
Proximal Algorithms

Neal Parikh and Stephen Boyd

Stanford University

Based on ‘Proximal Algorithms’, Foundations and Trends in Optimization,

2014.

Outline

Proximal operators

Proximal algorithms

Applications

Conclusions

Proximal operators 2

Proximal operator

◮ proximal operator of f : Rn → R ∪ {+∞} is

proxλf (v) = argmin
x

(

f(x) + (1/2λ)‖x− v‖22
)

with parameter λ > 0

◮ f may be nonsmooth, have embedded constraints, . . .

◮ evaluating proxf involves solving a convex optimization problem

◮ can evaluate via standard methods like BFGS, but very often has an
analytical solution or simple specialized linear-time algorithm

Proximal operators 3

Generalized projection

◮ proximal operator of an indicator function of a convex set is
projection:

proxλIC
(v) = ΠC(v) = argmin

x∈C
‖x− v‖2

◮ many properties carry over

◮ example: projection onto box C = {x | l � x � u} given by

(ΠC(v))k =











lk vk ≤ lk

vk lk ≤ vk ≤ uk

uk vk ≥ uk

Proximal operators 4

Quadratic functions

◮ if f(x) = (1/2)xTPx+ qTx+ r, then

proxλf (v) = (I + λP)−1(v − λq)

◮ if P is dense and direct method is used, costs O(n3) flops to factor
and then O(n2) to backsolve on subsequent evaluations of proxλf

◮ still get some discount if P is sparse or has some structure

◮ if using iterative method like CG/LSQR, warm start beginning at v

Proximal operators 5

Separable sum

◮ if f is block separable, so f(x) =
∑N

i=1
fi(xi), then

(proxf (v))i = proxfi
(vi), i = 1, . . . , N

◮ key to parallel/distributed proximal algorithms

◮ example: if f = ‖ · ‖1, then

proxλf (v) = (v − λ)+ − (−v − λ)+ =











vi − λ vi ≥ λ

0 |vi| ≤ λ

vi + λ vi ≤ −λ

a simple elementwise operation called soft thresholding

Proximal operators 6

Fixed points

◮ the point x⋆ minimizes f if and only if x⋆ is a fixed point:

x⋆ = proxf (x
⋆)

◮ provides a link between proximal operators and fixed point theory

◮ many proximal algorithms can be viewed as methods for finding
fixed points of appropriate operators

Proximal operators 7

Moreau-Yosida regularization

◮ infimal convolution of f and g, denoted f � g, is defined as

(f � g)(v) = inf
x

(f(x) + g(v − x))

◮ Moreau envelope or Moreau-Yosida regularization of f is

Mλf (v) = inf
x

(

f(x) + (1/2λ)‖x− v‖22
)

◮ a smoothed or regularized form of f :

– always has full domain
– always continuously differentiable
– has the same minimizers as f

◮ can minimize Mf instead of f , though Mf could be hard to evaluate

Proximal operators 8

Moreau-Yosida regularization

◮ motivation: can show that

Mf = (f∗ + (1/2)‖ · ‖22)
∗

◮ in general, ϕ∗ is smooth when ϕ is strongly convex

◮ Moreau envelope obtains a smooth approximation via:

1. taking conjugate
2. regularizing to get a strongly convex function
3. taking conjugate again

◮ example: Moreau envelope of | · | is the Huber function

ϕhuber(x) =

{

x2 |x| ≤ 1

2|x| − 1 |x| > 1

Proximal operators 9

Modified gradient step

◮ many relationships between proximal operators and gradient steps

◮ proximal operator is gradient step for Moreau envelope:

proxλf (x) = x− λ∇Mλf (x)

◮ for small λ, proxλf converges to gradient step in f :

proxλf (x) = x− λ∇f(x) + o(λ)

◮ parameter can be interpreted as a step size, though proximal
methods will generally work even for large step sizes, unlike gradient
method

Proximal operators 10

Resolvent of subdifferential operator

◮ if z = proxλf (x), then

z = argmin
u

(

f(u) + (1/2λ)‖u− x‖22
)

◮ can rewrite as

0 ∈ ∂z
(

f(z) + (1/2λ)‖z − x‖22
)

0 ∈ ∂f(z) + (1/λ)(z − x)

x ∈ (I + λ∂f)(z) = z + λ∂f(z)

z ∈ (I + λ∂f)−1(x)

◮ must be careful to interpret ∂f and expressions using it as relations

◮ mapping (I + λ∂f)−1 known as resolvent of operator ∂f

Proximal operators 11

Moreau decomposition

◮ following relation always holds:

v = proxf (v) + proxf∗(v)

◮ main link between proximal operators and duality

◮ a generalization of orthogonal decomposition induced by subspace L:

v = ΠL(v) + ΠL⊥(v)

follows from Moreau decomposition and (IL)
∗ = IL⊥

Proximal operators 12

Norms and norm balls

◮ in general: if f = ‖ · ‖ and B is unit ball of dual norm, then

proxλf (v) = v − λΠB(v/λ)

by Moreau decomposition

◮ if f = ‖ · ‖2 and B is the unit ℓ2 ball, then

ΠB(v) =

{

v/‖v‖2 ‖v‖2 > 1

v ‖v‖2 ≤ 1

proxλf (v) =

{

(1− λ/‖v‖2)v ‖v‖2 ≥ λ

0 ‖v‖2 < λ

sometimes called ‘block soft thresholding’ operator

Proximal operators 13

Norms and norm balls

◮ if f = ‖ · ‖1 and B is the unit ℓ∞ ball, then

(ΠB(v))i =











1 vi > 1

vi |vi| ≤ 1

−1 vi < −1

lets us derive (elementwise) soft thresholding

proxλf (v) = (v − λ)+ − (−v − λ)+ =











vi − λ vi ≥ λ

0 |vi| ≤ λ

vi + λ vi ≤ −λ

◮ if f = ‖ · ‖∞ and B is unit ℓ1 ball, simple algorithms available

Proximal operators 14

Matrix functions

◮ suppose convex F : Rm×n → R is orthogonally invariant:

F (QXQ̃) = F (X)

for all orthogonal Q, Q̃

◮ then F = f ◦ σ and

proxλF (A) = U diag(proxλf (d))V
T

where A = U diag(d)V T is the SVD of A and σ(A) = d

◮ e.g., F = ‖ · ‖∗ has f = ‖ · ‖1 so proxλF is ‘singular value
thresholding’

Proximal operators 15

Outline

Proximal operators

Proximal algorithms

Applications

Conclusions

Proximal algorithms 16

Proximal minimization

◮ the proximal minimization or proximal point algorithm is

xk+1 := proxλf (x
k)

◮ the simplest proximal method, can be interpreted as

– gradient method applied to Mf rather than f
– simple iteration for finding a fixed point of proxf

◮ if f(x) = (1/2)xTAx− bTx, reduces to iterative refinement for
Ax = b

◮ idea originates with Martinet, Moreau, Rockafellar (1970s)

◮ works for any fixed λ > 0, or for non-summable λk

Proximal algorithms 17

Operator splitting

◮ the most useful proximal methods use the idea of operator splitting

◮ these algorithms minimize f + g only using proxf or proxg

◮ useful when f and g each have useful structure separately

◮ very simple historical example: alternating projections to find
x ∈ C ∩ D

◮ literature mostly from 1950s and 1970s

Proximal algorithms 18

Proximal gradient method

minimize f(x) + g(x)

f is smooth

g : Rn → R ∪ {+∞} is closed proper convex

◮ method:
xk+1 := proxλkg(x

k − λk∇f(xk))

◮ converges with rate O(1/k) when ∇f is Lipschitz continuous with
constant L and step sizes are λk = λ ∈ (0, 1/L]

◮ special case: projected gradient method (take g = IC)

◮ traces back to Bruck, Lions, Mercier (1970s)

Proximal algorithms 19

Proximal gradient method

if L is not known (usually the case), can use the following line search:

given xk, λk−1, and parameter β ∈ (0, 1).

Let λ := λk−1.

repeat

1. Let z := proxλg(x
k − λ∇f(xk)).

2. break if f(z) ≤ f̂λ(z, x
k).

3. Update λ := βλ.

return λk := λ, xk+1 := z.

typical value of β is 1/2, and

f̂λ(x, y) = f(y) +∇f(y)T (x− y) + (1/2λ)‖x− y‖22

Proximal algorithms 20

Interpretations

◮ x+ is solution to

minimize (1/2)‖x+ − (x− λ∇f(x))‖22 + λg(x+)

trade off between minimizing g and being close to gradient step for f

◮ majorization-minimization method for f + g:

– keep minimizing convex upper bound to objective tight at previous
iterate

– here, use f̂λ(x, x
k) + g(x) as upper bound (when λ ∈ (0, 1/L])

◮ 0 ∈ ∇f(x⋆) + ∂g(x⋆) if and only if

x⋆ = (I + λ∂g)−1(I − λ∇f)(x⋆)

i.e., x⋆ is a fixed point of forward-backward operator

Proximal algorithms 21

Accelerated proximal gradient method

minimize f(x) + g(x)

f is smooth

g : Rn → R ∪ {+∞} is closed proper convex

◮ method:

yk+1 := xk + ωk
(

xk − xk−1
)

xk+1 := proxλkg

(

yk+1 − λk∇f(yk+1)
)

works for ωk = k/(k + 3) and similar line search as before

◮ faster O(1/k2) convergence rate, originated with Nesterov (1983)

Proximal algorithms 22

ADMM

minimize f(x) + g(x)

f, g : Rn → R ∪ {+∞} are closed proper convex

◮ method:

xk+1 := proxλf (z
k − uk)

zk+1 := proxλg(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

◮ basically, always works and has O(1/k) rate in general

◮ if f and g are both indicators, get a variation on alternating
projections

◮ originates from Gabay, Mercier, Glowinski, Marrocco in 1970s

Proximal algorithms 23

Outline

Proximal operators

Proximal algorithms

Applications

Conclusions

Applications 24

Lasso

minimize (1/2)‖Ax− b‖22 + γ‖x‖1

with A ∈ Rm×n and γ > 0

◮ proximal gradient method (similar for accelerated):

xk+1 := proxλkγ‖·‖1
(xk − λkAT (Axk − b))

◮ faster implementations:

– parallel matrix-vector multiplication

– if n ≪ m, precompute ATA and AT b, then solve smaller lasso
problem with Ã = (ATA)1/2, b̃ = AT b; effort is then mostly
computing Ã, b̃

– compute ATA and AT b in parallel with one ai in memory at a time

– compute entire regularization path with warm starting

◮ can easily generalize to group lasso, elastic net, GLMs, . . .

Applications 25

Lasso

◮ ADMM:

xk+1 := (I + λATA)−1(zk − uk − λAT b)

zk+1 := proxλγ‖·‖1
(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1

◮ all the effort is in x-update (solve linear system)

◮ faster implementations:

– if A is fat, use matrix inversion lemma in x-update

– if using direct method, use factorization caching

– if using iterative method, warm start

– if n ≪ m, precompute ATA and AT b (possibly in parallel)

Applications 26

Lasso

Method Iterations Time (s) p⋆ Error (abs) Error (rel)
CVX 15 26.53 16.5822 — —
Proximal gradient 127 0.72 16.5835 0.09 0.01
Accelerated 23 0.15 16.6006 0.26 0.04
ADMM 20 0.07 16.6011 0.18 0.03

Applications 27

Distributed lasso example

◮ example with dense A ∈ R400000×8000 (roughly 30 GB of data)

– distributed solver written in C using MPI and GSL
– no optimization or tuned libraries (like ATLAS, MKL)
– split into 80 subsystems across 10 (8-core) machines on Amazon EC2

◮ computation times

loading data 30s

factorization 5m

subsequent ADMM iterations 0.5–2s

lasso solve (about 15 ADMM iterations) 5–6m

Applications 28

Matrix decomposition

◮ decompose matrix A into sum of ‘simple’ components:

minimize ϕ1(X1) + γ2ϕ2(X2) + · · ·+ γNϕN (XN)
subject to A = X1 +X2 + · · ·+XN

◮ penalty functions can include

– squared Frobenius norm (make Xi small)
– entrywise ℓ1 norm (make Xi sparse)
– sum-{row,column} norm (row/column sparsity)
– indicator of elementwise constraints (e.g., known values, bounds)
– indicator of semidefinite cone
– nuclear norm (make Xi low rank)

◮ common example: decompose A = sparse+ low rank

Applications 29

Matrix decomposition via ADMM

◮ splitting:

f(X) =
N
∑

i=1

ϕi(Xi), g(X) = IC(X)

with

X = (X1, . . . , XN), C = {(X1, . . . , XN) | X1 + · · ·+XN = A}

◮ ADMM simplifies to:

Xk+1
i := proxλϕi

(Xk
i −X

k
+ (1/N)A− Uk)

Uk+1 := Uk +X
k+1

− (1/N)A

Applications 30

Matrix decomposition results

problem: decompose A = rank 4+ sparse+ small Gaussian noise

Method m n Iterations Time (s)

CVX 10 30 15 1.11
ADMM 10 30 45 0.02

CVX 20 50 17 2.54
ADMM 20 50 42 0.03

CVX 40 80 20 108.14
ADMM 40 80 36 0.07

ADMM 100 200 38 0.58

ADMM 500 1000 42 35.56

note: last instance has 1.5M variables and 500K constraints

Applications 31

Multi-period portfolio optimization

minimize
∑T

t=1
ft(xt) +

∑T
t=1

gt(xt − xt−1)

ft is risk-adjusted negative return in period t (‘stage costs’)
gt is transaction costs

◮ splitting: put stage costs in one term and transaction costs in the
other

◮ f is separable across time steps, g is separable across assets

◮ proxf involves solving T single-period problems in parallel

◮ proxg involves n problems in parallel that can be solved in O(T)
flops

Applications 32

Multi-period portfolio optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure: Time series of ℓ1 deviation from xstatic

Applications 33

Multi-period portfolio optimization

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure: Time series of asset holdings

Applications 34

Outline

Proximal operators

Proximal algorithms

Applications

Conclusions

Conclusions 35

Conclusions

key ingredients:

1. operator splitting

2. proximal operators

often, use problem transformations so when an operator splitting method
is used, each part of the problem has simple, small prox operators

Conclusions 36

	Proximal operators
	Proximal algorithms
	Applications
	Conclusions

