
Optimization Methods & Software
Vol. 24, No. 3, June 2009, 381–406

Cutting-set methods for robust convex optimization
with pessimizing oracles

Almir Mutapcic* and Stephen Boyd

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

(Received 1 April 2008; final version received 23 December 2008)

We consider a general worst-case robust convex optimization problem, with arbitrary dependence on the
uncertain parameters, which are assumed to lie in some given set of possible values.We describe a general
method for solving such a problem, which alternates between optimization and worst-case analysis. With
exact worst-case analysis, the method is shown to converge to a robust optimal point. With approximate
worst-case analysis, which is the best we can do in many practical cases, the method seems to work very
well in practice, subject to the errors in our worst-case analysis. We give variations on the basic method
that can give enhanced convergence, reduce data storage, or improve other algorithm properties. Numerical
simulations suggest that themethod finds a quite robust solutionwithin a few tens of steps; usingwarm-start
techniques in the optimization steps reduces the overall effort to a modest multiple of solving a nominal
problem, ignoring the parameter variation. The method is illustrated with several application examples.

Keywords: robust optimization; cutting-set methods; semi-infinite programming; minimax optimization;
games

AMS Subject Classification: 90C25; 90C47; 90C34; 90C31

1. Introduction

We start with a basic convex optimization problem,

minimize f0(x, u)

subject to fi(x, u) ≤ 0, i = 1, . . . , m,
(1)

where x∈Rn is the variable, f0, . . . , fm are convex in x, and u∈Rp is a vector of problem para-
meters. The parameter u is used to model uncertainty or variation in problem data values. This
uncertainty can come frommany sources, e.g. estimation errors, or variation arising in implemen-
tation, manufacture, or operation of a system. We are interested in the case when this problem
can be efficiently solved for any fixed value of the parameter u. For example, if fi are affine in x,
then for each u, the problem (1) is a linear program (LP) and, therefore, easily solved.

*Corresponding author. Email: almirm@stanford.edu; almirm@gmail.com

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2009 Taylor & Francis
DOI: 10.1080/10556780802712889
http://www.informaworld.com

382 A. Mutapcic and S. Boyd

1.1 Nominal problem

We assume that a nominal value of the parameter u, which we denote unom, is known. The nominal
problem is

minimize f0(x, unom)

subject to fi(x, unom) ≤ 0, i = 1, . . . , m.
(2)

We let p!nom denote its optimal value and Fnom its feasible set.

1.2 Parameter variation and worst-case analysis

We model uncertainty in the parameter u as u ∈ U , where U ⊆ Rp is a (known) set of possible
parameter values, with unom ∈ U . We will measure the effect of the uncertainty on a particular
choice of the variable x using a worst-case approach, i.e. by the largest value of the objective and
constraint functions, over u ∈ U . We define

Fi(x) = sup
u∈U

fi(x, u), i = 0, . . . , m, (3)

and
V (x) = max

i=1,...,m
Fi(x). (4)

We refer to F0 as the worst-case objective function, the functions F1, . . . ,Fm as the worst-case
constraint functions, andV as themaximum constraint violation. These functions are convex, since
each is a supremum of a family of convex functions (indexed by u). Evaluating F0(x), . . . ,Fm(x)
for a given x, i.e. maximizing fi(x, u) over u ∈ U , is called worst-case analysis. We will also use
the term pessimization, suggested by Steven G. Johnson, since we are finding the most pessimistic
value of the parameter for the objective and each constraint, for a given x. Worst-case analysis
can be very difficult, depending on how fi depends on u and the particular set U .
A common approach to dealing with parameter uncertainty is to ignore it and simply solve

the nominal problem to obtain a nominal optimal point x!nom. After this optimization step, a
(‘posterior’) worst-case analysis is carried out on the nominal optimal point x!nom. If the worst-
case cost F0(x!nom) is not much bigger than the nominal cost p!nom = f0(x

!
nom, unom), and if the

worst-case constraint violation V (x!nom) is not too large, the nominal optimal point x!nom is judged
to be acceptable.

1.3 Worst-case robust optimization

In robust optimization, the parameter uncertainty is taken into account during the optimization
phase. The robust convex optimization problem is

minimize F0(x)

subject to Fi(x) ≤ 0, i = 1, . . . , m,
(5)

with variable x∈Rn. For brevity, we will refer to problem (5) as the robust problem. We let p!rob
denote its optimal value, andFrob its feasible set. Evidently, we haveFrob ⊆ Fnom, sop!rob ≥ p!nom.
We mention that there are several other methods for taking data and parameter variation into

account in an optimization problem. In stochastic optimization, for example, u is modelled as a
random variable, andwe use the expected value of (some function of) the objective and constraints
to form a problem that takes parameter variation into account. In this paper, however, we focus
solely on the worst-case robust problem (5).

Optimization Methods & Software 383

Since Fi are convex, the robust problem (5) is a convex optimization problem. However, even
if the basic problem (1) is readily solved, the robust problem (5) can be difficult to solve. Indeed,
just evaluating its objective and constraint function can be hard.
Over the last 10 years or so, researchers have shown how to efficiently solve a number of

specific cases of the robust problem, by reducing it to a tractable convex optimization problem.
One famous example is the robust linear programming (RLP) problemwith ellipsoidal uncertainty.
In this problem, each fi is bi-affine in x and u (i.e. affine in each, with the other fixed), and U is
an ellipsoid. This problem can be reduced to a second-order cone program (SOCP) and readily
solved (see, e.g. [3,19, p. 157; 66, Section 2.6]). On the other hand, many other robust problems
have been shown to be hard to solve exactly; see, e.g. [2,4]. (These results will be reviewed in
more detail in Section 2.)

1.4 Purpose of this paper

In this paper, we describe a simple scheme for (possibly approximately) solving the robust prob-
lem. The method consists of an alternating sequence of optimization and (possibly approximate)
worst-case analysis (pessimization) steps. When the pessimization is exact, i.e. we compute the
worst-case functions Fi exactly, the scheme can be shown to solve the robust problem. When
the pessimization is approximate, i.e. the worst-case functions are computed approximately, we
cannot say that the method solves the robust problem; indeed, we cannot even (surely) determine
if a point x is feasible for the robust problem. In this case, we can only say that if the pessimization
was exact, we would have solved the robust problem. In a practical sense, this is all we can hope
for, when we cannot carry out the pessimization exactly.
Numerical simulations suggest that the method performs well in practice, obtaining good

approximate solutions of the robust problem in a small number (typically 10 or so) of optimization–
pessimization steps.Usingwarm-start techniques to solve each optimization problemstarting from
the solution of the previous one typically reduces the optimization effort by a significant factor,
such as 5 or 10; this, in turn, means that the overall cost of approximately solving the robust
problem is a small multiple, such as 3 or 4, of the cost of solving the nominal problem, in which
parameter variation is ignored. (We do not include here the cost of the pessimization, which in
any case needs to be carried out to certify the final approximate solution.) Thus our message to
practitioners is: the cost of carrying out practical robust optimization is not much more than the
cost of carrying out nominal optimization, followed by worst-case analysis.
The ideas behind the method we describe are not new. Indeed, the method can be related to

existing algorithms in semi-infinite programming (SIP), cutting-plane methods, active-set meth-
ods, and so on. (These connections will be detailed in Section 2.) Our contribution is to present a
simple, unified framework for these ‘sampling’methods, as applied to practical worst-case robust
optimization.

1.5 Epigraph form

It will be convenient to work with a simplified, but general, standard form for the robust problem.
We introduce a new variable t ∈R and form the epigraph form problem (see e.g. [19, p. 134])

minimize t

subject to sup
u∈U

(f0(x, u) − t) ≤ 0,

Fi(x) ≤ 0, i = 1, . . . , m.

384 A. Mutapcic and S. Boyd

This problem is equivalent to the original robust problem (5). It also has the form of a general
robust convex problem, with n+1 variables and m+1 constraints; unlike our original robust
problem, however, it has a linear objective that does not depend on the parameter u. Thus, without
loss of generality, we can assume that the objective in the robust problem is linear and certain.
In the sequel, then, we will consider the robust problem in the standard form

minimize cTx

subject to Fi(x) ≤ 0, i = 1, . . . , m.
(6)

1.6 Outline

In Section 2 we give an overview of previous and related work. In Section 3 we introduce the
sampled problem and give some bounds on the optimal value of the robust problem based on the
solution of the sampled problem. In Section 4 we consider the pessimization process in detail,
defining the notion of approximate and exact pessimizing oracles and giving examples of each.
In Section 5 we give the basic cutting-set method (CSM) for solving the robust problem, prove
its convergence, and describe some variations; we finish with a numerical example for which
the exact solution can be computed. In Section 7 we describe a robust antenna beamforming
example in detail, using an exact oracle that, as far as we know, is new. In Section 8 we describe
a robust state transfer problem. In this problem we do not know an exact oracle, so we use a
good approximate oracle; our final solution is then carefully checked for robustness. We give
conclusions in Section 9.

2. Related formulations and previous work

2.1 Regularization and stochastic programming

There are several general approaches to dealing with parameter uncertainty in optimization prob-
lems. These can be broadly classified into three groups (which are closely related): regularization,
stochastic optimization, and worst-case robust optimization. In regularization, a method popular-
ized by Tikhonov [92], we are a bit vague about what the variations are, and simply add an extra
cost term to our objective function (or the constraint functions) that penalizes sensitive or non-
robust designs. A more sophisticated regularization method that adds sensitivity penalties based
on derivative information is given in [37].
In stochastic optimization, we have a stochastic or probabilistic model for parameter variation,

and choose x that minimizes (say) the expected objective value, subject to the constraints holding
(say) with some probability; see e.g. [16,80,86,87]. Some methods for solving these problems
approximately are closely related to our method; for example, probabilistic sampling or scenario
approaches (see e.g. [24,26,82]).

2.2 Worst-case robust optimization

The third general approach, which we take in this paper, is worst-case robust optimization. Here
we model the uncertain parameters as lying in some given set of possible values, but without any
known distribution, and we choose a design whose worst-case objective value, over the given
set of possible uncertainties, is minimized. The forthcoming book [6] provides a comprehensive
treatment of (worst-case) robust optimization.
The first systematicmethods for solving classes of convex optimization problemswith uncertain

parameters were introduced in the 1950s; for example, Dantzig considered solutions of uncertain

Optimization Methods & Software 385

LPs in [33]. In 1973, Soyster [90] considered convex programming problems with set-inclusive
constraints, in which the worst-case approach is used to solve LPs with box set uncertainty.
There has been much recent work on worst-case robust optimization for specific convex opti-
mization problems and associated parameter uncertainty sets. Ben-Tal and Nemirovski [2,5]
formulated specific classes of robust optimization problems as other convex optimization prob-
lems with no uncertainty, which can now be efficiently solved using, for example, interior-point
methods [19, Chapter 11; 73,74,96]. These were followed by many results for specific prob-
lem classes or applications; see e.g. the survey [12]; examples include RLPs [3,9,13], robust
least-squares [30,41], robust quadratically constrained programs [47], robust semi-definite pro-
grams [43], robust conic programming [10], and robust discrete optimization [8].Work focused on
specific applications includes robust control [25,98], robust portfolio optimization [42,48,56,83],
robust beamforming [65,67,94], robust machine learning [62], and many others.
For negative results, which show that some robust optimization problems are (for example)

NP-hard, see e.g. [2]. One approach in these cases is to formulate a conservative approximation
of the robust problem, using known upper bounds on the worst-case functions Fi, which can be
handled exactly.
Another approach, halfway between a stochastic and worst-case robust approach, assumes a

probability distribution on the uncertainty set, and samples the constraints. In this case one can
prove bounds on the probability of constraint violation; see e.g. [24,27,34].

2.3 Related problems

2.3.1 Semi-infinite programming

We can write the robust problem (6) as

minimize cTx

subject to fi(x, u) ≤ 0 for all u ∈ U, i = 1, . . . , m.
(7)

This is a so-called convex SIP problem, since we have an infinite number of constraints, parame-
terized by i and (the infinite index) u. There is an extensive literature on the theory and numerical
methods for the solution of SIP problems; see e.g. the survey [53] or books [39,44,81]. Numerical
methods for SIP problems can be broadly categorized into three groups (which are themselves
related): discretization, exchange, and local reduction methods.
Discretization and exchangemethods are of particular interest to us, since our proposedmethods

can be seen as variants of thesemethodswhen applied to solving the robust problem.Discretization
and exchange methods are iterative methods that discretize the infinite set of constraints and solve
the resulting discretized problem.At each iteration, new constraints are determined by solving an
auxiliary problem, and the updated finite problem is solved. This is repeated until some stopping
criterion is satisfied.
The basic exchange methods applied to linear SIPs can be related to Kelley’s cutting-plane

methods [55], and thus can exhibit well-known drawbacks such as slow convergence, infeasible
intermediate points, and others [52]. More advanced, rate-preserving discretization methods have
been proposed by Polak and He [76].
The SIP problem (7) can be viewed as a large-scale optimization problem, so we can apply

active-set or column-generation methods; see e.g. [63, Chapter 4]. Our proposed methods are
related to active-set and Benders’ decomposition methods [1] as applied to robust problems;
see [15] for more details on such interpretations and some experimental results in robust portfolio
optimization.

386 A. Mutapcic and S. Boyd

2.3.2 Nonsmooth minimax optimization

The robust problem (5) can be interpreted as a nonsmooth minimax optimization problem (see
e.g. [35]), since the objective F0 and the constraint functions Fi are convex, but generally
nonsmooth functions. There are many numerical methods available to solve the nonsmooth
optimization problems [36]; for example, subgradient methods [88,89], feasible-direction meth-
ods [75], ellipsoid method [17], analytic centre cutting-plane method (ACCPM) [45,46], and
many others.
Most of these methods require evaluation of Fi(x) and a subgradient gi ∈ ∂Fi(x) at the cur-

rent point x. When we can evaluate Fi and gi in a reasonable time and with reasonable effort,
these methods will work, but can be rather slow. Another implementable solution method is the
subgradient sampling method introduced in [22,23].

2.3.3 Game theory

The robust problem (6) can also be interpreted as a zero-sum game between two players, an opti-
mizer who chooses design variables x̃, and an opponent who chooses a worst-case uncertainty ũ

from the uncertainty set U . The goal of the optimizer is to choose the values of x so that Fi are
below zero and cTx is small, while the opponent’s goal is the opposite. In this setup we are looking
for a saddle-point; see e.g. [2, Section 4].
We remark that when the functions fi(x, u) are concave in u for all x, and the uncertainty

set U is convex, we can cast problem (6) as a convex–concave game, which can be efficiently
solved using interior-point methods, as described in e.g. [19, Section 10.3.4]. In [91], the authors
treat SIP problems (and hence robust problems) as special (Stackelberg) games, and then apply
interior-point methods developed for solving Stackelberg games to solve SIP problems. (Hence
this approach can be extended to solve robust problems.)

3. Sampled problem

Let
Ûi = {ui,1, . . . , ui,Ki

} ⊆ U, i = 1, . . . , m,

be a collection of finite subsets of U , where each subset has Ki samples or scenarios. We will
assume that ui, 1=unom, so each of the subsets contains unom. The associated sampled worst-case
constraint functions are defined as

F̂i(x) = max{fi(x, ui,1), . . . , fi(x, ui,Ki
)}, i = 1, . . . , m.

These functions satisfy
fi(x, unom) ≤ F̂i(x) ≤ Fi(x)

for any x. The associated sampled robust problem is

minimize cTx

subject to F̂i(x) ≤ 0, i = 1, . . . , m.
(8)

This sampled problem can be expressed as

minimize cTx

subject to fi(x, ui,j) ≤ 0, j = 1, . . . , Ki, i = 1, . . . , m.
(9)

Optimization Methods & Software 387

This is a basic convex optimization problem with K =K1+· · · +Km constraints, and can be
solved with an effort that grows linearly with K. Let p!samp denote its optimal value, and x!samp an
optimal point. We denote the feasible set of the sampled problem as Fsamp.

3.1 Lower bound on robust optimal value

We have
Frob ⊆ Fsamp ⊆ Fnom,

so
p!rob ≥ p!samp ≥ p!nom.

In particular, the optimal value of the sampled problem is a lower bound on the optimal value of
the robust problem. It follows that if V (x!samp) ≤ 0, i.e. x!samp is feasible for the robust problem,
then x!samp is optimal for the robust problem.

3.2 Upper bound on robust optimal value

We now assume that Slater’s condition holds for the robust problem: There exists a point xsla that
satisfies V (xsla)< 0. In other words, there exists a strictly robustly feasible point. We can use the
Slater point xsla to construct a robustly feasible point from x!samp, with an objective value that can
be bounded above. This will give us an upper bound on the optimal value of the robust problem.
Assume V (x!samp) > 0 (since, otherwise, x!samp is already optimal for the robust problem).

Consider the point
x̂ = θxsla + (1− θ)x!samp,

where

θ =
V (x!samp)

V (x!samp) − V (xsla)
.

Since θ ∈ (0, 1) and V is convex, we have

V (x̂) ≤ θV (xsla) + (1− θ)V (x!samp) = 0,

i.e. x̂ is robustly feasible. Its objective value is

cTx̂ = θcTxsla + (1− θ)cTx!samp = p!samp +
V (x!samp)

V (x!samp) − V (xsla)
cT(xsla − x!samp).

Now we use
cT(xsla − x!samp)

V (x!samp) − V (xsla)
≤ β = cTxsla − p!nom

−V (xsla)

to get
cTx̂ ≤ p!samp + βV (x!samp) ≤ p!rob + βV (x!samp).

Thus, the point x̂, which is robustly feasible, is at most βV (x!samp) suboptimal for the robust
problem. (Note that the constant β is readily evaluated.) We can also conclude

p!samp ≤ p!rob ≤ p!samp + βV (x!samp). (10)

388 A. Mutapcic and S. Boyd

4. Exact and approximate pessimizing oracles

A pessimizing oracle for constraint i is a subroutine or method that evaluates Fi(x), at a given
point x, possibly approximately. In other words, it solves the optimization problem

maximize fi(x, u)

subject to u ∈ U,
(11)

with variable u and for a fixed x, possibly approximately. If the oracle solves the problem (11)
exactly, we call it an exact pessimization oracle; if it solves it approximately, we call it an approx-
imate pessimization oracle. By solving the problem (11) approximately, we mean that the method
finds a value of u that is in U , but is not guaranteed to maximize fi(x, u). For an exact pessimization
oracle, we let u!(x) denote a worst-case parameter, i.e. a solution of problem (11).

4.1 Some exact oracles

Exact pessimizing oracles rely on analytic formulas for F(x) (and u!(x)) or some tractable method
for solving (11) exactly. In this section, we list some typical exact oracles. For brevity, we drop
the subscript i from Fi in the remainder of this section.

4.1.1 Finite set of modest size

When U = {u1, . . . , uK} is a finite set of modest size, we evaluate f (x, u1), . . . , f (x, uK) and find
an index k for which f (x, uk) is maximum. Then we take u!(x)= uk and F(x)= f (x, uk).

4.1.2 Convex hull of finite set

Suppose f is convex in u, for each x, and U = conv{u1, . . . , uK} is a polyhedron defined as the
convex hull of a finite set of modest size. Then the maximum of f (x, u) over u ∈ U is the same as
the maximum over the given vertices, which we can evaluate by evaluating f (x, u1), . . . , f (x, uK).

4.1.3 Monotone function on a box

Suppose f (x, u) is monotone in each component of u, for each x, and U is the box

U = {u| |ui − unom,i | ≤ ρi, i = 1, . . . , p}, (12)

where ρ i gives the radius or half-range of the variation in parameter i. (This type of parameter
variation can also be described as ui =unom, i ± ρ i.) Then we have

u!(x)i =
{

unom,i + ρi, f (x, u) nondecreasing in ui,

unom,i − ρi, f (x, u) nonincreasing in ui.

4.1.4 Affine dependence over ellipsoid

Suppose that f is affine in u, i.e. f (x, u)=a(x)Tu+b(x), and U is the ellipsoid U = {unom +
Pz | ‖z‖2 ≤ 1}. Then

F(x) = sup
‖z‖2≤1

a(x)T(unom + Pz) + b(x) = a(x)Tunom + b(x) + ‖P Ta(x)‖2,

Optimization Methods & Software 389

and

u!(x) = unom + PP Ta(x)

‖P Ta(x)‖2
.

4.1.5 Affine dependence over polyhedron

Suppose f (x, u)=a(x)Tu+b(x), withU the polyhedronP = {z|Cz ' d, Gz = h}. Then F(x) and
u!(x) can be found by solving the LP

maximize a(x)Tu + b(x)

subject to Cu ' d, Gu = h.

(In this case we can also directly express F(x) as the optimal value of the dual LP, assuming a
constraint qualification holds; in some cases, this allows us to solve the robust problem as one
large optimization problem.)

4.1.6 Quadratic dependence over quadratic set

Suppose f is quadratic in u, for each x, i.e.,

f (x, u) = uTP(x)u + q(x)Tu + r(x),

and U is defined by a quadratic function,

U = {u|uTP̃ (x)u + q̃(x)Tu + r̃(x) ≤ 0}.

Wecan computeF(x) and u!(x) exactly using the so-called S-procedure (see, e.g., [19,AppendixB;
77]).

4.2 Some approximate oracles

Any optimization method can be used as an approximate pessimizing oracle, including traditional
gradient and the second-order methods [74], local search methods such as Nelder–Mead [59,71],
randomized search [11,40], derivative-free optimization [31], global search methods such as
simulated annealing [58], evaluating f (x, u) over a grid on U [72, Section 1.1.3], and so on.
An approximate oracle can have an effort parameter, which controls the effort the oracle will

expend in approximating F(x). For example, the effort parameter could be the number of times
a local optimization method is run from randomly chosen starting points (with the largest value
found as our estimate of F(x)).
An example of a simple approximate oracle, when U is a box (12), is given by the choice

u!(x)i ≈






unom,i + ρi,
∂f

∂ui

(x, u) ≥ 0,

unom,i − ρi,
∂f

∂ui

(x, u) < 0.

(This is themaximizer of the first-order approximation of f (x, u) overU .) This point can, of course,
be used as the starting point for a local optimization method.

390 A. Mutapcic and S. Boyd

5. Cutting-set methods

5.1 Basic cutting-set method

The algorithm is based on solving a sequence of sampled problems (9), with expanding sets of
scenarios Ûi , i=1, . . . ,m, which are found by pessimization (i.e., worst-case analysis).
Basic cutting-set method
given stopping tolerance V tol>0 and Ûi = {unom}, i= 1, . . . ,m.
repeat

(1) Optimization.
Solve sampled problem (9) with Ûi , i=1, . . . ,m, and return a solution x̃.

(2) Pessimization.
for i= 1, . . . ,m
(a) Call oracle i to evaluate u!i (x̃) and Fi(x̃) (possibly approximately).
(b) If Fi(x̃) > 0, append u!i (x̃) to Ûi .

(3) Sign-off criterion. quit if V (x̃) ≤ V tol.

This basic CSM alternates between optimization and pessimization steps until a sign-off crite-
rion based on the maximum constraint violation V is satisfied. In the optimization step, we solve
the sampled problem (9) with the current set of scenarios Ûi for each constraint. In the pessimiza-
tion step, we query oracles for each constraint to determine Fi(x̃), its maximum violation, exactly
or approximately. (The oracles for the different constraints can be queried independently and in
parallel, allowing a linear speedup of step 2; see e.g. [29].)Whenever pessimization of a constraint
finds a value of u that violates a robust constraint, this value is appended to the list of scenarios
for that constraint.
When the oracles are exact, we terminate with the certificate of suboptimality given in

Equation (10). When the pessimization oracles are approximate, our estimates of Fi(x) and
V (x) are underestimates, which of course can lead to premature termination. If the oracles have
an effort parameter, the sign-off criterion can be checked with maximum effort, to minimize the
chance of premature termination.
We can explain the name of the method. When we add a new point ũ to one of the sets Ûi , we

impose the additional constraint fi(x, ũ) ≤ 0 in the next optimization step. Our current point x̃
violates this inequality, i.e. fi(x̃, ũ) > 0 ; for every point z ∈ Frob, however, we have fi(z, ũ) ≤ 0.
Thus, adding the parameter value ũ has ‘cut’ points from the set F (k)

samp. When fi(x, ũ) is affine in
x, the cut corresponds to a hyperplane, or linear cut; otherwise, the cut is called nonlinear. In this
case, the basic CSM is Kelley’s cutting-plane method. The CSM could also be called a nonlinear
cutting-plane method or a cutting-surface method; see e.g. [69].

5.2 Convergence proof

For completeness, we give a convergence proof for the basic CSM. The proof is based on standard
ideas and results used in the original proof of Kelley’s cutting-plane method in [55] and in
alternative proofs [18, Section 14.3.3; 68, Section 13.7; 72, Section 3.3; 78, Section 5.4].

Assumptions We assume that the nominal feasible set Fnom is bounded and the constraint
functions fi are uniformly Lipschitz continuous in x, on Fnom, i.e. there is a G for which

|fi(x1, u) − fi(x2, u)| ≤ G‖x1 − x2‖ (13)

Optimization Methods & Software 391

holds for i=1, . . . , m, all x1, x2 ∈ Fnom, and all u ∈ U . Of course we assume that the
pessimization oracles are exact.
The assumption that the functions fi are convex in x for each u ∈ U is not needed to prove the

convergence of CSM; this assumption is needed to ensure that the optimization step is tractable.

Proof Let F (k)
samp be the feasible set, and x(k) the solution found, for the sampled problem (9) in

Step 1, in the kth iteration of the algorithm.
Suppose that for k=1, . . . ,K the CSM has not terminated, i.e. V (x(k))>V tol. We will derive

an upper bound on how large K can be.
Let u(k) be a parameter value added to Ûi(k) in Step 2, with

fi(k) (x(k), u(k)) = V (x(k)) > V tol. (14)

Any z ∈ F (j)
samp, with j> k, must satisfy fi(k) (z, u(k))≤0, since this constraint is part of the jth

sampled problem. In particular, we must have

fi(k) (x(j), u(k)) ≤ 0, (15)

for j> k. Combining Equations (14) and (15) we see that, for k< j,

fi(k) (x(k), u(k)) − fi(k) (x(j), u(k)) > V tol.

Using the Lipschitz condition (13), we conclude

‖x(k) − x(j)‖ >
V tol

G
, (16)

for k< j. Thus, the minimum distance between any two points x(1), . . . , x(K) exceeds V tol/G.
Let Bk denote the ball of diameter V tol/G centred at x(k). By Equation (16), these balls do not

intersect, so their total volume is K times the volume of one ball, Kβn(V tol/G)n, where βn is the
volume of the unit ball in Rn.
Let B be a ball, with radius R, that contains Fnom. Then the balls B1, . . . ,BK are contained in

the ball B̃, which is B, with radius increased byV tol/G. If follows that the total volume of the balls
B1, . . . ,BK cannot exceed the volume of B̃, which is βn(R+V tol/G)n. Thus, we have

Kβn

(
V tol

G

)n

≤ βn

(
R + V tol

G

)n

,

from which we conclude

K ≤
(

RG

V tol + 1
)n

.

The right-hand side gives an upper bound on the number of iterations before the CSM terminates.
(We mention that the actual number of iterations typically required is vastly smaller than this
upper bound.) !

5.3 Variations

5.3.1 Adding constraints

In the basic CSM, we add parameter values for any violated robust constraint. From the conver-
gence proof,we see that it suffices to addonly oneparameter value, corresponding to theworst-case
robust constraint violation. Beyond this, we can add any number of parameters, including, at the
other extreme, the worst parameter found for each constraint, whether violated or not. In between
these two extremes, we can add N worst-case parameters corresponding to the N most violated
constraints, where N is the algorithm parameter.

392 A. Mutapcic and S. Boyd

5.3.2 Dropping constraints

We can also drop constraints, keeping, for example, only a total of N parameter values in the
sampled problem, corresponding to the N most violated constraints, where a typical choice of N
is between 3n and 5n. The convergence proof presented above does not handle constraint dropping,
but it can be extended to handle it; see e.g. [38].

5.3.3 Linearizing constraints

The next variation involves approximating constraints in order to simplify the solution of the
sampled problem. We replace the constraint fi(x, u)≤0 with the linear inequality

fi(x
(k), u) + gT(x − x(k)) ≤ 0,

where g∈ ∂xfi(x(k), u) is any subgradient of fi, with respect to x, at the point x(k). Here we still have
an outer approximation of the robust problem, and thus a lower bound on p!rob. (Our convergence
proof carries through almost unchanged.) If this is done for all constraints, the sampled problem
becomes an LP.
We do not recommend using the linear approximation of the constraints in cases when the

constraint itself can be handled efficiently, since linearization typically yields slower convergence.
However, linearization can work well when combined with ACCPMs [45,46], discussed below.
Linearization has been used for several types of SIP problems, e.g., a cutting-plane method based
on a most violated constraint [79], the Elzinga–Moore central cutting-plane method for solving
linear SIPs [51], and convex SIP problems [60].

5.3.4 Regularized methods

The next variation is based on solving a regularized version of the sampled problem (9) at each
iteration, such as

minimize cTx + γ ‖x − x(k)‖22
subject to fi(x, ui,j) ≤ 0, j = 1, . . . , Ki, i = 1, . . . , m,

(17)

where x(k+1) denotes an optimal solution of problem (17), x(k) is the solution of the previous sam-
pled problem, and γ > 0 is the regularization parameter. Algorithms that use regularization based
on quadratic or generalized distance functions are called the proximal minimization algorithms;
see, e.g., [7, Section 3.4.3; 29, Chapter 3]. Quadratic regularization of the objective (as in problem
(17)) is often called the Moreau–Yosida regularization [84, Section 7.3.1], and the overall scheme
in which we regularize a sequence of problem ‘approximations’ is (one variation on) the bundle
method [84, Chapter 7]. Regularization can greatly reduce the number of iterations required. The
algorithm converges for any value of the regularization parameter; its choice, however, can affect
the rate of convergence.
Proximal minimization methods have been applied to convex SIP, see, e.g., [54], in which the

authors give a convergence proof that can be applied herewithoutmuch change. For completeness,
we give a version of the proof that follows our notation and development.
We will work with distances to an optimal point x!rob of the robust problem. We start with the

identity

‖x(k) − x!rob‖2 = ‖x(k) − x(k+1)‖2 + 2(x(k) − x(k+1))T(x(k+1) − x!rob) + ‖x(k+1) − x!rob‖2,

Optimization Methods & Software 393

from which we obtain

‖x(k) − x!rob‖2 + 2(x(k+1) − x(k))T(x(k+1) − x!rob) ≥ ‖x(k+1) − x!rob‖2. (18)

By strict convexity of the objective in problem (17), the solution x(k+1) is unique; it satisfies an
optimality condition for constrained problems [19, Section 4.2.3] given by

(
c + 2γ (x(k+1) − x(k))

)T
(z − x(k+1)) ≥ 0 for all z ∈ F (k)

samp.

In particular, since x!rob ∈ Frob ⊆ F (k)
samp, we have

cT(x!rob − x(k+1)) ≥ 2γ (x(k+1) − x(k))T(x(k+1) − x!rob). (19)

Combining the inequalities (18) and (19) gives

‖x(k+1) − x!rob‖2 ≤ ‖x(k) − x!rob‖2 + 1
γ

(p!rob − cT x(k+1)).

If p!rob ≤ cTx(k+1), then we have the bound

‖x(k+1) − x!rob‖ ≤ ‖x(k) − x!rob‖,

and hence the distance to the optimal set is nonincreasing, and we can contain the optimal set
in a ball around the current solution. Otherwise, we have p!rob > cTx(k+1), i.e. x(k+1) is a lower
bound on the optimal value p!rob, and we can use the arguments in Section 3 to construct a robustly
feasible point x̂, which yields a bound on the suboptimality gap

cTx(k+1) ≤ p!rob ≤ cTx(k+1) + βV (x(k+1)).

Now, using the Lipschitz condition (13), we know that

V (x(k)) ≤ G‖x(k) − x!rob‖,

and as x(k) → x!rob, we have V (x(k)) → 0.

5.3.5 Interior-point methods

The next variation is based on approximately solving the sampled problem (9) at each optimization
step using interior-pointmethods.We consider a variation based on the barriermethod [19,Chapter
11]: in place of the sampled problem, we solve its barrier approximation given by

minimize cTx + κφ(x), (20)

where κ > 0 is a parameter, and φ is the log barrier

φ(x) =






∑

i,j

− log
(
−fi(x, ui,j)

)
, fi(x, ui,j) < 0,

+∞ otherwise,
(21)

with j=1, . . . ,Ki and i=1, . . . ,m. (K =K1+· · · +Km is the total number of constraints in
the sampled problem.) The solution of problem (20), denoted by x!(κ), is called a central point
and can be efficiently obtained using Newton’s method. Like regularization, this variation can

394 A. Mutapcic and S. Boyd

significantly reduce the number of iterations required.Moreover,warm-start techniques (discussed
below) can be used to substantially reduce the cost per iteration.
The proof of convergence given in Section 5.2 can be applied here almost unchanged. The

central point x!(κ) yields a dual feasible point, and hence a lower bound on the optimal value
p!samp of the sampled problem given by

cTx!(κ) − p!samp ≤ κK.

(For more details, see [19, Section 11.2.2].) From x!(κ), following Section 3, we can produce a
robustly feasible point x̂ and an upper bound on the optimal value p!rob, given by

cTx̂ ≤ p!samp + κK + βV (x!(κ)) ≤ p!rob + κK + βV (x!(κ)).

Thus, the point x̂, which is robustly feasible, is at most κK +βV (x!(κ)) suboptimal for the robust
problem. We can also conclude that

cTx!(κ) − κK ≤ p!rob ≤ cTx!(κ) + κK + βV (x!(κ)).

Given these bounds, we can use the same arguments as before to show that

lim sup
k→∞

cTx̂(k) ≤ p!rob + κK.

5.3.6 Warm-start

In the basic CSMor any of its variations, we solve a sequence of closely related sampled problems.
If the optimization method used to solve the sampled problems can use the previously computed
optimal variables (and possibly dual variables) to initialize (i.e. warm-start) the solution of the
current problem, the effort per iteration can be substantially reduced. A general rule-of-thumb is
that warm-start can reduce the effort per iteration by factor of up to 10 or so (for example, in the
barrier method). For more on warm-starting and its benefits in a general context, see, e.g. [97,49].
Warm-start strategies for general interior-pointmethods is still an area of active research.Warm-

starting the barrier approximation (20), however, works very well, provided the parameter κ is
not chosen too small. For more on warm-starting a barrier approximation, with a fixed value of
the parameter κ , see [20,95].

6. Numerical example

We illustrate the basic CSM and some of its variations by solving a robust problem for which we
know an exact solution. We consider an RLP with ellipsoidal data uncertainty,

minimize cTx

subject to sup
ai∈Ai

aTi x ≤ bi, i = 1, . . . , m,
(22)

where ai ∈Rn are uncertain, but known to belong to ellipsoidsAi = {āi + Piu|‖u‖2 ≤ 1}, b∈Rm,
and c∈Rn. The uncertainty ellipsoids are centred at the nominal vectors āi ∈ Rn, with their
shapes described by matrices Pi ∈Rn×n and free parameters u∈Rn. It is well known that the RLP
problem (22) can be reduced to the SOCP [3,19, p. 157],

minimize cTx

subject to āTi x + ‖P T
i x‖2 ≤ bi, i = 1, . . . , m,

(23)

and therefore efficiently solved.

Optimization Methods & Software 395

We put the RLP (22) in our framework as

minimize cTx

subject to Fi(x) = sup
u∈U

(āi + Piu)Tx − bi ≤ 0, i = 1, . . . , m,
(24)

where U = {u | ‖u‖2 ≤ 1}. In this case, we have analytic formulas for the exact pessimizing
oracles: the worst-case constraint functions are given by

Fi(x) = āTi x + ‖P T
i x‖2 − bi,

and a worst-case parameter is given by

u!i (x) = P T
i x

‖P T
i x‖2

.

We will also use an approximate oracle, using the nonlinear optimization solver SolvOpt [61],
which implements Shor’s space-dilated subgradient method [88], using function evaluation and
derivative information. To ensure that the pessimization is crude enough to present a challenge to
the algorithm, we specify the low relative accuracy of 10%. All sampled problems were solved
using CVX [50], which internally calls the conic solver SDPT3 [93].
We generate a synthetic problem instance with n=50 variables,m=100 constraints, and mag-

nitude of data values ‖ai‖, bi, and ‖c‖ around 1. We also randomly generate positive definite
matrices Pi with norm 0.05. (This corresponds to about 5% uncertainty in the problem data.) The
robust problem was verified to be feasible and the optimal value p!rob was computed by solving
the SOCP (23).

6.1 Basic CSM

The left-hand plot in Figure 1 shows the maximum constraint violation V versus iteration for
the exact oracle (solid line). The right-hand plot shows the approximate V̂ (x) as computed by
the approximate oracle (dashed line), and true V (x), which was computed using the worst-case
formulas (and not used in the algorithm). The exact oracle results in faster convergence, but more
constraints per iteration, since it captures every violating constraint, as seen in Figure 2.

Figure 1. Basic CSM.Maximum constraint violation versus iteration. Exact oracleV (x) (solid line) (left).Approximate
oracle V̂ (x) (dashed line) and V (x) (solid line) (right).

396 A. Mutapcic and S. Boyd

Figure 2. Basic CSM. Total number of scenarios K in Û1, . . . , Ûm versus iteration for the exact oracles (circles) and
approximate oracles (triangles).

6.2 Dropping constraints

Here we keep at most 5n=250 constraints. The plots in Figure 3 show maximum constraint
violationV and V̂ versus the iteration.We observe that the convergence is slower and more erratic
when compared with the basic CSM; however, we still have convergence to the optimal value.
The benefit here is that we never have to solve a sampled problem with more than 5n constraints.

6.3 Proximal CSM

We use the proximal CSM, with the regularization parameter γ = 0.1 (obtained by experimenta-
tion). The plots in Figure 4 show V and V̂ versus the iteration.
In the case of exact oracles, we observe very rapid convergence. The number of constraints for

both the exact and approximate oracles does not go much above 5n= 250 constraints.

6.4 Barrier CSM

We use the barrier CSM with parameter κ=10−4. The plots in Figure 5 show V and V̂ versus
iteration. Like the proximal method, the barrier method gives fast convergence.As in the proximal

Figure 3. CSMwith constraint dropping. Maximum constraint violation versus iteration. Exact oracleV (x) (solid line)
(left). Approximate oracle V̂ (x) (dashed line) and V (x) (solid line) (right).

Optimization Methods & Software 397

Figure 4. Proximal CSM. Maximum constraint violation versus iteration. Exact oracle V (x) (solid line) (left).
Approximate oracle V̂ (x) (dashed line) and V (x) (solid line) (right).

Figure 5. BarrierCSM.Maximumconstraint violation versus iteration. Exact oracleV (x) (solid line) (left).Approximate
oracle V̂ (x) (dashed line) and V (x) (solid line) (right).

method, the number of constraints for both the exact and approximate oracles does not go much
above 5n= 250 constraints.
We run the barrier CSM with and without warm-start (which yields the same result, of course).

The warm-start barrier method was implemented using infeasible start Newton’s method; see e.g.
[19, Section 10.3]. The total number of Newton iterations required to carry out 20 iterations was
622 without warm-start, and 124 with warm-start, which is about five times reduction in the effort.
(Both of these counts include the initial iteration which required 32 Newton steps to solve the
nominal problem.)

7. Robust beamforming with uncertain locations

We consider a beamforming problem with an array of n antennas. We wish to choose the antenna
weights w = (w1, . . . ,wn)∈Cn to minimize the maximum array gain over the rejection angles
θ1, . . . , θm, subject to the real part of the array gain being at least one in a desired direction
θdes, i.e.

minimize G(w) = max
k=1,...,m

|w∗a(θk)|

subject to -(w∗a(θdes)) ≥ 1.
(25)

398 A. Mutapcic and S. Boyd

The array response vector a(θ)∈Cn is given by

a(θ)j = exp(2πi(xj cos θ + yj sin θ)), j = 1, . . . , n,

where (xj, yj)∈R2 is the location of the jth antenna (given in units of the wavelength), and
i = √−1. The problem data are θ1, . . . , θm, θdes, and the antenna positions (xj, yj). When all
these data are known, the problem (25) can be cast as an SOCP when expressed in terms of the
real and imaginary parts of the variables and data; see e.g. [64,66].
We will consider the robust beamforming problem with uncertainty in the x- and y-positions

of the antennas,

u = (x, y) ∈ U = {(x, y)| |xj − xnom,j | ≤ ρ, |yj − ynom,j | ≤ ρ}, (26)

where ρ is the position uncertainty. Our problem is then

minimize Gwc(w) = sup
u∈U

max
k

|w∗a(θk, u)|

subject to inf
u∈U

-(w∗a(θdes, u)) ≥ 1,
(27)

where now we show the dependence of a on u explicitly.
We put this problem in our form by introducing a new variable t and forming the epigraph

problem
minimize t

subject to Fk(w) = sup
u∈U

|w∗a(θk, u)| − t ≤ 0, k = 1, . . . , m,

Fm+1(w) = sup
u∈U

(
1− -(w∗a(θdes, u))

)
≤ 0.

(28)

We will use the basic CSM to solve problem (28), with an exact pessimization oracle we describe
below. Forwork on other robust beamforming problems (but not including this uncertaintymodel),
see [57,65,67,70,94].

7.1 Exact pessimization oracle

In this section, we describe a method for computing the worst-case (largest) antenna gain,
supu∈U |w∗a(θ, u)|. We first observe that

sup
u∈U

|w∗a(θ, u)| = sup
u∈U

sup
|q|=1

-
(
(w∗a(θ, u))q

)

= sup
|q|=1

sup
u∈U

n∑

j=1
-

(
qwj exp(2πi(xj c + yj s))

)

= sup
|q|=1

n∑

j=1
sup

|xj −xnom,j |≤ρ,
|yj −ynom,j |≤ρ

-
(
qwj exp(2πi(xj c + yj s))

)
,

where c = cos θ , s = sin θ . We now show how to compute

sup
|xj −xnom,j |≤ρ
|yj −ynom,j |≤ρ

-
(
qwj exp(2πi(xj c + yj s)

)
, (29)

for any given q. As xj and yj range over the box, xjc+ yjs varies over the interval

(xnom,j c + ynom,j s) ± ρ(|c| + |s|).

Optimization Methods & Software 399

Therefore, qwj exp(2πi(xj c + yj s)) varies over an arc in the complex plane, centred at 0 with
radius |wj| (including, possibly, the whole circle). Its maximum real part is either |wj|, or occurs
at one of the arc endpoints, and so is readily calculated.
We can evaluate Equation (29) for q = exp(2πik/N), for k=1, . . . ,N. The maximum of

these values gives an under-approximation of (lower bound on) supu∈U |w∗a(θ, u)|; multiplying
the lower bound by 1+ (π /N)2 yields an upper bound, since for any z∈C we have

|z| ≤ max
k=1,...,N

-
(
exp

(
2πik

N

)
z

)
≤

(
1+ sin2

(π
N

))1/2
|z| ≤

(
1+

(π
N

)2)
|z|.

Thus, themaximumof Equation (29) for q = exp(2π ik/N), for k=1, . . . ,N, is an approximation
of supu∈U |w∗a(θ, u)| within an accuracy that decreases as 1/N2.
The same technique can be used to evaluate supu∈U (1− -(w∗a(θdes, u))).

7.2 Numerical example

We illustrate the method with a numerical example, with n= 40 antennas, with their nominal
locations generated randomly in the square [0, 5]× [0, 5]. We take θdes= 60°, and pick rejection
angles θ k ∈ {1°, . . . , 40°, 80°, . . . , 360°}, i.e. we wish to reject signals arriving from directions
outside the beam (40°, 80°). We set the location uncertainty level to ρ= 0.03, which corresponds
to a maximum phase shift of about ±15° at θ = 60°. We set N = 36 for the exact pessimizing
oracles, which means that our error in computing Fk(w) is no more than 0.76%.
The nominal optimal beamformer achieves an excellent rejection levelwith the nominal antenna

locations: we have G(w!nom) = 2.59× 10−3. The antenna gain, with these antenna weights, is
extremely sensitive to uncertainty in the antenna positions. Figure 6 shows the gain pattern of the
nominal optimal beamformer given the nominal antenna locations and the worst-case locations.
The nominal rejection level for the robust beamformer is G(w!rob) = 0.205 and the worst-case

rejection level isGwc(w
!
rob) = 0.212. Therefore, the robust beamformer performs well (and about

the same) over all possible antenna locations parameterized by u ∈ U . Figure 7 shows the gain
pattern of the robust design, with the nominal and the worst-case antenna locations.

Figure 6. Nominal optimal beamformer gain pattern with nominal antenna locations (dashed line), and with worst-case
antenna locations (solid line). Solid and dashed horizontal lines represent the worst-case and nominal rejection levels,
respectively.

400 A. Mutapcic and S. Boyd

Figure 7. Robust optimal beamformer gain pattern with nominal antenna locations (dashed line), and with worst-case
antenna locations (solid line). Solid horizontal line represents the worst-case rejection level (the nominal rejection level
is about the same).

Figure 8. Maximum constraint violation V (w) versus iteration.

The basic CSM converges with tolerance V tol=10−4 in 20 iterations; a very good design is
obtained in only 10 iterations. Figure 8 shows the maximum constraint violation V (w) versus
iteration.

8. Robust state transfer

We consider the spring–dashpot–mass system shown in Figure 9, where y1 and y2 are displace-
ments of the two masses, m1 and m2 are their mass values, f is the force applied to the first mass,
k1 and k2 are the spring constants, and d1 and d2 are the damping coefficients. The dynamics is
given by

ẋ(t) = Ax(t) + Bf (t), x(0) = 0, (30)

Optimization Methods & Software 401

Figure 9. Two-mass system connected with springs and dashpots.

where x = (y1, y2, ẏ1, ẏ2) ∈ R4 is the state, f (t)∈R is the input force, and

A =





0 0 1 0
0 0 0 1

−(k1 + k2)/m1 k2/m1 −(d1 + d2)/m1 d2/m1

k2/m2 −k2/m2 d2/m2 −d2/m2




, B =





0
0

1/m1

0




.

The input force is piecewise constant over the interval [0,T], where T =Nh,

f (t) = fi, (i − 1)h ≤ t < ih, i = 1, . . . , N.

Therefore, we have

x(T) =
N∑

i=1
A

(N−i)
d Bdfi, (31)

where

Ad = ehA, Bd =
(∫ h

0
eτA dτ

)
B = A−1(Ad − I)B.

In the sequel, we will let f denote the (discrete) force vector f = (f1, . . . , fN). We note that x(T)
is linear in f for given values of the mass, spring, and damping parameters. But x(T) depends on
the parameters in a very complicated way.
Our parameter uncertainty is given by

mi ∈ [mi, mi], ki ∈ [ki, ki], di ∈ [di, di], i = 1, 2.

(Such parameter interval uncertainty is often used in the robust control literature [14,32].)
Our goal is to choose f, with |fi| ≤ fmax, which achieves x(T)≈ xdes, where xdes is some given

desired target state, despite the variations in the mass, spring, and damping parameters. Using
the Euclidean norm to measure deviation in the final state, we arrive at the robust state transfer
problem,

minimize sup ‖x(T) − xdes‖2
subject to |fi | ≤ fmax, i = 1, . . . , N,

(32)

where the supremum is over the parameters. We put this in our form as

minimize t

subject to sup ‖x(T) − xdes‖2 − t ≤ 0
|fi | − fmax ≤ 0, i = 1, . . . , N,

(33)

with additional variable t. In this problem, only the first constraint is affected by the uncertain
parameters.

402 A. Mutapcic and S. Boyd

8.1 Approximate pessimization oracle

As a simple approximate pessimization oracle for the first constraint, we evaluate ‖x(T)− xdes‖
at the 64 vertices of the parameter set. We do not know that the state deviation is maximized over
the box at one of its vertices, but it seems likely.

8.2 Numerical example

We take the parameter set to be

mi ∈ [0.9, 1.1], ki ∈ [2.9, 3.1], di ∈ [0.09, 0.11],

where the nominal parameters are mi =1, ki =3, and di =0.1, i= 1, 2. We take time horizon
T =5, with update interval h= 0.1, so N =50. The maximum force is fmax=2.5, and the desired
state is xdes= (0, 1, 0, 0).
With the nominal parameter values, it is possible to choose f so that x(T)= xdes. The top plot

in Figure 10 shows one such force. The associated (approximate) worst-case state deviation for
this force vector is, however, 0.68.
The basic CSM computes a robust force with very small (approximate) worst-case violation

after six iterations. The obtained robust force is shown in the bottom plot in Figure 10. The
(approximate) worst-case state deviation is 0.15, around fifth the value for our nominal force.
(The state deviation with nominal parameters is 0.04.) Histograms of the state deviation for both
the nominal and the robust forces, over the 64 extreme points, are shown in Figure 11, and state
trajectories are shown in Figure 12.
To verify our approximate pessimization oracle, we ran various local optimization methods

from the vertices, and checked 105 randomly chosen parameter values, for our nominal and
robust forces. We found no parameter that was worse than the worst vertex value. While we
cannot claim that our approximate oracle is exact, this seems very likely.

Figure 10. Nominal optimal force profile (top). Robust force profile (bottom).

Optimization Methods & Software 403

Figure 11. Histogram of state deviation over 64 vertices of the parameter set. Nominal optimal force (top). Robust force
(bottom).

Figure 12. State trajectories for all 64 vertices of the parameter set. The darkest to the lightest curves are x1(t) through
x4(t). With nominal optimal force (top). With robust force (bottom).

9. Conclusions

We have presented a basic CSM, and several variations, for solving convex worst-case robust
optimization problems. Thesemethods alternate between finite-scenario robust optimization steps
and pessimization (worst-case analysis) steps, and so are quite practical when the base problem

404 A. Mutapcic and S. Boyd

is convex. Using the barrier or regularized versions of the method, with warm-start techniques
to accelerate the solve steps, practical robust solutions can be computed with an effort that is a
modest multiple of the effort required to solve the nonrobust version of the problem.

Acknowledgements

This work was supported in part by Dr Dennis Healy of DARPAMTO, under award no. N00014-05-1-0700 administered
by the Office of Naval Research, by NSF award no. 0529426, and by AFOSR award no. FA9550-06-1-0312.

Note

1. References [21, 28, 85] are not cited in this article.

References1

[1] J. Benders, Partitioning procedures for solving mixed-variables programming problems, Numer. Math. 4 (1962),
pp. 238–252.

[2] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23(4) (1998), pp. 769–805.
[3] A. Ben-Tal andA. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res. Lett. 25 (1999), pp. 1–13.
[4] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering

Applications, SIAM, Philadelphia, PA, 2001.
[5] A. Ben-Tal and A. Nemirovski, Robust optimization: methodology and applications, Math. Program. 92(3) (2002),

pp. 453–480.
[6] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization, (2007), Book in progress. Available at http://

www2.isye.gatech.edu/nemirovs/.
[7] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Prentice Hall, Upper

Saddle River, NJ, 1989.
[8] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Math. Programming 98(1–3) (2003),

pp. 49–72.
[9] D. Bertsimas and M. Sim, The price of robustness, Oper. Res. 52(1) (2004), pp. 35–53.
[10] D. Bertsimas andM. Sim,Tractable approximations to robust conic optimization problems,Math. Program. 107(1–2)

(2006), pp. 5–36.
[11] D. Bertsimas and S. Vempala, Solving convex programs by random walks, J. ACM 51(4) (2004), pp. 540–556.
[12] D. Bertsimas, D. Brown, and C. Caramanis, Theory and applications of robust optimization, (2007) Available at

http://users.ece.utexas.edu/cmcaram/pubs/RobustOptimizationLV.pdf.
[13] D. Bertsimas, D. Pachamanova, andM. Sim, Robust linear optimization under general norms, Oper. Res. Lett. 32(6)

(2003), pp. 510–516.
[14] S. Bhattacharyya, H. Chapellat, and L. Keel,Robust Control: The Parametric Approach, Prentice-Hall, Upper Saddle

River, NJ, 1994.
[15] D. Bienstock, Histogram models for robust portfolio optimization, Manuscript, (2007) Available at

www.columbia.edu/ dano/papers/rqp.pdf.
[16] J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, NewYork, NY, 1997.
[17] R. Bland, D. Goldfarb, and M. Todd, The ellipsoid method: a survey, Oper. Res. 29(6) (1981), pp. 1039–1091.
[18] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance, Prentice Hall, Upper Saddle River, NJ,

1991.
[19] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, UK, 2004.
[20] S. Boyd and B. Wegbreit, Fast computation of optimal contact forces, IEEE Trans. Robot. 23(6) (2007),

pp. 1117–1132.
[21] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory,

SIAM, Philadelphia, PA, 1994.
[22] J. Burke, A. Lewis, and M. Overton, Approximating subdifferentials by random sampling of gradients, Mathematics

of Operations Research 27 (2002), pp. 567–584.
[23] J. Burke, A. Lewis, and M. Overton, A robust gradient sampling algorithm for nonsmooth nonconvex optimization,

SIAM J. Optim. 25 (2005), pp. 751–779.
[24] G.Calafiore andM.Campi,Uncertain convex programs: randomized solutions and confidence levels,Math. Program.

102(1) (2005), pp. 25–46.
[25] G. Calafiore and M. Campi, The scenario approach to robust control design, IEEE Trans. Automat. Control 51(5)

(2006), pp. 742–753.
[26] G. Calafiore, and F. Dabbene (eds.), Probabilistic and RandomizedMethods for Design under Uncertainty, Springer,

London, 2006.

Optimization Methods & Software 405

[27] G. Calafiore and F. Dabbene, A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs,
Automatica 43(12) (2007), pp. 2022–2033.

[28] G. Calafiore and B.T. Polyak, Stochastic algorithms for exact and approximate feasibility of robust LMIs, IEEE
Trans. Automat. Control 46(11) (2001), pp. 1755–1759.

[29] Y. Censor and S. Zenios, Parallel Optimization: Theory, Algorithms, and Applications, Oxford University Press,
NewYork, NY, 1997.

[30] S. Chandrasekaran, G. Golub, M. Gu, and A. Sayed, Parameter estimation in the presence of bounded data
uncertainties, SIAM J. Matrix Anal. Appl. 19 (1998), pp. 235–252.

[31] A. Conn, K. Scheinberg, and P. Toint, Recent progress in unconstrained nonlinear optimization without derivatives,
Math. Program. 79 (1997), pp. 397–414.

[32] M.A. Dahleh and I. Diaz-Bobillo, Control of Uncertain Systems: A Linear Programming Approach, Prentice-Hall,
Upper Saddle River, NJ, 1995.

[33] G. Dantzig, Linear programming under uncertainty, Manage. Sci. 1(3/4) (1955), pp. 197–206.
[34] D. de Farias and B. Van Roy, On constraint sampling in the linear programming approach to approximate dynamic

programming, Math. Oper. Res. 29(3) (2004), pp. 462–478.
[35] V. Dem’yanov and V. Malozemov, Introduction to Minimax, Wiley, NewYork, 1974.
[36] V. Dem’yanov and L. Vasil’ev, Nondifferentiable Optimization, Optimization Software, Inc, NewYork, NY, 1985.
[37] M. Diehl, H. Bock, and E. Kostina, An approximation technique for robust nonlinear optimization, Math. Prog.

Series B 107(1) (2006), pp. 213–230.
[38] J. Elzinga and T.J. Moore, A central cutting plane algorithm for the convex programming problem, Math. Program.

8 (1975), pp. 134–145.
[39] A.V. Fiacco, and K. Kortanek (eds.), Semi-infinite programming and applications: an international symposium,

Proceedings, Lecture Notes in Economics and Mathematical Systems, Vol. 2, Springer, NewYork, NY, 1981.
[40] B. Gartner, Randomized optimization by simplex-type methods, Ph.D. thesis, Freie Universitat Berlin, 1995.
[41] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal.

Appl. 18(4) (1997), pp. 1035–1064.
[42] L. ElGhaoui,M.Oks, andF.Oustry,Worst-case value-at-risk and robust portfolio optimization: a conic programming

approach, Oper. Res. 51(4) (2003), pp. 543–556.
[43] L. El Ghaoui, F. Oustry, and H. Lebret, Robust solutions to uncertain semidefinite programs, SIAM J. Optim. 9(1)

(1998), pp. 33–52.
[44] M. Goberna, and M. Lopez (eds.), Semi-infinite programming: Recent advances, Nonconvex Optimization and its

Applications, Vol: 57; Kluwer Academic Publishers, Dordrecht, 2001.
[45] J.-L. Goffin and J.-P.Vial, Cutting planes and column generation techniques with the projective algorithm, J. Optim.

Theory Appl. 65 (1990), pp. 409–429.
[46] J.-L. Goffin and J.-P. Vial, Convex nondifferentiable optimization: a survey focussed on the analytic center cutting

plane method, Tech. Rep. 99.02, Logilab, Geneva, Switzerland, 1999.
[47] D. Goldfarb and G. Iyengar, Robust convex quadratically constrained programming, Math. Program. 97(3) (2003),

pp. 495–515.
[48] D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28(1) (2003), pp. 1–38.
[49] J. Gondzio and A. Grothey, Reoptimization with the primal–dual interior point method, SIAM J. Optim. 13(3)

(2003), pp. 842–864.
[50] M.Grant, S. Boyd, andY.Ye,CVX:Matlab software for disciplined convex programming, 2008, version 1.2,Available

at www.stanford.edu/boyd/cvx/.
[51] P. Gribik, A central cutting plane algorithm for semi-infinite programming problems, in Semi-infinite Programming,

Lecture Notes In Control and Information Sciences,Vol. 5, R. Hettich, ed., 1979, pp. 66–82.
[52] R. Hettich, A review of numerical methods for semi-infinite optimization, Lecture Notes in Econom. and Math. Syst.

215 (1981), pp. 158–178.
[53] R. Hettich andK.Kortanek, Semi-infinite programming: theory, methods, and applications, SIAMRev. 35(3) (1993),

pp. 380–429.
[54] A. Kaplan and R. Tichatschke, Proximal interior point approach for solving convex semi-infinite programming

problems, J. Optim. Theory Appl. 98 (1998), pp. 399–429.
[55] J.E. Kelley, The cutting plane method for solving convex programs, J. SIAM 8 (1960), pp. 703–712.
[56] S.-J. Kim and S. Boyd, Robust efficient frontier analysis with a separable uncertainty model, Working paper

November 2007, Available at http://www.stanford.edu∼boyd/papers/rob_ef_setp.html.
[57] S.-J.Kim,A.Magnani,A.Mutapcic, S.Boyd, andZ.-Q.Luo,Robust beamforming viaworst-case SINRmaximization,

IEEE Trans. Signal Process. 56(4) (2007), pp. 1539–1547.
[58] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by simulated annealing, Science 220(4598) (1983),

pp. 671–680.
[59] T. Kolda, R. Lewis, and V. Torczon, Optimization by direct search: new perspectives on some classical and modern

methods, SIAM Rev. 45(3) (2003), pp. 385–482.
[60] K. Kortanek and H. No., A central cutting plane algorithm for convex semi-infinite programming problems, SIAM

J. Optim. 3(4) (1993), pp. 901–918.
[61] A. Kuntsevich and F. Kappel, SolvOpt, version 1.1. 1997, Available at http://www.uni-graz.at/imawww/

kuntsevich/solvopt/.
[62] G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, M. Jordan, and B. Scholkopf, A robust minimax approach to

classification, J. Mach. Learn. Res. 3(3) (2003), pp. 555–582.

406 A. Mutapcic and S. Boyd

[63] L. Lasdon, Optimization Theory for Large Systems, MacMillan, NewYork, NY, 1970.
[64] H. Lebret and S. Boyd, Antenna array pattern synthesis via convex optimization, IEEE Trans. Signal Process. 45(3)

(1997), pp. 526–532.
[65] J. Li, P. Stoica, and Z. Wang, On robust Capon beamforming and diagonal loading, IEEE Trans. Signal Process.

51(7) (2003), pp. 1702–1715.
[66] M.Lobo, L.Vandenberghe, S. Boyd, andH. Lebret,Applications of second-order cone programming, LinearAlgebra.

Appl. 284 (1998), pp. 193–228.
[67] R. Lorenz and S. Boyd, Robust minimum variance beamforming, IEEE Trans. Signal Process. 53(5) (2005),

pp. 1684–1696.
[68] D. Luenberger, Linear and Nonlinear Programming 2nd ed., Kluwer Academic Publishers, Dordrecht, 2003.
[69] Z.-Q. Luo and J. Sun, A polynomial cutting surfaces algorithm for the convex feasibility problem defined by self-

concordant inequalities, Comput. Optim. Appl 15(2) (2000), pp. 167–191.
[70] A. Mutapcic, S.-J. Kim, and S. Boyd, Beamforming with uncertain weights, IEEE Trans. Signal Process. Lett. 14(5)

(2007), pp. 348–351.
[71] J. Nelder and R. Mead, A simplex method for function minimization, Computer J. 7(4) (1965), pp. 308–313.
[72] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers,

Dordrecht, 2004.
[73] Y. Nesterov and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and

Applications, SIAM, Philadelphia, PA, 1994.
[74] J. Nocedal and S. Wright, Numerical Optimization 2nd ed., Springer, NewYork, 2006.
[75] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Rev.

29(1) (1987), pp. 21–89.
[76] E. Polak and L. He, Rate-preserving discretization strategies for semi-infinite programming and optimal-control,

SIAM J. Control Optim. 30(3) (1992), pp. 548–572.
[77] I. Pólik and T. Terlaky, A survey of the S-Lemma, SIAM Rev. 49(3) (2007), pp. 371–418.
[78] B. Polyak, Introduction to Optimization, Optimization Software, Inc, NewYork, NY, 1987.
[79] A. Potchinkov and R. Reemtsen, A globally most violated cutting plane method for complex minimax problems with

application to digital filter design, Numeri. Algorithms 5 (1993), pp. 611–620.
[80] A. Prekopa, Stochastic Programming, Kluwer Academic Publishers, Dordrecht, 1995.
[81] R. Reemtsen and J.-J. Ruckmann, (eds.), Semi-infinite programming, Nonconvex Optimization and itsApplications,

vol. 25, Kluwer Academic Publishers, Dordrecht, 1998.
[82] R.T. Rockafellar and R.J.-B.Wets, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper.

Res. 16(1) (1991), pp. 119–147.
[83] B. Rustem and M. Howe, Algorithms for Worst-case Design and Applications to Risk Management, Princeton

University Press, Princeton, NJ, 2002.
[84] A. Ruszczyński, Nonlinear Optimization, Princeton University Press, Princeton, NJ, 2006.
[85] A. Sayed, V. Nascimento, and S. Chandrasekaran, Estimation and control with bounded data uncertainties, Linear

Algebra Appl. 284 (1998), pp. 259–306.
[86] A. Shapiro andA. Philpott,A tutorial on stochastic programming, Manuscript, (2007)Available at http://www2.isye.

gatech.edu/ashapiro/publications.html.
[87] A. Shapiro and A. Ruszczynski, Lectures on Stochastic Programming, (2007) progress. Available at

http://www2.isye.gatech.edu/ashapiro/publications.html.
[88] N. Shor, Minimization Methods for Non-differentiable Functions, Springer Series in Computational Mathematics,

Springer, NewYork, NY, 1985.
[89] N. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer Academic Publishers, Dordrecht, 1998.
[90] A. Soyster, Convex programming with set-inclusive constraints and applications to inexact linear programming,

Oper. Res. 21(5) (1973), pp. 1154–1157.
[91] O. Stein and G. Still, Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control

Optim. 42(3) (2003), pp. 769–788.
[92] A. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl. 4

(1963), pp. 1035–1038.
[93] K.-C. Toh, M.J. Todd, and R.H. Tutuncu, SDPT3: Matlab software for semidefinite-quadratic-linear programming,

version 4.0 (beta) 2006 Available at www.math.nus.edu.sg/mattohkc/sdpt3.html.
[94] S. Vorobyov, A. Gershman, and Z.-Q. Luo, Robust adaptive beamforming using worst-case performance

optimization: a solution to the signal mismatch problem, IEEE Trans. Signal Process. 51(2) (2003), pp. 313–324.
[95] Y. Wang and S. Boyd, Fast model predictive control using online optimization, in Proceedings of the 17th IFAC

World Congress, Seoul, Korea, July 2008, pp. 6974–6997.
[96] Y.Ye, Interior Point Algorithms: Theory and Analysis, Wiley, NewYork, 1997.
[97] E.Yildirim and S.Wright,Warm-start strategies in interior-point methods for linear programming, SIAM J. Optim.

12(3) (2002), pp. 782–810.
[98] K. Zhou, J. Doyle, and K. Glover, Robust and Optimal Control, Prentice-Hall, Upper Saddle River, NJ, 1996.

