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Abstract

In [1], we have demonstrated that robust optimization of linear finite-horizon control in a
discrete time linear dynamical system affected by uncertain disturbances becomes computation-
ally tractable if, rather than using natural parameterization of a linear output-based control
law, one passes to a specific re-parameterization of the law, representing it as affine control law
based on the so called “purified outputs”. With the traditional parameterization, the states
and the controls, being affine in the initial state and the disturbances, are highly nonlinear in
the parameters of the control law; with the new parameterization, the states and the controls
become bi-affine, that is, affine in the initial state and the disturbances, the parameters of the
control law being fixed, and affine in the parameters of the control law, the disturbances and
the initial state being fixed. As a result, synthesis of a finite-horizon control law satisfying, in a
robust fashion, a given system of linear constraints on the finite-horizon state-control trajectory,
reduces to solving an explicit convex program and thus becomes computationally tractable. In
this follow up paper we extend the above methodology to optimizing infinite-horizon control in
a time-invariant linear system and illustrate our methodology on examples involving discrete
time H∞- and L1-control.

1 Introduction

Consider a discrete time linear dynamical system

x0 = z
xt+1 = Atxt + Btut + Rtdt, t = 0, 1, ...

yt = Ctxt + Dtdt

(1.1)

where xt are states, yt are outputs, ut are controls, and dt are external disturbances at time t. In
[1], we have associated with system (1.1) “closed” by an arbitrary control law ut = Ut(y0, y1, ..., yt)
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the sequence of purified outputs vt given by the recurrence

x̂0 = 0
x̂t+1 = Atx̂t + Btut

ŷt = Ctx̂t

vt = yt − ŷt

(1.2)

and have shown that the purified outputs vt are in fact independent of the control law and are
affine functions of (z, dt = (d0, ..., dt)) with coefficients readily given by {Aτ , Bτ , Cτ , Dτ , Rτ}t

τ=0.
Furthermore, since vt is observable at time t when the decision on ut should be made, we can use
purified-output-based affine control laws - laws of the form

ut = ht +
t∑

τ=0

Htτvτ . (1.3)

We have proved in [1] that as far as state-control behaviour of the closed loop system is concerned,
control laws (1.3) are exactly equivalent to traditional output-based affine control laws

ut = gt +
t∑

τ=0

Gtτyτ . (1.4)

Specifically, with both types of laws, the states xt and the controls ut−1 in the closed-loop system
become affine functions of (z, dt−1); the collection of these functions given by a control law (1.3)
can be obtained from a control law in the form of (1.4), and vice versa1). However, representation
(1.3) of an affine control law has a significant advantage as compared with representation (1.4):
with the former representation, states and controls in the closed loop system are affine in the
parameters {ht, {Htτ} of law (1.3), whereas with the latter representations, states and controls are
highly nonlinear in the parameters {gt, Gtτ} of law (1.4).

The fact that the purified-output-based control laws (1.3) generate state-control trajectories
which are bi-affine in {z, dt}t≥0 and in {ht, Htτ}t≥τ≥0 (that is, xt, ut−1 are affine in {z, dt} when
{ht,Htτ} is fixed and are affine in {ht,Htτ} when {z, dt} is fixed) is of major significance. Indeed,
consider the problem of synthesizing a finite-horizon affine control law ensuring that the resulting
finite horizon state-control trajectory satisfies, in a robust w.r.t. {z, dt} fashion, a system of linear
constraints. Due to bi-affinity, this problem reduces to an explicit convex program (sometimes,
just a linear one) even with a pretty general interpretation of what “robust w.r.t. {z, dt} fashion”
means (for details, see [1]).

In this follow-up paper, we focus on time-invariant dynamical systems (1.1) and “(nearly) time-
invariant” purified-output-based affine control laws and demonstrate that some infinite-horizon
control problems, such as discrete time H∞/L1-synthesis, associated with these laws admit explicit
convex reformulation and thus can be solved efficiently.

1)For the particular case yt ≡ xt, a similar equivalence result was independently established in the recent paper
[3].
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2 Time invariant purified-output-based affine control laws

From now on we focus on a time-invariant version of (1.1)

x0 = z
xt+1 = Axt + But + Rdt, t = 0, 1, ...

yt = Cxt + Ddt

(2.5)

We make the following crucial assumption:

Assumption A The open-loop system (2.5) is stable, that is, the spectral radius of A
is less than 1.

Note that what follows can be straightforwardly extended to the case when (2.5) is unstable, but we
are given a stabilizing time-invariant linear feedback for (2.5) – a matrix K such that the spectral
radius of A + BKC is < 1 (see Section 5).

Let us call a control law (1.3) time-invariant of order k, k = 1, 2, ..., if

ut =
k−1∑

s=0

Hsvt−s; (2.6)

here H0,...,Hk−1 are fixed matrices of appropriate sizes and by definition vτ = 0 for τ < 0 (the
latter convention is in force for all subsequent quantities with negative indices). Let xt, ut, yt, x̂t,
ŷt and vt be the entities associated with the control law (2.6) according to (2.5) and (1.2), and let
ξt = xt − x̂t. Then

ξ0 = z
ξt+1 = Aξt + Rdt

vt = Cξt + Ddt.

Let us set2)

ξk
t = [ξt; ξt−1; ...; ξt−k+1], vk

t = [vt; vt−1; ...; vt−k+1], dk
t = [dt; dt−1; ...; dt−k+1],

A(k) = Diag{A, ..., A︸ ︷︷ ︸
k

}, R(k) = Diag{R, ..., R︸ ︷︷ ︸
k

}, C(k) = Diag{C, ..., C︸ ︷︷ ︸
k

}, D(k) = Diag{D, ..., D︸ ︷︷ ︸
k

},

H = [H0,H1, ..., Hk−1], wk
t = [xt; ξk

t ].

It is immediately seen that the evolution of ξk
t , vk

t , ut with t resulting from the control law (2.6) is
given by

ξk
t+1 = A(k)ξk

t + R(k)dk
t

vk
t = C(k)ξk

t + D(k)dk
t

ut = Hvk
t

(2.7)

whence the evolution of wk
t is given by

wk
t+1 ≡

[
xt+1

ξk
t+1

]
=

[
A BHC(k)

A(k)

]

︸ ︷︷ ︸
A+

[
xt

ξk
t

]

︸ ︷︷ ︸
wk

t

+
[

R BHD(k)

R(k)

]

︸ ︷︷ ︸
R+

[
dt

dk
t

]

︸ ︷︷ ︸
d+

t

(2.8)

2)We use “MATLAB notation”: for matrices B1, ..., Bm with the same number of columns, [B1; B2; ...; Bm] is the
matrix obtained by writing B2 under B1, B3 under B2, etc., while for matrices B1, ..., Bm with the same number of
rows, [B1, ..., Bm] is the matrix obtained by writing B2 to the right of B1, B3 to the right of B2, etc.
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Since A(k) is block-diagonal, with diagonal blocks equal to A, we arrive at the following observation:

Proposition 1 System (2.8) is stable independently of the choice of H, and the resolvent RA+(z) =
(zI −A+)−1 of A+ is affine in H:

RA+(z) =




RA(z) RA(z)BH0CRA(z) RA(z)BH1CRA(z) ... RA(z)BHk−1CRA(z)
RA(z)

RA(z)
. . .

RA(z)




(2.9)
where RA(z) = (zI −A)−1.

It follows that if we are given design specifications which are convex in RA+(·), we can easily find
H such that RA+(·) complies with these specifications, or easily find out that no such H exists.

3 Example: discrete time H∞ synthesis

When the disturbances dt in (2.8) form a “geometric progression” dt = ztd, z ∈ C, with z different
from the eigenvalues of A and from 0, then every solution to the stable system (2.8) approaches,
as t →∞, the “steady-state” solution

wk
t = ztW (z)d,

where

W (z) = RA+(z)
[

R BHD(k)

R(k)

]




I
I

z−1I
z−2I

...
z1−kI




(3.10)

In particular, the “steady-state” behaviour of states xt and controls ut is given by

xt = ztHx(z)d,

Hx(z) = RA(z)
[
R +

k−1∑
s=0

z−sBHs [D + CRA(z)R]
]

;

ut = ztHu(z)d,
Hu(z) =

[
H0 + z−1H1 + z−2H2 + ... + z1−kHk−1

]
[D + CRA(z)R] .

(3.11)

Both “transfer functions” Hx(z), Hu(z) are of the form p−1(z)P (z, H), where p(z) is a scalar
polynomial independent of H, and P (z, H) is a matrix-valued polynomial of z with coefficients
affinely depending on H. It follows that the problem of choosing H in a way which ensures that
Hx(·), Hu(·) satisfy a system of convex constraints is a convex program. For example, assume that
design specifications require from the “full” transfer function

Hxu(z) = [Hx(z);Hu(z)] (3.12)
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to satisfy a finite system of constraints of the form

‖Qi(z)−Mi(z)Hxu(z)Ni(z)‖ ≤ τi ∀(z = exp{ıω} : ω ∈ ∆i), (3.13)

where Qi(z), Mi(z), Ni(z) are given rational matrix-valued functions with no singularities on the
unit circumference, ∆i ⊂ [0, 2π] are given segments, and ‖·‖ is the standard matrix norm (the largest
singular value). It is easy to see that each of the constraints (3.13) is semidefinite-representable, that
is, can be expressed equivalently by an explicit system of LMI’s in variables H, τ and appropriate
additional variables; as a result, the problem in question can be posed as an explicit semidefinite
program.

To verify that constraints (3.13) are semidefinite-representable, note that these constraints are
of the generic form

‖p−1(z)P (z, H)‖ ≤ τ ∀(z = exp{ıω} : ω ∈ ∆), (3.14)

where p(·) is a scalar polynomial independent of H and P (z, H) is a polynomial in z with m×n
matrix coefficients affinely depending on H. Constraint (3.14) can be expressed equivalently by
the semi-infinite matrix inequality

[
τIm P (z, H)/p(z)

(P (z, H))∗/(p(z))∗ τIn

]
º 0 ∀(z = exp{ıω} : ω ∈ ∆)

(∗ stands for the Hermitian conjugate, ∆ ⊂ [0, 2π] is a segment) or, which is the same,

SH,τ (ω) ≡
[

τp(exp{ıω})(p(exp{ıω}))∗Im (p(exp{ıω}))∗P (exp{ıω},H)
p(exp{ıω})(P (exp{ıω},H))∗ τp(exp{ıω})(p(exp{ıω}))∗In

]
º 0 ∀ω ∈ ∆.

Observe that SH,τ (ω) is a trigonometric polynomial taking values in the space of Hermitian ma-
trices of appropriate size, the coefficients of the polynomial being affine in H, τ . It is known (see
[2]) that the cone Pm of (coefficients of) all Hermitian matrix-valued trigonometric polynomials
S(ω) of degree ≤ m which are º 0 for all ω ∈ ∆ is semidefinite representable: there exists an
explicit LMI

A(S, u) º 0

in variables S (the coefficients of a polynomial S(·)) and additional variables u such that S(·) ∈
Pm if and only if S can be extended by appropriate u to a solution of the LMI. Consequently,
the relation

A(SH,τ , u) º 0, (∗)
which is an LMI in H, τ, u, is a semidefinite representation of (3.13): H, τ solve (3.13) if and
only if there exists u such that H, τ, u solve (∗).

3.1 Comparison with linear feedback

We have demonstrated that rather general control problems related to robust behaviour of time
invariant linear dynamical systems can be easily solved via convex optimization, provided that the
candidate control laws are time invariant purified-output-based ones and that the open loop system
is stable (or can be made so by applying a given time invariant linear output-based feedback). An
immediate question arises: what is the “power” of our family of control laws? We intend to
demonstrate that in a sense it is at least as strong as the one of the usual output-based time
invariant linear feedback controls. Indeed, consider a stable open-loop dynamical system

xt+1 = Axt + But + Rdt

yt = Cxt + Ddt
(3.15)
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“closed” by a feedback
ut = Kyt, (3.16)

and assume that the closed loop system is stable as well. In this case, with dt = ζtd and ζ different
from the eigenvalues of A and from 0, every solution {xt}∞t=0 to (3.15) - (3.16) approaches, as t →∞,
the steady-state solution x̃t = ζtRAK

(ζ)[BKD + R]d, where RAK
(ζ) = (ζI − [A + BKC])−1 is

the resolvent of the matrix AK = A + BKC. Consequently, as t →∞, the sequence of associated
controls ut approaches the steady-state control sequence

ũt = ζtK [D + CRAK
(ζ)[BKD + R]] d.

In other words, the full transfer function of (3.15) – (3.16) is

H̃xu(ζ) =
[
H̃x(ζ); H̃u(ζ)

]
=

[RAK
(ζ)[BKD + R]; K [D + CRAK

(ζ)[BKD + R]]
]
. (3.17)

The announced “strength” of time invariant purified-output-based affine control laws as compared
to linear feedback ones can roughly be expressed by the following claim: outside of the set comprised
of 0, the eigenvalues of A and the eigenvalues of A + BKC, the full transfer function (3.17) of
the feedback-based closed loop system in question can be approximated to any desired accuracy,
uniformly on compact sets, by transfer functions yielded by time invariant purified-output-based
affine control laws. The precise statement is as follows.

Proposition 2 Let A and A+BKC be discrete time stable matrices, and let γ be a closed Gordan
curve belonging to the interior Do of the unit disk in the complex plane C and such that the “inner
part” Γi of γ (the bounded open set in C with the boundary γ) contains the set Λ comprised of
0 and all eigenvalues of A and A + BKC (since A + BKC and A are discrete time stable, we
have Λ ⊂ Do). Let, further, Γo be the complement of int Γi in the complex sphere C∗ = C ∪ {∞}.
Then for every ε > 0 there exists k = k(ε) and collection Hk = [H0, ..., Hk−1] of matrices such
that the transfer function Hxu(·) associated, by virtue of (3.11) and (3.12), with the time invariant
purified-output-based control law (2.6) given by Hk satisfies the relation

‖H̃xu(ζ)−Hxu(ζ)‖ ≤ ε ∀ζ ∈ Γo.

Proof. Both the resolvents RA(ζ) = (ζI − A)−1 and RAK
(ζ) = (ζI − A − BKC)−1 are rational

matrix-valued functions which are analytic everywhere on the complex sphere C∗ = C ∪ {∞}
outside of Λ. Passing from ζ to ζ = 1/ζ, setting

RA(ζ) = (I − ζA)−1, RAK
(ζ) = (I − ζ[A + BKC])−1,

Γ+
o = {ζ : 1/ζ ∈ Γo} and taking into account (3.11), (3.12), (3.17), we can reformulate the statement

to be proved equivalently as follows:

(!) on Γ+
o , the function

[ζRAK
(ζ)[BKD + R]; K [D + ζCRAK

(ζ)[BKD + R]]] (3.18)

can be uniformly approximated within any desired accuracy by functions of the form
[
ζRA(ζ)R + ζRA(ζ)B

(
k−1∑

s=0

ζsHs

)
[D + ζCRA(ζ)R] ;

(
k−1∑

s=0

ζsHs

)
[D + ζCRA(ζ)R]

]
.

(3.19)
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To prove (!), observe that Γ+
o is a simply connected closed and bounded domain in C and that the

functions RAK
(·) and RA(·) are analytic in a neighbourhood of Γ+

o . It follows that the function

Φ(ζ) := (I − ζRA(ζ)BKC)−1 = (I − ζ(I − ζA)−1BKC)−1 = (I − ζ[A + BKC])−1(I − ζA) (3.20)

also is analytic in a neighbourhood of Γ+
o . Now, by the Sherman-Morrison formula, the matrices

Im − PQ and In − QP , where P ∈ Cm×n, Q ∈ Cn×m, are singular/nonsingular simultaneously,
and when they are nonsingular, one has (Im − PQ)−1 = Im + P (In −QP )−1Q. It follows that the
function

F (ζ) ≡ (I − ζCRA(ζ)BK)−1

is analytic in a neighbourood of Γ+
o along with Φ(ζ), and

Φ(ζ) = I + ζRA(ζ)BKF (ζ)C. (3.21)

Now, since the matrix-valued function F̂ (ζ) = KF (ζ) is analytic in a neighbourhood of the simply
connected closed and bounded domain Γ+

o , this function, by the standard facts of Complex Analysis,
can be approximated uniformly on Γ+

o by matrix-valued polynomials, i.e., there exists a sequence

Fk(ζ) =
k−1∑

s=0

ζsHk
s

of matrix-valued polynomials such that

max
ζ∈Γ+

o

‖F̂ (ζ)− Fk(ζ)‖ → 0, k →∞.

Consequently, with Hs = Hk
s , 0 ≤ s ≤ k−1, the matrix-valued functions (3.19) converge uniformly

on Γ+
o as k →∞ to

[
ζRAR + ζRABK (I − ζCRABK)−1 [D + ζCRAR]

K (I − ζCRABK)−1 [D + ζCRAR]

]
, (3.22)

(we write RA instead of RA(ζ)). It remains to show that the latter matrix-valued function is
nothing but (3.18). Recalling that

RAK
(ζ) = Φ(ζ)RA = RA + ζRABF̂ (ζ)CRA

(see (3.20), (3.21)) and substituting the expression for F̂ (ζ), we get

RAK
(ζ) = RA + ζRABK(I − ζCRABK)−1CRA.

Therefore the matrix-valued function defined by (3.18) is
[

ζ[RA + ζRABK(I − ζCRABK)−1CRA][BKD + R]
K

[
D + ζC[RA + ζRABK(I − ζCRABK)−1CRA][BKD + R]

]
]

. (3.23)

In order to show that (3.23) is identical to (3.22) on Γ+
o , we should verify that on Γ+

o the following
equalities hold:

(a) [I + ζBK(I − ζCRABK)−1CRA]BK = BK(I − ζCRABK)−1

(b) I + ζCRA[I + ζBK(I − ζCRABK)−1CRA]BK = (I − ζCRABK)−1

(c) CRA[I + ζBK(I − ζCRABK)−1CRA] = (I − ζCRABK)−1CRA.
(3.24)
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We have

[I + ζBK(I − ζCRABK)−1CRA]BK = BK[I + (I − ζCRABK)−1ζCRABK]
= BK(I − ζCRABK)−1,

as required in (3.24.a). Further,

I + ζCRA[I + ζBK(I − ζCRABK)−1CRA]BK
= I + ζCRABK[I + (I − ζCRABK)−1ζCRABK]
= I + ζCRABK(I − ζCRABK)−1 = (I − ζCRABK)−1,

as required in (3.24.b). Finally,

CRA[I + ζBK(I − ζCRABK)−1CRA] = [I + ζCRABK(I − ζCRABK)−1]CRA

= (I − ζCRABK)−1CRA,

as required in (3.24.c). ¤

4 Accounting for gains

In this section we study control problems with gain-type specifications other than H∞-gains, and
show how to reduce them to convex programs, using the bi-affinity of states and controls in (z, dt−1)
and in the “parameter” η of purified-output-based control law.

Let the open loop system (2.5) be “closed” by control law (1.3). The states and the controls in
the closed-loop system are then affine functions of (z, dt−1):

xt = Xt[η] + Xz
t [η]z + Xd

t [η]dt−1, ut = Ut[η] + U z
t [η]z + Ud

t [η]dt−1, (4.25)

where Xt[η], Ut[η] are vectors, and Xt
z[η], Xt

d[η], U t
z[η], U t

d[η] are matrices ll of which affinely depend
on η = {ht,Htτ}. Now let us define the gains – the quantities

z2xt[η] = max
‖z‖(z)≤1

‖Xz
t [η]z‖(x), z2ut[η] = max

‖z‖(z)≤1
‖Uz

t [η]z‖(u)

d2xt[η] = max
‖dt−1‖(d)≤1

‖Xd
t [η]d‖(x), d2ut[η] = max

‖dt−1‖(d)≤1
‖Ud

t [η]d‖(u)
(4.26)

where ‖ · ‖(z), ..., ‖ · ‖(u) are given norms on the corresponding spaces. From now on we assume that
these norms are such that the induced norms of linear mappings appearing in (4.26) are efficiently
computable3). Under this assumption, for every t the gains are efficiently computable convex
function of η (due to the affinity of Xz

t [η], ..., Ud
t [η] in η). It follows that design specifications

expressed as upper bounds on (finitely many) gains, or on their positively weighted sums, are
efficiently computable convex constraints on η.

As an instructive example, let Ck,T be the family of all nearly time invariant purified-output-
based affine control laws of order k with stabilization time T , that is, of control laws (1.3) with

3)Note that the norm ‖A‖p→r = max
‖x‖p≤1

‖Ax‖r, p, r ∈ [1,∞] of a linear mapping A ∈ R
m×n is efficiently computable

when (a) p = ∞, (b) r = 1, and (c) p = r = 2. Besides this, in the case of p ≥ 2 ≥ r, the norm ‖A‖p→r admits an
efficiently computable convex in A upper bound tight within an absolute constant factor 2.2936...[4].
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ht ≡ 0, Htτ = 0 for t− τ ≥ k and Htτ depending solely on t− τ for t ≥ T (so that the control laws
from the family become time invariant when t ≥ T ).

Let the criteria we are interested in be
(a) the four global gains z2x[η] = sup

t≥0
z2xt[η],...,d2u[η] = sup

t≥0
d2ut[η] corresponding to the ‖·‖∞-

norm in the role of each of the norms ‖ · ‖(z),...,‖ · ‖(u) (in this case all four gains are, for every t,
are efficiently computable convex functions of η), and

(b) the two H∞-gains H∞,x[η] = max
|ζ|=1,i,j

|(Hx(ζ))|ij , H∞,u[η] = max
|ζ|=1,i,j

|(Hu(ζ))|ij , where Hx

and Hu are the disturbance-to-state and disturbance-to-control transfer matrices (see (3.11)).
Assume that our goal is to find in a given family Ck,T a control law such that the corresponding
criteria admit given in advance upper bounds (these upper bounds are our design specifications).
This goal can be achieved via Convex Programming. Indeed, let us choose a “time horizon” T+ ≥ T
and solve the feasibility problem

find η = {Htτ}0≤τ<∞ ∈ Ck,T s.t.





Ht,τ = 0, t− τ ≥ k
Ht,τ = Ht′,τ ′ , t, t

′ ≥ T, t− τ = t′ − τ ′

H∞,x[η] ≤ H∗∞,x,H∞,u[η] ≤ H∗∞,u

z2xt[η] ≤ z2x∗, ..., d2ut[η] ≤ d2u∗, 0 ≤ t ≤ T+

, (4.27)

where H∗∞,x, ..., d2u∗ are the desired upper bounds on the corresponding criteria. Note that (4.27)
is in fact a feasibility problem with finitely many variables Htτ , 0 ≤ τ ≤ T , and efficiently com-
putable constraints and thus it is computationally tractable. If the problem is infeasible, then the
design specifications in question clearly are incompatible with each other. When (4.27) is feasi-
ble, we can pick a feasible solution to this problem and check whether this solution (which by
construction satisfies the specifications on its H∞-performance and on the “finite horizon” gains
max

0≤t≤T+

z2xt[η],..., max
0≤t≤T+

d2ut[η]) meets the specifications on the global gains z2x[·], ..., d2u[·] as well.

With properly chosen T+, there are good chances that this indeed will be the case, otherwise, we
can repeat this procedure for a larger value of T+ and so on, terminating with a desired control
law (or the conclusion that no such law exists), provided, of course, that termination occurs before
problems (4.27) become too large for numerical processing.

5 Numerical illustration

In this section, we present a sample of small examples illustrating the potential of the proposed
approach.

5.1 Example 1: Discrete time H∞-synthesis

We consider a 3-echelon supply chain comprised of 3 warehouses. The external demand is supplied
from the stock at warehouse # 1; the stock at warehouse # i is replenished from warehouse # i+1,
where “warehouse # 4” is a factory with infinite supply capacity. There exists a delay of 2 time
units in executing replenishment orders. The inventory can be modelled by a 9-state discrete time
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linear time invariant system



x1
t+1

x2
t+1

x3
t+1

x4
t+1

x5
t+1

x6
t+1

x7
t+1

x8
t+1

x9
t+1




=




1 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0




︸ ︷︷ ︸
A0




x1
t

x2
t

x3
t

x4
t

x5
t

x6
t

x7
t

x8
t

x9
t




+




0 0 0
−1 0 0
0 −1 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1







w1
t

w2
t

w3
t


 +




−1
0
0
0
0
0
0
0
0




dt, (5.28)

where x1
t , x

2
t , x

3
t are levels of inventories at warehouses 1, 2, 3 at time t, w1

t , w2
t , w3

t are replenishment
orders issued at time t by the respective warehouses, dt is the external demand at time t and
x4

t , ..., x
9
t are analysis variables. In our experiment, we assume that the outputs are the inventory

levels: yt = (x1
t , x

2
t , x

3
t )

T . Matrix A0 is “neutral”: its eigenvalues are 1 (multiplicity 3, three 1× 1
cells in the Jordan canonical form) and 0 (multiplicity 6, three 2× 2 cells in the Jordan canonical
form). We start with finding an output-based linear feedback ut = Kyt which stabilizes the closed
loop system. For the toy sizes of the example, such a feedback can be found by straightforward
random sampling of 3×3 matrices K until a stabilizing feedback is found. This most naive procedure
in our experiment yielded the feedback

K =



−1.0135 0.2766 0.1059
−1.7559 −0.0140 0.5248
−1.1766 0.1833 0.0528


 ,

resulting in the maximum of modulae of the eigenvalues of A = A0 + BKC about 0.951. We now
can pass from the original system to the stable system

x0 = z
xt+1 = Axt + But + Rdt

yt = (x1
t , x

2
t , x

3
t )

T
. (5.29)

“Closing” system (5.29) with a time invariant purified-output-based control law (2.6) and “trans-
lating” this law to the original system (5.28), we end up with the closed loop system given by

x0 = z
xt+1 = A0xt + B(KCxt + ut) + Rdt

yt = Cxt

x̂0 = 0
x̂t+1 = [A0 + BKC]x̂t + But

ŷt = Cx̂t

vt = yt − ŷt

ut =
k−1∑
s=0

Hsvt−s

(5.30)

(recall that by our convention all entities with negative indices vanish). By the preceding analysis,
with harmonic oscillation dt = exp{ıωt}d in the role of external disturbance, the “state-control”

10



k 0 1 2 4 8
φx(ω) 23.074 5.206 2.795 2.449 2.379

Table 1: Peak state frequency response vs. the order k of the optimal time invariant purified-
output-based affine control law. k = 0 corresponds to “no control”: in (5.30), ut ≡ 0.

component [xt; ut] of every solution to (5.30) approaches, as t → ∞, the steady-state harmonic
oscillation

[x̃t; ũt] = exp{ıωt}[Hx(exp{ıω});Hu(exp{ıω})]d
with Hx(z), Hu(z) given by (3.11). Since the actual controls wt in (5.28) are linked to the states
xt and controls wt according to wt = KCxt + ut, with our affine control law and dt = exp{ıωt}d
the actual state-control trajectory [xt; wt] of (5.28) approaches, as t →∞, the harmonic oscillation

[x̃t; w̃t] = exp{ıωt}Hxw(exp{ıω})d, Hxw(z) = [Hx(z);Hw(z)] ≡ [Hx(z);Hu(z) + KCHx(z)].

The resulting transfer function Hxw(·) is affine in the parameters H = [H0,H1, ...,Hk−1] of the
underlying affine control law and is a rational matrix-valued function without singularities outside
of the open unit disk. Thus, all nice already outlined consequences of the affinity of the transfer
function in H are valid in this example.

Let α`(ω) be the amplitude of the steady-state oscillation of state x` caused by a unit amplitude
disturbing harmonic oscillation dt = exp{ıωt} of frequency ω. We refer to the function φx(ω) =
max

`
α`(ω) as to state frequency response. The control frequency response φu(ω) is defined similarly,

with the steady state oscillations of controls w` in the role of steady state oscillations of states.
In our experiment, we were interested to minimize the maximum, over ω ∈ [0, 2π], of the state
frequency response. This leads to solving the semi-infinite convex optimization program

min
τ,H

{τ : τ ≥ ‖Hx(exp{ıω})‖∞ ∀ω ∈ [0, 2π]} (5.31)

(note that our disturbances are scalar, so that the values of Hx(·) as given by (3.11) are column
vectors of dimension 9). As it was explained in Section 3, this semi-infinite problem can be reduced
straightforwardly to an explicit semidefinite program. In our experiment, however, we did not use
this possibility (which would require to work with high-dimensional SDP’s) and merely replaced
the domain [0, 2π] of ω with a “fine finite grid” Γ of values of ω, thus approximating (5.31) by the
conic quadratic program

min
τ,H

{τ : τ ≥ ‖Hx(exp{ıω})‖∞ ∀ω ∈ Γ} . (5.32)

Note that restricting the “design parameters” H to be real (which is the only meaningful case in the
inventory context), we enforce H(z) to be “symmetric”: H`(z∗) = (H`(z))∗. It follows that we lose
nothing when choosing grid Γ in [0, π] rather than in [0, 2π]. In our experiment, Γ was chosen as the
128-point equidistant grid on [0, π]; we solved (5.32) for k = 1, 2, 4, 8 and then measured the quality
of the resulting solution (the quantity max

0≤ω≤2π
‖Hx(exp{ıω})‖∞) by computing ‖Hx(exp{ıω})‖∞

along a 4096-point equidistant grid of values of ω. The results of our experiment are summarized
in Table 1 and depicted on Figure 1.
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Figure 1: State frequency response vs. ω ∈ [0, π] for the optimal time invariant purified-output-
based affine control law of order k. Blue: k = 0; magenta: k = 1; red: k = 2; green: k = 4; cyan:
k = 8.

u d

X ,X
1  2

Figure 2: Double pendulum: two masses linked by spring sliding without friction along a rode.
Position and velocity of the first mass are observed.

5.2 Example 2: Discrete time L1-synthesis

The open-loop system we intend to consider now is the (discretized) double-pendulum depicted on
Fig. 2. The dynamics of the continuous time prototype plant is given by

ẋ = = Acx + Bcu + Rcd
y = Cx

where

Ac =




0 1 0 0
−1 0 1 0
0 0 0 1
1 0 −1 0


 , Bc =




0
1
0
0


 , Rc =




0
0
0
−1


 , C =

[
1 0 0 0
0 1 0 0

]

(x1, x2 are the position and the velocity of the first mass, x3, x4 – those of the second mass). The
discrete time plant we will actually work with is

xt+1 = A0xt + But + Rdt

yt = Cxt
(5.33)

where A0 = exp{∆ · Ac}, B =
∆∫
0

exp{sAc}Bcds, R =
∆∫
0

exp{sAc}Rcds. In our experiment, we

used ∆ = 0.2500 (≈ 1/18-th of the period of pendulum’s oscillating modes). Same as in Example
1, system (5.33) is not stable (modulae of all eigenvalues of A0 are equal to 1), and we start
with picking, again by brute force random search, an output-based linear time invariant feedback
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which stabilizes the system. Our search yielded feedback matrix K = [−0.6950,−1.7831], with
the spectral radius of the matrix A = A0 + BKC equal to 0.87. From now on, we focus on the
stabilized version of (5.33), that is, on the discrete time open loop system

xt+1 = Axt + Bwt + Rdt

yt = Cxt
(5.34)

which we intend to “close” by a control law from C8,0, that is, by time invariant control given by

wt =
t∑

τ=0

Ht−τvτ

[
vt = yt − Cx̂t,

x̂t+1 = Ax̂t + Bwt, x̂0 = 0

]
(5.35)

where Hs = 0 when s ≥ 8. Our goal is to pick in C8,0 a control law with desired properties (to be
precisely specified a bit later) expressed in terms of the 6 criteria z2x,...,H∞,u defined in Section 4.
Note that while the purified-output-based control we are seeking is defined in terms of the stabilized
plant (5.34), the criteria z2u,d2u, H∞,u are defined in terms of the controls ut = wt + BKCxt

affecting the actual plant (5.33).
In the synthesis we are about to describe, our primary goal is to minimize the global disturbance-

to-state gain d2x, while the secondary goal is to avoid too large values of the remaining criteria.
We achieve this goal as follows.

Step 1: Optimizing d2x. As it was explained in Section 4, the optimization problem

Optd2x(k, 0;T+) = min
η∈Ck,0

max
0≤t≤T+

d2xt[η] (5.36)

is an explicit convex program (in fact, just a linear programming one), and its optimal value is a
lower bound on the best possible global gain d2x achievable with control laws from Ck,0. In our
experiment, we solve (5.36) for k = 8 and T+ = 40, arriving at Optd2x(8, 0; 40) = 1.773. The global
d2x-gain of the resulting time-invariant control law is 1.836 – just by 3.5% larger than the outlined
lower bound. We conclude that the control yielded by the solution to (5.36) is nearly the best one,
in terms of the global d2x-gain, among time-invariant controls of order 8. At the same time, part
of the other gains associated with this control are far from being good, see line “d2x40” in Table 2.

Step 2: Improving the remaining gains. To improve the “bad” gains yielded by the nearly
d2x-optimal control law we have built, we act as follows: we look at the family F of all time
invariant control laws of order 8 with the finite-horizon d2x-gain d2x40[η] = max

0≤t≤40
d2xt[η] not

exceeding 1.90 (that is, the controls from C8,0 which are within 7.1% of the optimum in terms of
their d2x40-gain) and act as follows:

A. We optimize over F , one at a time, every one of the remaining criteria z2x40[η] = max
0≤t≤40

z2xt[η],

z2u40[η] = max
0≤t≤40

z2ut[η], d2u40[η] = max
0≤t≤40

d2ut[η], H∞,x[η], H∞,u[η], thus obtaining “reference val-

ues” of these criteria; these are lower bounds on the optimal values of the corresponding global
gains, optimization being carried out over the set F . These lower bounds are the underlined data
in Table 2.
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Optimized Resulting values of the criteria
criterion z2x40 z2u40 d2x40 d2u40 H∞,x H∞,u

z2x40 25.8 205.8 1.90 3.75 10.52 5.87
z2u40 58.90 161.3 1.90 3.74 39.87 20.50
d2x40 5773.1 13718.2 1.77 6.83 1.72 4.60
d2u40 1211.1 4903.7 1.90 2.46 66.86 33.67
H∞,x 121.1 501.6 1.90 5.21 1.64 5.14
H∞,u 112.8 460.4 1.90 4.14 8.13 1.48

z2x z2u d2x d2u H∞,x H∞,u

(5.37) 31.59 197.75 1.91 4.09 1.82 2.04
(5.38) 2.58 0.90 1.91 4.17 1.77 1.63

Table 2: Gains for time invariant control laws of order 8 yielded by optimizing, one at a time, the
criteria z2x40,...,H∞,u over control laws from F = {η ∈ C8,0 : d2x40[η] ≤ 1.90} (first six lines), and
by solving programs (5.37), (5.38) (last two lines).

B. We then minimize over F the “aggregated gain”

z2x40[η]
25.8

+
z2u40[η]
161.3

+
d2u40[η]

2.46
+

H∞,x[η]
1.64

+
H∞,u[η]

1.48
(5.37)

(the denominators are exactly the aforementioned reference values of the corresponding gains). The
global gains of the resulting time-invariant control law of order 8 are presented in the “(5.37)” line
of Table 2.

Step 3: Finite-horizon adjustments. Our last step is to improve the z2x- and z2u-gains by
passing from a time invariant affine control law of order 8 to a nearly time invariant law of order 8
with stabilization time T = 20. To this end, we solve the convex optimization problem

min
η∈C8,20





z2x50[η] + z2u50[η] :

d2x50[η] ≤ 1.90
d2u50[η] ≤ 4.20
H∞,x[η] ≤ 1.87
H∞,u[η] ≤ 2.09





(5.38)

(the right hand sides in the constraints for d2u50[·], H∞,x[·], H∞,u[·] are the slightly increased (by
2.5%) gains of the time invariant control law obtained at Step 2). The global gains of the resulting
control law are presented in the last line of Table 2, see also Fig. 3. We see that finite-horizon
adjustments allow to reduce by orders of magnitude the global z2x- and z2u-gains and, as an
additional bonus, result in a substantial reduction of H∞-gains.

Simple as this control problem may be, it serves well to demonstrate the importance of purified-
output-based representation of affine control laws and the associated possibility to express various
control specifications as explicit convex constraints on the parameters of such a law.
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Figure 3: Frequency responses and gains of control law given by solution to (5.38).

15



References

[1] Ben-Tal, A., Boyd, S., Nemirovski, A. “Extending the Scope of Robust Optimization:
Comprehensive Robust Counterparts of Uncertain Problems” – to appear in Mathemati-
cal Programming Series B, Special Issue on Robust Optimization. http://www.optimization-
online.org/DB HTML/2005/05/1136.html 05/25/05

[2] Genin, Y. Hachez, Yu. Nesterov, P. Van Dooren, “Optimization Problems over Positive Pseu-
dopolynomial Matrices”, SIAM Journal on Matrix Analysis and Applications 25 (2003), 57-79.

[3] Goulart∗, P.J., Kerrigan, E.C., Maciejowski, J.M., “Optimization Over State Feedback Poli-
cies for Robust Control with Constraints” – to appear in Automatica.
∗ – corresponding author, pgoulart@alum.mit.edu

[4] Nesterov, Yu., “Global quadratic optimization via conic relaxation” – in: H.Wolkowicz,
R.Saigal and L.Vandenberghe (Eds.), Handbook of Semidefinite Programming, Kluwer, 2000.

16


