
Parameter Selection and Pre-Conditioning
for a Graph Form Solver

Chris Fougner and Stephen Boyd

Springer Lectures, UC Berkeley, 4/6/15

1

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

POGS

Graph form problem 2

Graph form problem

minimize f (y) + g(x)
subject to y = Ax

I x 2 Rn and y 2 Rm are variables

I f : Rm ! R [f1g, g : Rn ! R [f1g are convex closed proper

I infinite values of f , g encode constraints

I constraint is (x ; y) 2 G = f(x ; y) j y = Axg, the graph of x 7! Ax

I graph form includes many common convex problems

Graph form problem 3

Example: Cone programming

minimize cTx
subject to Ax �K b

I g(x) = cTx

I f (y) = IK (b � y) (I is indicator function)

I includes LP, SOCP, SDP, . . .
(so via CVX*, most convex problems in practice)

Graph form problem 4

Example: Generalized linear model fitting

minimize L(Ax ; z) + r(x)

I variable x is parameter in statistical model

I z is observed data; A contains associated regressors

I L is loss function, convex in first argument

I r is convex regularizer

I includes LASSO, SVM, logistic regression, . . .

I in graph form, f (y) = L(y ; z), g(x) = r(x)

Graph form problem 5

Radiation treatment planning

minimize f (y)
subject to y = Ax ; x � 0

I x gives n beam intensities; y is radiation dose to m voxels

I A depends on beam/voxel geometry/physics; Aij � 0

I objective is f (y) =
Pm

i=1 fi (yi), with

fi (yi) =

�
w�

i (di � yi)+ + w+i (yi � di)+ voxel i in tumor
w+i yi voxel i not in tumor

I di is prescribed dosage; w+i ;w�

i are positive weights

I in graph form, g(x) = I+(x) encodes x � 0

Graph form problem 6

Portfolio optimization

maximize �Tx � xT (FFT +D)x
subject to x � 0; 1Tx = 1

I x 2 Rn gives portfolio weights (allocation)

I � is expected asset return vector

I � = FFT +D is asset return covariance (‘factor model’)

I F 2 Rn�k is factor loading, D is diagonal (‘idiosyncratic risk’)

I objective is risk-adjusted return; > 0 is risk aversion parameter

I in graph form: y =

�
FT

1T

�
x 2 Rk+1,

g(x) = ��Tx + xTDx + I+(x); f (y) = yTy + Iyk+1=1(y)

Graph form problem 7

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

POGS

Dual and optimality conditions 8

Dual problem

I Lagrange function: L(x ; y ; �) = f (y) + g(x) + �T (Ax � y)

I dual function:

inf
x ;y

L(x ; y ; �) = �f �(�)� g�(�AT�)

I dual problem, with new variable � = �AT�

maximize �f �(�)� g�(�)
subject to � = �AT�

. . . also a graph form problem

I duality gap � = f (y) + f �(�) + g(x) + g�(�)

I for (x ; y ; �; �) feasible, � � 0 (and gives bound on suboptimality)

Dual and optimality conditions 9

Optimality conditions

1. primal feasibility: y = Ax

2. dual feasibility: � = �AT�

3. zero gap: f (y) + f �(�) + g(x) + g�(�) = 0

I for any x ; y ; �; � (by definition),

f (y) + f �(�) � �Ty ; g(x) + g�(�) � �Tx

so can replace zero gap with Fenchel feasibility:

f (y) + f �(�) = �Ty ; g(x) + g�(�) = �Tx

I same as: y minimizes f (y)� �Ty , x minimizes g(x)� �Tx

Dual and optimality conditions 10

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

POGS

Algorithm 11

ADMM for constrained minimization

I convex constrained problem

minimize �(x)
subject to x 2 C

I ADMM (alternating directions method of multipliers):

for k = 1; 2; : : :

x k+1=2 := prox�(x
k � ~x k)

x k+1 := �(x k+1=2 + ~x k)

~x k+1 := ~x k + x k+1=2 � x k+1

until converged

I prox� is proximal operator of �,

prox�(v) = argmin
x

�
�(x) + (�=2)kx � vk22

�

I convergence theory: x k � x k+1=2 ! 0, �(x k+1=2)! infx2C �(x)

Algorithm 12

Graph projection ADMM [Parikh 2014]

I apply ADMM for constrained minimization to graph form problem

I yields graph projection ADMM:

for k = 1; 2; : : :

(x k+1=2; yk+1=2) :=
�
proxg(x

k � ~x k); proxf (y
k � ~yk)

�
(x k+1; yk+1) := �(x k+1=2 + ~x k ; yk+1=2 + ~yk)

(~x k+1; ~yk+1) := (~x k + x k+1=2 � x k+1; ~yk + yk+1=2 � yk+1)

until converged

I projection onto G is

�(c; d) = K�1
�
c +ATd

0

�
; K =

�
I AT

A �I

�

Algorithm 13

Efficient graph projection

I direct method:
I factorize K (which is quasidefinite)
I cache factorization so each subsequent iteration is a back-solve

I indirect/iterative method:
I use CG/LSQR to approximately compute projection
I warm start subsequent projections from last iterate

Algorithm 14

Iterate properties

I iterates (x k ; yk ; �k ; �k) are primal and dual feasible,

Ax k+1=2 = yk+1=2; �AT�k+1=2 = �k+1=2

and Fenchel feasible in limit (when f and g are smooth)

I with �k+1=2 = ��(x k+1=2 � x k + ~x k), �k+1=2 = ��(yk+1=2 � yk + ~yk),

(x k+1=2; yk+1=2; �k+1=2; �k+1=2)

is Fenchel feasible, and primal and dual feasible in limit:

Ax k+1=2 � yk+1=2 ! 0; AT�k+1=2 + �k+1=2 ! 0

(with no assumptions on f and g)

Algorithm 15

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

POGS

Pre-conditioning 16

Pre-conditioning

I with D , E invertible, define ŷ = Dy ; x̂ = E�1x

I solve (graph form) problem with variables x̂ , ŷ

minimize f (D�1ŷ) + g(Ex̂)
subject to ŷ = (DAE)x̂

I called pre-conditioned graph form problem

I scaling D and E has same effect as changing �

I goal: choose D , E so
I graph projection ADMM is not (much) harder to carry out
I practical convergence is faster

I first condition holds when f , g are separable and D , E are diagonal

Pre-conditioning 17

Diagonal pre-conditioning

I heuristic: choose diagonal D , E so that �i (DAE) � 1

I supported by (some) theory, numerical experiments

I heuristic for heuristic: equilibrate DAE
i.e., choose D and E so that rows (and columns) have same norm:

nX
j=1

(DiiAijEjj)
2 = n�;

mX
i=1

(DiiAijEjj)
2 = m�

I find D and E by minimizing convex function

mX
i=1

nX
j=1

A2
ij e

ui+vj � n1Tu �m1Tv

by (simple) coordinate minimization; take Dii = eui=2, Ejj = evj =2

(recovers Sinkhorn-Knopp algorithm)

Pre-conditioning 18

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

POGS

POGS 19

Proximal Graph Solver (POGS)

I developed by Chris Fougner

I open source C++ implementation, on github

I targets CPUs and GPUs, with various wrappers

I handles sparse and dense A, direct and indirect solvers

I for now, only fully separable f and g

I includes proximal operator library; easy to extend

I algorithm only slightly more complicated than description above
(e.g., adaptive �-update, regularized equilibration)

POGS 20

Testing

I POGS was tested on many problem instances
I from many application areas
I of varying dimensions
I of varying difficulty

I results verified against (high accuracy) interior-point method (where
possible)

I since we want a general solver, no tuning of any POGS algorithm
parameters

I timing includes transfer to/from GPU, factorization, . . .

POGS 21

POGS-GPU versus SDPT3
results for 3GHz Core i7, Nvidia K40

10
2

10
4

10
6

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

Non−zero entries

T
im

e
 [

s
e

c
]

POGS vs. SDPT3 time

POGS−GPU
SDPT3

POGS 22

Performance summary

POGS-GPU versus SDPT3

I POGS solves problems 1000� larger in same time

I POGS solves same problems 100� (or more) faster

I limitation is GPU memory

POGS 23

Radiation treatment planning

I 0:4 GB problem, m = 360000 voxels, n = 360 beams

I checked against interior-point method and actual treatment plan used

I solve times
I conventional method: 8 hours
I ECOS (interior-point method): 1 hour
I POGS (cold start): 5 seconds
I POGS (warm start): 2 seconds

I enables real-time treatment planning

POGS 24

	Graph form problem
	Dual and optimality conditions
	Algorithm
	Pre-conditioning
	POGS

