Performance Bounds and Suboptimal Policies for Multi-Period Investment

Stephen Boyd, Mark Mueller, Brendan O'Donoghue, Yang Wang

26/3/2012 ETH Zürich

- 1. Multi-period investment problem
- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

1. Multi-period investment problem

- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

Multi-period investment problem

- manage portfolio of n assets over discrete time periods $t=0,1,\ldots,T$
- $x_t \in \mathbf{R}^n$ vector of portfolio positions at time t (in dollars)
- $u_t \in \mathbf{R}^n$ vector of trades at time t (in dollars)
- post-trade portfolio: $x_t^+ = x_t + u_t$
- starting portfolio x_0 is given

Asset returns

portfolio propagates as

$$x_{t+1} = R_{t+1}x_t^+, \qquad t = 0, \dots, T-1$$

•
$$R_{t+1} = \operatorname{diag}(r_{t+1}) \in \mathbf{R}^{n \times n}$$

- $r_{t+1} \in \mathbf{R}^n$ is vector of asset returns over time period [t, t+1]
- r_1, \ldots, r_T are independent random variables, with known first and second moments

$$\mathbf{E}(r_t) = \bar{r}_t, \qquad \mathbf{E}(r_t - \bar{r}_t)(r_t - \bar{r}_t)^T = \Sigma_t$$

• r_{t+1} is (of course) not known when u_t is chosen

Stochastic control problem

total expected cost is

$$J = \mathbf{E} \sum_{t=0}^{T} \ell_t(x_t, u_t)$$

- $\ell_t: {\bf R}^n \times {\bf R}^m \to {\bf R} \cup \{\infty\}$ is convex stage cost function
- $\bullet\ -J$ is expected revenue from the portfolio
- goal: find trading policies $\phi_0, \ldots, \phi_T : \mathbf{R}^n \to \mathbf{R}^n$, with

$$u_t = \phi_t(x_t)$$

that minimize \boldsymbol{J}

• a convex stochastic control problem

Stage cost

• stage cost has form

$$\ell_t(x, u) = \begin{cases} \mathbf{1}^T u + \psi_t(x, u) & x + u \in \mathcal{C}_t \\ \infty & \text{otherwise} \end{cases}$$

- $\mathbf{1}^T u_t$ is gross cash put into portfolio ($\mathbf{1}^T u_t < 0$ means revenue extracted from portfolio)
- ψ_t includes transaction cost, risk cost, position costs, . . .
- C_t is the post-trade portfolio constraint set

Example post-trade constraints

position limits	$x_t^{\min} \le x^+ \le x_t^{\max}$
total value minimum	$1^T x^+ \geq v_t^{\min}$
terminal portfolio constraint	$x_T^+ = x^{\text{term}}$
leverage limits	$1^T (x^+) \le \eta_t 1^T x^+$
sector exposure limits	$s_t^{\min} \le F_t x^+ \le s_t^{\max}$
sector neutrality	$F_t x^+ = 0$
concentration limits	$\sum_{i=1}^p (x^+)_{[i]} \le \beta_t 1^T x^+$
variance risk limits	$(x^+)^T \Sigma_{t+1} x^+ \le \gamma_t$
homogeneous risk limits	$\ \Sigma_{t+1}^{1/2}x^+\ _2 \le \delta_t 1^T x^+$

Example transaction and position costs

broker commission	$(\kappa_t^{\text{buy}})^T u_+ + (\kappa_t^{\text{sell}})^T u$
bid-ask spread	$\kappa_t^T u $
quadratic price impact	$s_t^T u^2$
3/2 power price impact	$s_t^T u ^{3/2}$
borrowing/shorting fee	$c_t^T(x^+)$
quadratic risk penalty	$\lambda_t (x^+)^T \Sigma_t x^+$
std. dev. risk penalty	$\lambda_t \ \Sigma_t^{1/2} x^+ \ _2$

1. Multi-period investment problem

2. Solution via dynamic programming

- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

Dynamic programming 'solution'

• Bellman recursion: $V_{T+1} = 0$,

$$V_t(x) = \inf_u \left(\ell_t(x, u) + \mathbf{E} V_{t+1}(R_{t+1}(x+u)) \right), \quad t = T, T - 1, \dots, 0$$

- abstractly $V_t = \mathcal{T}_t V_{t+1}$ (Bellman operator)
- optimal policy

$$\phi_t^{\star}(x) \in \operatorname*{argmin}_u \left(\ell_t(x, u) + \mathbf{E} V_{t+1}(R_{t+1}(x+u))\right)$$

- optimal cost $J^{\star} = V_0(x_0)$
- in general, intractable to compute (indeed, even represent) V_t

Exception: The quadratic problem

- suppose ℓ_t are convex quadratic (can include linear equality constraints)
- multi-period trading problem is quadratic stochastic control problem

- V_t are convex quadratic, via recursion:
 - $V_{T+1} = 0$ is convex quadratic
 - convex quadratic functions preserved under expectation and partial minimization, so Bellman operator \mathcal{T}_t preserves convex quadratic
- optimal policy affine is affine: $\phi_t^{\star}(x) = J_t x + k_t$
- can compute J_t , k_t from problem data

- 1. Multi-period investment problem
- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

Approximate dynamic programming

• replace V_t with (convex) approximation \hat{V}_t to get ADP policy

$$\phi_t^{\mathrm{adp}}(x) \in \operatorname*{argmin}_u \left(\ell_t(x, u) + \mathbf{E} \, \hat{V}_{t+1}(R_{t+1}(x+u)) \right)$$

- choose \hat{V} so
 - policy evaluation is easy (minimization above can be done fast)
 - performance is good (hopefully, $J \approx J^{\star}$)
- one reasonable choice: exact value function of related quadratic problem
- we'll see another choice later

Model predictive control

- a.k.a. receding (or shrinking) horizon control
- at time t, solve (open loop) control problem using mean returns

minimize
$$\begin{array}{ll} \sum_{\tau=t}^{T} \ell_{\tau}(z_{\tau},v_{\tau}) \\ \text{subject to} & z_{\tau+1} = \mathbf{diag}(\bar{r}_{\tau+1})(z_{\tau}+v_{\tau}), \quad \tau=t,\ldots,T-1 \\ & z_t=x_t \end{array}$$

over z_{τ} , v_{τ} , $\tau = t, \ldots, T$

- we interpret $v_t^\star,\ldots,v_T^\star$ as trading plan, assuming future returns take on their mean values
- policy is $\phi_t^{\text{mpc}}(x_t) = v_t^{\star}$ (first trade in trading plan)

Evaluating ADP and MPC policies

- evaluating ADP and MPC policies reduce to solving
 - convex optimization problems in general
 - QPs when ℓ_t are QP-representable and \hat{V}_t are quadratic
- O(n) variables for ADP, O(n(T-t)) variables for MPC
- new methods (code generation) allow us to solve both very quickly
 - ${\cal O}(n^3)$ flops for ADP, ${\cal O}(n^3(T-t))$ flops for MPC
 - for n=30 assets, $T=99;\;50\mu {\rm s}$ for ADP, $10{\rm ms}$ for MPC
 - 1000–10000imes faster than generic methods

Performance of ADP and MPC policies

- can evaluate J^{adp} and J^{mpc} by Monte Carlo
- fast evaluation of policies critical for Monte Carlo simulations
- suboptimal policies appear to do well (with good choice of \hat{V}_t for ADP)
- leads to obvious question:

how suboptimal are ADP and MPC policies?

- we'll address this by computing a numerical lower bound on optimal objective value, $J^{\rm lb} \leq J^{\star}$
- if J^{adp} , J^{mpc} are not far above J^{lb} , we **know** they are nearly optimal

- 1. Multi-period investment problem
- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

Performance bound from Bellman inequalities

- suppose $V_t^{\text{lb}} \leq V_t$ (elementwise)
- yields performance bound

$$J^{\rm lb} = V_0^{\rm lb}(x_0) \le V_0(x_0) = J^*$$

• sufficient condition for $V_t^{\text{lb}} \leq V_t$: Bellman inequalities

$$V_{T+1}^{\rm lb} = 0, \quad V_t^{\rm lb} \le \mathcal{T}_t V_{t+1}^{\rm lb}$$

• cf. Bellman equalities

$$V_{T+1} = 0, \quad V_t = \mathcal{T}_t V_{t+1}$$

• follows from monotonicity of Bellman operators

Optimizing performance bound via convex optimization

general approach:

- linearly parametrize candidate $V_t^{\text{lb}} = \sum_{i=1}^N \alpha_{ti} V^{(i)}$ ($V^{(i)}$ are basis elements)
- derive convex condition on α_{ti} that implies Bellman inequalities
- maximize (linear function of $lpha_{ti}$) $J^{
 m lb}$ via convex optimization
- yields best performance bound (for basis, Bellman inequality condition)

• maximizer of performance bound is **excellent candidate** for \hat{V}_t in ADP

Bellman inequality condition

(simplified case)

• assume stage cost function of form

$$\ell_t(x, u) = \begin{cases} \psi_t(x, u) & (x, u) \in \mathcal{C} \\ \infty & \text{otherwise} \end{cases}$$

 ψ_t convex quadratic

· constraint set described by quadratic inequalities

$$C = \{(x, u) \mid f_1(x, u) \ge 0, \dots, f_M(x, u) \ge 0\}$$

 f_1,\ldots,f_M (not necessarily convex) quadratic

Bellman inequality condition II

- parameterize $V_t^{\rm lb}$ as general convex quadratic function

$$V_t^{\rm lb}(x) = (1/2) \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_t & p_t \\ p_t^T & r_t \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}, \qquad P_t \ge 0$$

• Bellman inequality has form

$$V^{\mathrm{lb}}_t(x) \leq \psi_t(x, u) + \mathbf{E} V^{\mathrm{lb}}_{t+1}(R_{t+1}(x+u)), \quad \forall (x, u) \in \mathcal{C}$$

- write inequality as $f_0(x, u) \ge 0$, with f_0 quadratic
- coefficients of f_0 are affine in parameters $P_t, P_{t+1}, p_t, p_{t+1}, r_t, r_{t+1}$
- Bellman inequality has form

$$f_0(x,u) \ge 0$$
 whenever $f_1(x,u) \ge 0, \dots, f_M(x,u) \ge 0$

i.e., a quadratic function is nonnegative whenever a set of M others are

Performance bounds

\mathcal{S} -procedure

• a sufficient condition (called S-procedure): $\exists \lambda_1, \ldots, \lambda_M \ge 0$

$$f_0(x,u) \ge \lambda_1 f_1(x,u) + \dots + \lambda_M f_M(x,u) \quad \forall (x,u)$$

- equivalent to a matrix inequality in the coefficients of f_0,\ldots,f_M
- this matrix inequality is an **affine function** of λ and the parameters $P_t, P_{t+1}, p_t, p_{t+1}, r_t, r_{t+1}$, *i.e.*, it is a linear matrix inequality (LMI)
- maximizing $J^{\rm lb}$ subject to our (S-procedure based) sufficient condition for Bellman inequalities is a semidefinite program (SDP)
- hence, we can effectively solve it

- 1. Multi-period investment problem
- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples
- 6. Summary

Numerical examples

- n = 30 assets
- T = 99 periods
- $x_0 = x_T = 0$
- returns IID log-normal: $\log(r_t) \sim \mathcal{N}(\mu, \tilde{\Sigma})$
- we consider quadratic case and four others

Transaction cost and constraints

• for quadratic example:

$$\psi(x,u) = s^T u_t^2 + \lambda (x_t^+)^T \Sigma x_t^+$$

(price impact, risk penalty)

• for other cases:

$$\psi(x, u) = c^T (x_t^+)_- + \kappa^T |u_t| + s^T u_t^2 + \lambda (x_t^+)^T \Sigma x_t^+$$

(includes additional shorting cost, bid-ask spread)

- constraint sets:
 - unconstained: $C_t = \mathbf{R}^n$
 - long-only: $C_t = \mathbf{R}^n_+$
 - leverage limit: $C_t = \{x^+ \mid \mathbf{1}^T(x^+)_- \leq 0.3(\mathbf{1}^Tx^+)\}$
 - sector neutral: $C_t = \{x^+ \mid Fx^+ = 0\}$, $F \in \mathbf{R}^{2 \times n}$

Results

- evaluate J^{adp} and J^{mpc} via Monte Carlo

- for ADP, 50000 samples (5 million QPs, 3 minutes on 8 cores)
- for MPC, 5000 samples (0.5 million QPs, a few hours)

Example	J^{lb}	J^{adp}	$J^{ m mpc}$
quadratic	-450.1	-450.3	-444.3
unconstrained	-132.6	-131.9	-130.6
long-only	-41.3	-41.0	-40.6
leverage limit	-87.5	-85.6	-84.7
sector neutral	-121.3	-118.9	-117.5

• conclusion: ADP and MPC are nearly optimal

Time traces (leverage limit example, ADP policy)

Numerical examples

Cost histogram (leverage limit example, ADP policy)

- 1. Multi-period investment problem
- 2. Solution via dynamic programming
- 3. Suboptimal policies
- 4. Performance bounds
- 5. Numerical examples

6. Summary

Summary

- by using **value** of assets as variables, dynamics is linear (but random)
- hence get convex stochastic control problem
 - even with complicated practical constraints and transaction costs
- can solve exactly in quadratic case
- using SDP we compute a numerical bound on performance
- ADP and MPC suboptimal policies
 - rely on solving convex optimization problem in each step
 - often achieve provably near-optimal performance

Final comments on numerical performance bounds

- no, we cannot guarantee that $J^{\mathrm{adp}} J^{\mathrm{lb}}$ is small
- and we do not apologize

- we can only compute it for any given problem
- it is exceedingly useful in practice (and we think, in theory)
- · we doubt a generic theoretical type bound would have any practical value