
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size, w, are predefined by the system designer. Values A,, and
Ao, come from the set A

A -
In(Paax) = (w—c+1)In v (An — o) jz_;mj. 3)

The change point detection algorithm consists of two major
tasks: offline characterization and online threshold detection.
Offline characterization is done using stochastic simulation over
a set of all possible rates, A,, and \,, to obtain the value of
In(Pmax) that is sufficient to detect the change in rate. The re-
sults are accumulated in a histogram, and then the value of max-
imum-likelihood ratio that gives a very high probability that the
rate has changed is chosen for every pair of rates under consid-
eration. In our paper, we selected 99.5% likelihood.

Online detection collects the interarrival time sums at run-
time and calculates the maximum-likelihood ratio. If the max-
imum-likelihood ratio computed is greater than the one obtained
from the histogram, then there is 99.5% likelihood that the rate
change occurred, and thus the CPU frequency and voltage need
to be adjusted. We found that a window of w = 100 is large
enough in our experiments. Larger windows will cause longer
execution times, while much shorter windows do not contain
statistically large enough sample and, thus, give unstable results.

Request Arrivals to Empty Buffer (Idle State): Once the
buffer is empty, the first next arriving request defines the length
of the idle time. The longer the idle time, the more savings we
obtain by transitioning to a low-power state. Our measurements
indicate that the distribution of workload idle times has to be
modeled with the heavy-tailed distribution, such as the Pareto
distribution. Similar conclusions based on traffic analysis for
multimedia traffic in on-chip networks were reached in [27].
Fig. 3 shows the log—log plot of the tail of the two experimental
distributions collected by observing idle times in the communi-
cation packet arrivals over a period of two hours and the Pareto
fits to each set of data. The top two lines represent the first set
of experimental results and the corresponding Pareto fit, while
the bottom two are the second set. Clearly, the characteristics
of the two distributions are quite different since the usage
patterns changed during the collection period. Previous work
[13] assumed that the workload is stationary and then based
on a priori analysis developed the optimal control. When
the workload is not stationary, as shown by this example, the
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control developed in such a way will not be optimal. Thus, it is
important to be able to estimate Pareto parameters at runtime,
and then to recalculate the optimal control.

The tail of the Pareto distribution with characteristic index a

Pi(At; > At) = bAE® (4)

and normalizing constant b is shown in (4). The tail of a distri-
bution gives the probability that the idle time will be as long or
longer than a given time.

The parameters of Pareto distribution can be estimated

N N
—ElnAti NlnPi—ZlnPj

1=1 7=1
a =
N N
Z In Atl (N In Atz — E In At])
i=1 j=1
b— 61/N(Zj\;1 InPj+a Z;V:l In At;) )

using the least-squares method on NV samples of idle times At
as shown in (5). Note that on the log plot (see Fig. 3) Pareto
distribution is a straight line with slope a and intercept b. On
every new idle time sample, only the probability value, Py, and
the arrival time, Aty, need to be updated before recalculating
parameters a and b.

Network Request Arrivals: There are two types of network
requests: activation (wakeup) and release (sleep) of a core. We
model the network request arrivals with two exponential distri-
butions fully defined by wakeup request arrival rate, A,etw, and
the network sleep request rate, Ayets. The changes in network
request rates can be tracked with the maximum-likelihood ratio
as was shown for core request arrival or servicing rates. The
network requests can arrive at any point in time, but can only
cause changes in core’s behavior in two distinct situations. The
wakeup request arrival causes the core to wakeup immediately
from a low-power state regardless of the service request arrival,
where as a network sleep command transitions a core to sleep
when idle, regardless of the decision of core’s PM. Thus, the
network request arrivals only affect changes in decisions made
regarding low-power state transitions. Any changes of network
wakeup and sleep request arrival rates are tracked by the esti-
mator at runtime as they have an effect on the final power man-
agement control.

B. Core Parameters

Three main core parameters to estimate include: core fre-
quency and voltage scaling characteristics, the time distribution
for servicing incoming core requests, and the characteristics of
the low-power states, such as the transition times to/from each
state. Some core characteristics can be determined at design
time as they depend on hardware parameters alone, such as the
number of core frequency and voltage settings. Other parame-
ters need to be tracked at run-time, for example the properties
of service time distributions.

Each NOC core has at least one main processor. Many
of the today’s processor have multiple active and low-power
states. For example, each of the cores we characterize has one
StrongARM processor, as shown in Fig. 1. The processor can be
configured at runtime by a simple write to a hardware register



100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 1, JANUARY 2004

to execute at one of eleven different frequencies. The number
of frequencies is predefined at design time. We measured the
transition time between two different frequency settings at
150 ps. For many applications (e.g., MPEG video or MP3
audio), this transition time is small enough that it does not
cause any perceivable overhead. For each frequency, there is a
minimum voltage the processor needs in order to run correctly,
but with lower energy consumption. The minimum voltage can
be obtained either from the datasheets, or by measurements.

Core servicing time is defined as the time it takes to process
an incoming request to a core. For example, servicing time for
MP3 core is defined as the time taken by the core to decode
an incoming MP3 frame. The time it takes for a core to ser-
vice requests in each of the active states follows an exponential
distribution. Detailed measurement results have been presented
in [13]. Although the general shape of the distribution remains
the same, the servicing rate, (Acore), changes depending on the
current core state. Thus, one of estimator’s jobs is to track the
servicing rate changes at run time

t—tmin

2 fmin < ¢ < tmax
Puniform = { 6l‘ﬂax_tlnin ’ min max (6)

else.

In addition to the active state, each core can support multiple
lower power states, such as: idle, sleep, and off. The core enters
idle state as soon as all impeding requests are processed. The
low-power state transitions are controlled by the PM. The tran-
sition time between the active and one of the low-power states
can be best described using the uniform probability distribution
shown in (6) where ¢,,,;, and ¢, are the minimum and the max-
imum transitions times. Typically, the more energy is saved in
a given low-power state, the longer the average transition time
to and from that state. The characterization of transition times
between different power states can be done at design time, as it
is only a function of hardware design parameters.

C. Buffering (or Queue) Behavior

Each core has a buffer associated with it that is used to store
requests that have not yet been serviced. In this paper, we model
the buffer using M/M/1 queuing model since both arrival and
servicing rates in the core’s active state follow the exponen-
tial distribution. Thus, the queue is characterized by the number
of requests pending service. For multimedia requests such as
MPEG video and audio, it is convenient to describe queue in
terms of the number of frames waiting in the frame buffer. De-
tailed measurement results justifying the M/M/1 queue model
have already been published [13]. The estimator tracks changes
in the queue size at runtime and feeds that information to the
controller.

We do not use a queue to model the buffering of network re-
quests, as such a buffer is not necessary. Network sleep request
causes a core to transition to sleep immediately from an idle
state and in any other state it is ignored. Network wakeup re-
quest starts the transition of core from a sleep to an active state.
If core was in any state other than sleep, the wakeup request
was disregarded. Thus, in both cases the network request either
causes an immediate transition, or has no effect on the system.

TABLE 1
SYSTEM CHARACTERISTICS
Component State Distribution Parameters

Workload Queue > 0 Exponential I\, 41000

Queue =0 Pareto 1, b
Core Active Exponential o, -V plot

[Transition [Uniform Umins max
Network [Wakeup Exponential  Ager,

Sleep Exponential [

D. Estimator Summary

Table I summarizes main parameters and distributions mod-
eled and tracked by the estimator. Workload model depends on
the number of requests waiting in the buffer (or queue). When
there is at least one request pending service in the queue, the
estimator uses exponential distribution to model core’s request
arrivals. Any changes in request arrival rate, Ayworkload, are de-
tected with maximum-likelihood ratio. As soon as the queue
is empty, an idle period begins. The estimator uses the Pareto
distribution to model the length of the idle times. Two param-
eters of Pareto distribution, a and b, are estimated at runtime
with least-squares method. The time to transition between var-
ious low-power states is modeled by the uniform distribution.
When core is actively processing requests pending in the queue,
it is said to be in the active state. Two different parameters are
observed at that time: core’s rate of servicing requests, Acore,
and frequency versus voltage-curve characteristic. Clearly, the
service rate directly depends both on the core’s frequency set-
ting and on the type of requests serviced. The frequency vesus
voltage characteristic determines the energy consumption and
the performance for a particular type of request. Finally, the net-
work requests follow exponential distribution model with two
different rates, Anetw and Anets, for wakeup and sleep network
requests. The estimator tracks changes in both rates using the
maximum-likelihood ratio. Given the system characteristics and
parameters described above, we can now derive the full sto-
chastic system model.

V. STOCHASTIC SYSTEM MODEL

Each core can be modeled using a Renewal model similar to
the one presented in [13] for portable devices. In contrast to the
work presented in [13], here we expand the system model to
include voltage scaling, incoming network wakeup, and sleep
requests. As a result, we have a unified stochastic model that
is guaranteed to give optimal power management decisions
for systems with communicating cores. Thus, we obtain extra
power savings because each core can transition to sleep as soon
as other cores send it a release command (instead of waiting for
the PMs randomized timeout as in [13]). We can also wakeup a
core from the sleep state preemptively instead of having to wait
for the first request arrival and thus incurring the performance
penalty due to the time taken to transition a core back into the
active state. Finally, our expanded model integrates voltage
scaling together with power management.

The expanded Renewal model for each core is shown in
Fig. 4. Each node shows the core’s queue (local buffer) and
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power states, while each arc shows the transitions between the
states and the conditions under which the transitions occur.
Table I lists the distributions that model the transitions. We
highlighted our additions to the model presented in [13]. Now
there are two ways that the core can transition to sleep: core
sleep command and network sleep request. The core sleep
command is given based on core’s power management control,
which waits for a randomized timeout value before starting the
transition to sleep. Network sleep request causes an immediate
transition to sleep from the idle state. Similarly, there are two
ways to wake up a core: request arrival and network wakeup
request. The wakeup request starts the transition to the active
state even when there are no requests pending in the queue.
Also, now we have a sequence of active states representing
different core frequency and voltage settings.

Renewal theory defines a state called renewal state, in which
the process statistically begins anew. The time between succes-
sive visits to renewal state is called renewal time, and one cycle
from renewal state, through other states and then back is called
a renewal. The main advantage of a Renewal model is that it
guarantees globally optimal results with very fast optimization
time. When obtaining the optimal power management control,
the complete cycle of transition from the idle state, through the
other power states and then back into the idle state can be viewed
as one renewal of the system. The problem of power manage-
ment optimization is to determine the optimal distribution of the
random variable ¢,,40_s that specifies when the transition from
the idle state to low-power state should occur based on the last
entry into the idle state. We assume that ¢,,,4_s takes on values
in[0,At,...,jAt,..., NAt], where j is an index, At is a frac-
tion of the break-even time of the core and N is the maximum
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time before the core would get to a low-power state (usually
set to an order of magnitude greater than the break-even time).
Break-even time is defined as the minimum length of time a
core should stay in a sleep state in order to recuperate the cost
of transition to and from it. It is a function of hardware param-
eters only.

The solution to the optimization problem can be viewed as a
table of probabilities (¢node_s), Wwhere each element p(j) speci-
fies the probability of transition from idle to a low-power state
indexed by time values jAt. Similarly, we define the renewal
time as (j), the energy spent as e(j), and the performance
penalty incurred during a transition as d(j). Our starting point in
the formulation of the optimization problem is the calculation of
renewal time, ¢(7), as seen in (7) at the bottom of the next page.

Fig. 5 shows three different state diagrams we need to con-
sider for calculation of the renewal time. The first two relate
to the node-centric power management approach, while the last
one is specific to the network-centric approach. The expected
renewal time calculations are shown right below the state tran-
sition diagrams. Note that while there is only one way to enter
the idle state from the active state (departure, or completion of
service request), there are two different ways to transition to
sleep out of idle (node sleep, node_s, and network sleep, net_s,
commands) and to active out of sleep state (request arrival and
network wakeup command, net_w). The calculation of the ex-
pected renewal time is shown in (7). The five terms in (8) mirror
all possible transitions shown in Fig. 5

E [t(.})](treq < tnode-sa tnet_s > treq) |tnode_s = JAt]

B Z <kAt + coro - Aworkload>

-p( req = k = At)p(tnet_s > kAL).  (8)

Since all four possible events: time of the request arrival
(treq), network sleep command (fpet_s), network wakeup
command (tnet_w), and node sleep command (tpode_s) are
independent from each other, the actual calculation of each of

t(j) =

[ ( )I(troq < fnodc Safnct s > troq)“nodc s — JAIL]

[t( I( req > tnode_S7 tnet_s > treq7 tnet_w > treq)|tnode_s = ]At]

[t( I( req > tnode_sa tnet_s < tnode_sa tnet_w > treq)|tnode_s = JAt]

7)

[t(.])[( req > tnode_sa tnet_s > treq7 tnet_'w < treq)|tn0de_s = ]At]
7)
)

[t(] I(troq > tnodc_87 tnot_s < tnodc_87 tnot_w < trcq)|tn0do_s = ]At] (7)
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the five terms is simplified. As an example, we show in (8) a
detailed calculation of the expected renewal time described in
condition i) for our expanded model. Note that in this particular
case network, wakeup command condition is not needed
since the system never goes to sleep. This equation states that
the expected renewal time is a sum of time spent in the idle
state (kAt), with the time needed to work off the request
that arrived while in the idle state (1/(Acore — Aworkload))s
weighed by the probability that node request arrives at time
kEAt, p(treq = kAt), and the network and node sleep command
arrive after that (p(tpet_s > kAt) and condition tyode_s = JAE
expressed in the top limit on the summation). All other terms in
the renewal time calculation are obtained in the similar manner

E[eidle (j)I(treq < tnode_s~/ tnet_s > treq) |tnode_s = ]At]

J
= Puie Y kAtp(treq = kA)P(tnet_s > KAL) (9)
k=0

Evaluation of energy and performance penalty are directly de-
rived from the expressions obtained for the renewal time. For ex-
ample, if we want to know how much energy is spent in the idle
state, e;q1e(7), for the condition i) of our expanded model, we
would just use the first term in (8) to obtain the expected time
spent in the idle state and weigh it with the power consumed
while idling, P,q1.. Equation (9) shows that calculation. In a sim-
ilar manner we can obtain the performance penalty, but instead
of using the power consumption, we just use the expected delay
overhead. Note that other QoS constraints can be added to this
problem, such as jitter, much in the same manner as we calcu-
lated energy and delay overhead.

Once we have calculated the expected renewal time, energy,
and performance penalty, we are ready to start the optimization.
The formulation of control optimization for the Renewal model
is shown in (10), where p(j) is the probability of transitioning
into low-power state after the system has been idle for time jAt,
d(7) is the expected performance penalty, ¢(j) is the expected
time until renewal, e(j) is the expected energy consumed, and
Ponstr 1s the user-defined power constraint. To simplify our dis-
cussion of the fast optimization method in Section VI, we also
define p, a, b, and ¢ € R™ as follows: p is the probability we
are solving for, a represents performance penalty (d), b is the
expected renewal time (), and c is the energy balance equa-
tion, e — tP.onstr- An open-loop optimization problem similar
to this one has already been solved for portable systems in [13]
by using a linear program solver. The optimal control is obtained
in tens of seconds, which is much too long for implementation
of the closed-loop power management control presented in this
paper. Thus, we next we describe a new, fast optimization algo-
rithm capable of solving the same problem in a matter of mil-
liseconds

. 2p()d()
a’p J

o~ SrO)

s.t. ctp = ZP(J)[G(J) - t(j)Pconstr] =0

min

1'p =" p(j) = 15p(j) > 0V j. (10)
J

The problem in (10) would be homogeneous except for the
constraint 1¥p = 1. In other words, if we replace the vector
p with p’ = ap, where o > 0, then p’ satisfies a’p’/b'p’ =
a’p/b'p (i.e, has the same objective value as p), c'p’ = 0, and
p’ > 0. It follows that we can replace the normalization 1tp = 1
with any other, such as, for example, b'p = 1. This replacement
is possible since we can assume that a and b parameters are
always greater than zero componentwise because they represent
positive quantities. This leads to the problem

min a'p’
st. cp' =0
bp'=1; p' >0 (11)

which is equivalent to (10) in the following sense: if p'x is the
solution of (11), then px = (b'p’ * /1'p'*)p’* is the solution of
(10).

We work with the problem in (11), which is a linear program
(LP) with n variables, and two constraints. By the basic theorem
of linear programming, there is always a solution which has only
two nonzero entries. Therefore, the original problem, in (10) has
the same property: there is always a solution p* which has only
two nonzero entries

max

s.t.

—v
uc+vb+a > 0. (12)
To solve the LP in (11) efficiently, we consider its dual
problem, which is LP shown in (12). The problem can further
be reformulated as a simple, unconstrained maximization
problem that is a function of only one scalar variable, u, as

min; (a; + uc;)

; (13)

max f(u) =

The function f(u) is piecewise linear and concave. In other
words, we seek two indexes, k& and [ such that

(ar +ucy)  (a;+uq)

flu) == = = (14)

with b /¢, > 0 and b;/¢; < 0. These two indexes allow us to
solve the primal LP in (11) since these two indexes can be taken
as the nonzero indices in the optimal p’. A solution of the primal
LP in (10) can be found by setting p;» = 0, except for j = k and
j = 1. We then solve the linear equations ctp’ = 0, b'p’ = 1, to
find the optimal p’.

Thus, obtaining the optimal result to the original problem re-
duces to solving the dual problem (11), which is a single variable
unconstrained optimization problem. This can be done several
ways. The simplest is to use bisection to find the optimal u (and
more importantly, the optimal indexes k and [). The selection
of the initial bracketing values should be done depending on the
problem characteristics. When optimizing NOC power manage-
ment control, the initial bracketing values are determined based
on core characteristics (e.g., break even time). The optimization
is triggered by the estimator when any of the system parameters
change. The final output of optimization is a table that specifies
probabilities of transitioning a core into each of the low-power
states. An example of optimal control is shown in Table II.
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TABLE 1I
SAMPLE CONTROLLER

Idle Time Transition

Source (ms) Probability
Node .0
No arrival |70 0.3
120 1.0
Arrival IAny time 1.0
Network Any time 1.0

VI. CONTROLLER

The controller’s job is to give commands to the core regarding
both power management and voltage scaling. Power manage-
ment decisions determine when to transition into a low-power
state and which of the available low-power states to transition
to. DVS implies a selection from one of the active states at run-
time depending on the estimator’s feedback.

The DPM control can be accessed from either software or
hardware, depending on how power management controller is
realized. The software implementation of the controller can be
described as follows. The controller generates a pseudorandom
number when the core becomes idle. The core remains idle
until either the probability of transition to the low-power state
is greater than the random number generated, or until workload
arrival forces the core’s transition into the active state. When the
core is in the low-power state, it stays there until the first arrival,
at which point it transitions back into the active state. Arrival of
network sleep command overrides node-centric control only in
the idle state before the transition to sleep has started. Similarly,
network wakeup command causes the core to transition to active
state only if it has been in a sleep state with no requests pending.
In all other cases, the optimal control behaves the same way as
if was only node centric.

Controller sets the new processor frequency and voltage
when either the incoming workload arrival rate (Aworkload)
or the core’s servicing rate (Acore) change. Changes in
both rates are tracked and computed by the estimator using
maximum-likelihood ratio. Often the relationship between
servicing rate and processor frequency is fixed for a given
application, and thus needs to be estimated only once per each
new application. Thus, run time estimation is primarily done
for the core’s workload incoming rate

)‘core

Delay =

(15)
Aworkload()\workload - )\core)

The controller uses the results of M/M/1 queuing theory to
obtain the appropriate control for DVS since both the workload
arrivals and service times follow an exponential distribution.
The goal of the controller is to set the voltage and frequency
of the processor for the newly estimated rate so that the pro-
cessing delay shown in (15), and thus the number of tasks to
be processed in the buffer, are kept constant. For example, if
the arrival rate for MP3 audio changes, (15) is used to obtain re-
quired decoding rate in order to keep the frame delay (and, thus,
performance) constant. When both workload and core rates are
changing, the change detected first is adapted to first.
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TABLE III
NOC SPECIFICATIONS

Specification IAudio {VideoComm.|Speech [Total
Active P(mW)  [700 1885 [1500 [1055 5140
Idle P(mW) 216 235 (1000 208 1659
Sleep P(mW) 0.3 14 (100 0.6 102.2
A-S-A time(ms) H5.6 154.6 40 5.6  |54.6
# DVS Settings {11 i1 B 11 11
DVS switch (us) }J150 150 [100 {150 150

VII. RESULTS

The power management methodology presented in this paper
is implemented for the sample NOC system shown in Fig. 1.
The system consists of four large cores: communication, speech
processing, MPEG audio, and video core. Power and perfor-
mance characteristics of each core are shown in Table III. Three
power states are supported by each core: active, idle, and sleep.
The transition time from active to sleep and back to active state
(shown in Table III as A-S-A time) is on the order of tens of mil-
liseconds, which is slow enough to allow for dynamic parameter
estimation and periodic control recalculation. Number of DVS
settings reflects the discrete frequency and voltage points each
cores processing unit can be set to. The transition time needed
to change from one to other frequency point is on the order of
hundreds of microseconds (labeled as DVS switch time).

Each core in NOC has a PM, that in turn consists of an es-
timator and a controller. Estimators job is to estimate the pa-
rameters needed to recalculate optimal control depending on the
changes in the core’s environment. The environment includes
incoming traffic from the chip network, and special power man-
agement requests from other cores. The controller implements
the optimal system control. The results highlight the quality
of the estimators, followed by the controller implementation
in hardware. Lastly, energy savings are contrasted when using
only the node-centric approach with the combined node and net-
work-centric power management.

A. Estimator

There are two core states in which power management deci-
sions are made. Appropriate service level is determined in the
active state (nonempty buffer), while the decision on when to
transition into the sleep state occurs in the idle state (empty
buffer). The quality of both decisions depends on the estima-
tion accuracy and speed. We first evaluate the estimation of the
request arrivals to a nonempty buffer, followed by the estima-
tion of the arrivals to an empty buffer.

Exponential distribution is used to model arrival times to a
nonempty buffer (or buffer with requests pending service), ser-
vice times of each core, the network wakeup and sleep request
arrivals. Each of these distributions is characterized with a rate:
Aworkloads Acores Anet_w> and Apet_s. Changes in these rates
can be due to many different factors, ranging from changes of
the type of workload, to different conditions in the wireless
medium. The estimator uses maximum-likelihood ratio shown
in (3) to detect a change in any of the exponential distribution
rates. An important advantage of maximum-likelihood ratio
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Fig. 6. Arrival rate estimation.

is that it guarantees optimal estimation results with relatively
small computation cost.

Since the estimation is done in the same way for each of the
four exponential distribution rates, we present results for esti-
mating when incoming arrival frame rate in the MPEG video
core changes from 10 to 60 frames/s. The maximum-likelihood
ratio approach is compared to both ideal and exponential av-
erage detection. The new exponential average rate, Aoy , is cal-
culated using a current estimate for the rate, A, and weighing
it against the average value computed to date, A%'9, with a gain
parameter g

\new _ (1 _ g))\old 4 g)\mlr.

ave ave

(16)

Fig. 6 shows the results of estimation. The maximum-likeli-
hood algorithm detects the exact change in rate. Slight delay is
due to a number of samples needed before the change can be de-
tected. The effect of this delay is very minor to the overall power
management control. It is very close to ideal detection which
knows ahead of time when the rate will change. In contrast, the
exponential average detection for two different values of gain
shows very delayed and unstable detection characteristics. The
closer detection is to the exact time change in rate occurs, the
more unstable exponential average detection becomes. Since
the computational overhead of maximum-likelihood detection
is about the same as with the exponential detection, clearly our
approach to estimation for exponential rate changes is the better
one to use.

Distribution of the length of time spent in the idle state, mod-
eled by the Pareto distribution, also needs to be estimated at
run time, as it is one of the most important parameters deter-
mining the quality of the power management control. Our esti-
mator tracks changes in two critical parameters of the the dis-
tribution, a and b, as shown in (3). Since Pareto distribution
follows a straight line on a log plot (see Fig. 3), we can use
the least squares method to find the line’s slope and intercept.
Fig. 7 shows how the estimator detects a change in the idle time

I M"M\-WM
Q
=
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>
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E
B e Lstimate (a)
* Estimate(b)
0.01 | |
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100

Fig. 7. Dynamic Pareto parameter estimates.

distribution on a communications core when the traffic pattern
changes between two examples shown in Fig. 3. The change is
most clearly observed in the intercept value. The Pareto param-
eter estimates are very fast and accurate with an average error
of only 2%.

B. Controller

The PMs controller can be realized in software, hardware, or
a combination of the two. When critical parameters change very
often, control and estimation should be realized in software. Re-
alizing a part of, or the whole controller in hardware lowers the
control overhead, with very minor additions to an already ex-
isting hardware PM (e.g., ARM cores) or an on-chip field pro-
grammable gate array (FPGA). This approach is very attractive
especially for cores where the control does not change much at
run time and, thus, does not need to be recomputed very often.
Since the software implementation has already been discussed,
we focus on the hardware implementation next.

There are three different components to the optimal controller:
the random number generator, the control, and the timer. The
timer is used to measure the length of idle period before the
control is evaluated. Typically, core’s processors already have
programmable timers aboard that can be used by the hardware
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TABLE IV
LocAL PM CONTROL FPGA SYNTHESIS RESULTS
LFSR| LFSR Regs | Control
Bits | # LABs | Max ns | # LABs | Max ns
5-15 1 4 2 35
TABLE V
LocAL PM CONTROL SYNOPSIS SYNTHESIS RESULTS
LFSR Regs Control
#FFs % area #igates | % area
5 14% 193 86%
9 14% 417 86%
15 12% 855 87%

controller. The simplest hardware implementation for random
number generator is to use the linear feedback shift register
(LFSR).

Results of controller synthesis into Altera’s EPM7032 FPGA
are shown in Table IV Control and LFSRs take up three logic
array blocks (LABs) for LFSR sizes ranging from 5 to 15 b.
We found through simulation that even with as little as 8 b, the
hardware LFSR gives results within 5% of optimal. In addition,
the time it takes to arrive at the decision is in the nanoseconds,
while the minimum idle times the PM would respond to are in
milliseconds. Controller is even faster when synthesized into
gates with Synopsis as shown in Table V. The LFSR area is
consistently about 12%—14% of the total area. Even the largest
design takes only 15 registers and 855 gates.

C. Node-Centric DVS and DPM

In this section, we present results of node-centric DVS and
power management with no consideration for network requests.
We start by comparing the energy savings the controller can ob-
tain when implementing DVS on MP3 audio core based on the
results of 1) the ideal detection algorithm, 2) the exponential
average approximation, and 3) the maximum processor perfor-
mance to 4) the maximume-likelihood algorithm presented in this
paper. For this purpose we combined six audio clips (labeled
A-F) totaling 653 seconds of audio, each running at a different
set of bit and sample rates. For all sequences, the frame arrival
rate varies between 16 and 44 frames/s. During decoding, the es-
timator detects changes in both arrival and decoding rates for the
MP3 audio sequences, and the controller responds by adjusting
the processor frequency and voltage. The resulting energy (k.J)
and average total frame delay (s) are displayed in Table VIL Our
controller, which relies on maximum-likelihood estimation, has
results very close to the ideal detection in terms of both perfor-
mance and energy savings. The maximum average frame delay
of 0.1 s corresponds to six extra frames of audio in the buffer.

We implemented DVS for two different video clips as well.
The arrival rate varies between 9 and 32 frames/s. The ideal
detection algorithm allows for 0.1 s average total frame delay
equivalent to two extra frames of video in the buffer. Energy
(kJ) and average total frame delay () are shown in Table VIIL
The exponential average shows poor performance and higher
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TABLE VI
NODE-CENTRIC DPM AND DVS
Algorithm | Energy (kJ) | Factor
None 4260 1.0
DVS 2663 1.6
DPM 2506 1.7
Both 1556 2.7
TABLE VII
MP3 Aubpio DVS
MP3 Result Ideal | Max | Exp. | Max
Sequence Lik. Ave.
ACEFBD | Energy (kJ) 196 | 217 | 225 | 316
Fr. Delay (s) 0.1 0.09 0.1 0
BADECF | Energy (k) 189 199 | 231 | 316
Fr. Delay (s) 0.1 0.09 [ 0.1 0
CEDAFB | Energy (kJ) 190 | 214 | 232 | 316
Fr. Delay (s) 0.1 0.04 0.1 0
TABLE VIII
MPEG VIDEO DVS
MPEG Result Ideal | Max | Exp. | Max
Video Clip Lik. | Ave.
Football Energy (kJ) 214 | 218 | 300 | 426
(875s) Fr. Delay (s) 0.1 [ 0.11 | 0.16 0
Terminator2 | Energy (kJ) 280 | 294 | 385 | 570
(1200s) Fr. Delay (s) 0.1 | 0.11 | 0.16 0

energy consumption due to its instability (see Fig. 6). The con-
troller that uses results of our maximum-likelihood estimator
performs well, with significant savings in energy.

Next, use a sequence of audio and video clips, separated by
idle time to study the tradeoffs when using DVS and DPM on
NOC. Table VI. contrasts system energy savings obtained with
only DVS implemented, followed by only power management
and finally also for the combination of the two approaches. We
obtain savings of a factor of 2.7 when expanding the PM to
include DVS with our change point detection algorithm.

D. Network-Centric Power Management

In this section, we contrast power savings obtainable when
using only node-centric power management, with additional
savings we can get when implementing network-centric ap-
proach. Table IX shows energy savings obtained for the NOC
shown in Fig. 1, with specifications listed in Table III. The
results were obtained by simulating the power states of the
NOC system as a whole, with real workload traces collected
from each respective core as an input to the simulator. The
results report a factor of savings in energy for both node and
network centric approaches with reference to not using any
power management. The lightly shaded portion of the table
reports corresponds to only node-centric approach, while the
darker shaded row is for a combined node and network-centric
approaches.

In node-centric PM, controlling only processing frequency
and voltage at run time (DVS results) gives between a factor of
1.4 to a factor of almost four in savings pre core. Note that com-
munications core does not allow voltage and frequency scaling.
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TABLE IX
ENERGY SAVINGS FOR PM IN NOCs

PM PM Type MP3 IMPEG2|Comm.|Speech | Total

None None 1.0 1.0 1.0 1.0 1.0
Node DVS only 1.4 2.0 1.0 3.8 12
Centric |[DPM only 2.0 155 3.0 15 2.4

DVS&DPM [ 2.8 3.0 3.0 S8I3.0
Network [DVS&DPM | 3.7 3.6 4.2 6.1 4.1

When only control of transition into the sleep state is imple-
mented (DPM only results), savings range from a factor of 1.5
to a factor of 3. The smallest savings are in video core, as it tends
to have very few idle times. Combining the DVS and DPM gives
the overall savings of a factor of 3.6.

When network power management is included with the
node-centric approach (the last row in Table IX), the savings
in energy grow to a factor of 4.1 with performance penalty
reduced by a minimum 15%. The performance penalty of a
core is the time the rest of the system has to wait in order for
the core to become available after either changing processing
frequency or waking up from the sleep state. These savings
show that using information about system state as it becomes
available (network wakeup and sleep requests) can significantly
enhance the quality of the power management results. There
are quite a few situations where such information is available.
For example, when MP3 decoder starts, it can immediately
inform the communication core that its services will be needed.
Thus, by the time MP3 initializes all of its data structures,
the communication core transitions from sleep state into the
active state. In this way, no performance penalty is incurred
due to the transition, and communication core was able to
save power by staying asleep as long as possible. In situations
where such information is not available (node-centric approach)
our closed-loop power management approach still gives large
savings.

VIII. CONCLUSION

This paper presents a new methodology for managing power
consumption in NOCs. The power management optimization
is formulated using closed-loop control concepts, with blended
node and network centric approaches. The first component of
our power management system is an estimator that is capable
of fast and accurate tracking of system changes. The expanded
Renewal model integrates network centric power management
with voltage scaling and node centric power management. It en-
ables the formulation of the optimization problem that is guar-
anteed to be globally optimal. The optimization is done using
our new fast optimization method, which is orders of magni-
tude faster than methods used in the past. Lastly, we presented
a controller implementation that manages both DVS and DPM.

The new methodology is tested on a design of a NOC
system consisting of four satellite units, each with the local
PM consisting of the estimator and the controller. The estimator
implementation has been shown to have average error of 2%
when estimating Pareto parameters, and is right on target
when estimating exponential frame arrival rate changes. Our
fast optimization algorithm recalculated control in a matter of

milliseconds when the distribution parameters change. The final
implementation of node and network centric power management
approaches shows savings of a factor of four at system level
while improving performance.
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