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ETH Zürich

1



Outline

1. Multi-period investment problem

2. Solution via dynamic programming

3. Suboptimal policies

4. Performance bounds

5. Numerical examples

6. Summary

2



Outline

1. Multi-period investment problem

2. Solution via dynamic programming

3. Suboptimal policies

4. Performance bounds

5. Numerical examples

6. Summary

Multi-period investment problem 3



Multi-period investment problem

• manage portfolio of n assets over discrete time periods t = 0, 1, . . . , T

• xt ∈ Rn vector of portfolio positions at time t (in dollars)

• ut ∈ Rn vector of trades at time t (in dollars)

• post-trade portfolio: x+t = xt + ut

• starting portfolio x0 is given
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Asset returns

• portfolio propagates as

xt+1 = Rt+1x
+
t , t = 0, . . . , T − 1

• Rt+1 = diag(rt+1) ∈ Rn×n

• rt+1 ∈ Rn is vector of asset returns over time period [t, t+ 1]

• r1, . . . , rT are independent random variables, with known first and
second moments

E(rt) = r̄t, E(rt − r̄t)(rt − r̄t)
T = Σt

• rt+1 is (of course) not known when ut is chosen
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Stochastic control problem

• total expected cost is

J = E

T
∑

t=0

ℓt(xt, ut)

• ℓt : R
n × Rm → R ∪ {∞} is convex stage cost function

• −J is expected revenue from the portfolio

• goal: find trading policies φ0, . . . , φT : Rn → Rn, with

ut = φt(xt)

that minimize J

• a convex stochastic control problem
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Stage cost

• stage cost has form

ℓt(x, u) =

{

1Tu+ ψt(x, u) x+ u ∈ Ct
∞ otherwise

• 1Tut is gross cash put into portfolio
(1Tut < 0 means revenue extracted from portfolio)

• ψt includes transaction cost, risk cost, position costs, . . .

• Ct is the post-trade portfolio constraint set
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Example post-trade constraints

position limits xmin
t ≤ x+ ≤ xmax

t

total value minimum 1Tx+ ≥ vmin
t

terminal portfolio constraint x+T = xterm

leverage limits 1T (x+)− ≤ ηt1
Tx+

sector exposure limits smin
t ≤ Ftx

+ ≤ smax
t

sector neutrality Ftx
+ = 0

concentration limits
∑p
i=1(x

+)[i] ≤ βt1
Tx+

variance risk limits (x+)TΣt+1x
+ ≤ γt

homogeneous risk limits ‖Σ
1/2
t+1x

+‖2 ≤ δt1
Tx+

Multi-period investment problem 8



Example transaction and position costs

broker commission (κbuyt )Tu+ + (κsellt )Tu−

bid-ask spread κTt |u|

quadratic price impact sTt u
2

3/2 power price impact sTt |u|
3/2

borrowing/shorting fee cTt (x
+)−

quadratic risk penalty λt(x
+)TΣtx

+

std. dev. risk penalty λt‖Σ
1/2
t x+‖2
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Dynamic programming ‘solution’

• Bellman recursion: VT+1 = 0,

Vt(x) = inf
u

(ℓt(x, u) +EVt+1(Rt+1(x+ u))) , t = T, T − 1, . . . , 0

• abstractly Vt = TtVt+1 (Bellman operator)

• optimal policy

φ⋆t (x) ∈ argmin
u

(ℓt(x, u) +EVt+1(Rt+1(x+ u)))

• optimal cost J⋆ = V0(x0)

• in general, intractable to compute (indeed, even represent) Vt
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Exception: The quadratic problem

• suppose ℓt are convex quadratic (can include linear equality constraints)

• multi-period trading problem is quadratic stochastic control problem

• Vt are convex quadratic, via recursion:

– VT+1 = 0 is convex quadratic
– convex quadratic functions preserved under expectation and partial

minimization, so Bellman operator Tt preserves convex quadratic

• optimal policy affine is affine: φ⋆t (x) = Jtx+ kt

• can compute Jt, kt from problem data
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Approximate dynamic programming

• replace Vt with (convex) approximation V̂t to get ADP policy

φadpt (x) ∈ argmin
u

(

ℓt(x, u) +E V̂t+1(Rt+1(x+ u)
)

• choose V̂ so

– policy evaluation is easy (minimization above can be done fast)
– performance is good (hopefully, J ≈ J⋆)

• one reasonable choice: exact value function of related quadratic problem

• we’ll see another choice later
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Model predictive control

• a.k.a. receding (or shrinking) horizon control

• at time t, solve (open loop) control problem using mean returns

minimize
∑T
τ=t ℓτ (zτ , vτ )

subject to zτ+1 = diag(r̄τ+1)(zτ + vτ ), τ = t, . . . , T − 1
zt = xt

over zτ , vτ , τ = t, . . . , T

• we interpret v⋆t , . . . , v
⋆
T as trading plan, assuming future returns take on

their mean values

• policy is φmpc
t (xt) = v⋆t (first trade in trading plan)
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Evaluating ADP and MPC policies

• evaluating ADP and MPC policies reduce to solving

– convex optimization problems in general
– QPs when ℓt are QP-representable and V̂t are quadratic

• O(n) variables for ADP, O(n(T − t)) variables for MPC

• new methods (code generation) allow us to solve both very quickly

– O(n3) flops for ADP, O(n3(T − t)) flops for MPC
– for n = 30 assets, T = 99: 50µs for ADP, 10ms for MPC
– 1000–10000× faster than generic methods
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Performance of ADP and MPC policies

• can evaluate Jadp and Jmpc by Monte Carlo

• fast evaluation of policies critical for Monte Carlo simulations

• suboptimal policies appear to do well (with good choice of V̂t for ADP)

• leads to obvious question:

how suboptimal are ADP and MPC policies?

• we’ll address this by computing a numerical lower bound on optimal
objective value, J lb ≤ J⋆

• if Jadp, Jmpc are not far above J lb, we know they are nearly optimal
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Performance bound from Bellman inequalities

• suppose V lb
t ≤ Vt (elementwise)

• yields performance bound

J lb = V lb
0 (x0) ≤ V0(x0) = J⋆

• sufficient condition for V lb
t ≤ Vt: Bellman inequalities

V lb
T+1 = 0, V lb

t ≤ TtV
lb
t+1

• cf. Bellman equalities

VT+1 = 0, Vt = TtVt+1

• follows from monotonicity of Bellman operators
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Optimizing performance bound via convex optimization

general approach:

• linearly parametrize candidate V lb
t =

∑N
i=1 αtiV

(i)

(V (i) are basis elements)

• derive convex condition on αti that implies Bellman inequalities

• maximize (linear function of αti) J
lb via convex optimization

• yields best performance bound (for basis, Bellman inequality condition)

• maximizer of performance bound is excellent candidate for V̂t in ADP
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Bellman inequality condition

(simplified case)

• assume stage cost function of form

ℓt(x, u) =

{

ψt(x, u) (x, u) ∈ C
∞ otherwise

ψt convex quadratic

• constraint set described by quadratic inequalities

C = {(x, u) | f1(x, u) ≥ 0, . . . , fM (x, u) ≥ 0}

f1, . . . , fM (not necessarily convex) quadratic
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Bellman inequality condition II

• parameterize V lb
t as general convex quadratic function

V lb
t (x) = (1/2)

[

x
1

]T [

Pt pt
pTt rt

] [

x
1

]

, Pt ≥ 0

• Bellman inequality has form

V lb
t (x) ≤ ψt(x, u) +EV lb

t+1(Rt+1(x+ u)), ∀(x, u) ∈ C

• write inequality as f0(x, u) ≥ 0, with f0 quadratic

• coefficients of f0 are affine in parameters Pt, Pt+1, pt, pt+1, rt, rt+1

• Bellman inequality has form

f0(x, u) ≥ 0 whenever f1(x, u) ≥ 0, . . . , fM (x, u) ≥ 0

i.e., a quadratic function is nonnegative whenever a set of M others are
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S-procedure

• a sufficient condition (called S-procedure): ∃λ1, . . . , λM ≥ 0

f0(x, u) ≥ λ1f1(x, u) + · · ·+ λMfM (x, u) ∀(x, u)

• equivalent to a matrix inequality in the coefficients of f0, . . . , fM

• this matrix inequality is an affine function of λ and the parameters
Pt, Pt+1, pt, pt+1, rt, rt+1, i.e., it is a linear matrix inequality (LMI)

• maximizing J lb subject to our (S-procedure based) sufficient condition
for Bellman inequalities is a semidefinite program (SDP)

• hence, we can effectively solve it
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Numerical examples

• n = 30 assets

• T = 99 periods

• x0 = xT = 0

• returns IID log-normal: log(rt) ∼ N (µ, Σ̃)

• we consider quadratic case and four others
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Transaction cost and constraints

• for quadratic example:

ψ(x, u) = sTu2t + λ(x+t )
TΣx+t

(price impact, risk penalty)

• for other cases:

ψ(x, u) = cT (x+t )− + κT |ut|+ sTu2t + λ(x+t )
TΣx+t

(includes additional shorting cost, bid-ask spread)

• constraint sets:

– unconstained: Ct = Rn

– long-only: Ct = Rn

+

– leverage limit: Ct = {x+ | 1T (x+)− ≤ 0.3(1Tx+)}
– sector neutral: Ct = {x+ | Fx+ = 0}, F ∈ R2×n
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Results

• evaluate Jadp and Jmpc via Monte Carlo

– for ADP, 50000 samples (5 million QPs, 3 minutes on 8 cores)
– for MPC, 5000 samples (0.5 million QPs, a few hours)

Example J lb Jadp Jmpc

quadratic -450.1 -450.3 -444.3
unconstrained -132.6 -131.9 -130.6
long-only -41.3 -41.0 -40.6
leverage limit -87.5 -85.6 -84.7
sector neutral -121.3 -118.9 -117.5

• conclusion: ADP and MPC are nearly optimal
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Time traces (leverage limit example, ADP policy)
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Cost histogram (leverage limit example, ADP policy)

−130 −120 −110 −100 −90 −80 −70 −60 −50 −40
0

500

1000

1500

2000

2500

3000

3500

4000

 

 

∑
T

t=0
(1T ut + ψ(xt, ut))

lower bound
performance

Numerical examples 29



Outline

1. Multi-period investment problem

2. Solution via dynamic programming

3. Suboptimal policies

4. Performance bounds

5. Numerical examples

6. Summary

Summary 30



Summary

• by using value of assets as variables, dynamics is linear (but random)

• hence get convex stochastic control problem

– even with complicated practical constraints and transaction costs

• can solve exactly in quadratic case

• using SDP we compute a numerical bound on performance

• ADP and MPC suboptimal policies

– rely on solving convex optimization problem in each step
– often achieve provably near-optimal performance
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Final comments on numerical performance bounds

• no, we cannot guarantee that Jadp − J lb is small

• and we do not apologize

• we can only compute it for any given problem

• it is exceedingly useful in practice (and we think, in theory)

• we doubt a generic theoretical type bound would have any practical value
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