Parameter Selection and Pre-Conditioning for a Graph Form Solver

Chris Fougner and Stephen Boyd

Springer Lectures, UC Berkeley, 4/6/15

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

Graph form problem

$$
\begin{array}{ll}
\text { minimize } & f(y)+g(x) \\
\text { subject to } & y=A x
\end{array}
$$

- $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are variables
- $f: \mathbf{R}^{m} \rightarrow \mathbf{R} \cup\{\infty\}, g: \mathbf{R}^{n} \rightarrow \mathbf{R} \cup\{\infty\}$ are convex closed proper
- infinite values of f, g encode constraints
- constraint is $(x, y) \in \mathcal{G}=\{(x, y) \mid y=A x\}$, the graph of $x \mapsto A x$
- graph form includes many common convex problems

Example: Cone programming

```
minimize }\quad\mp@subsup{c}{}{T}
subject to Ax\mp@subsup{\preceq}{K}{}b
```

- $g(x)=c^{T} x$
- $f(y)=I_{K}(b-y) \quad(I$ is indicator function $)$
- includes LP, SOCP, SDP, ...
(so via CVX*, most convex problems in practice)

Example: Generalized linear model fitting

$$
\operatorname{minimize} \quad L(A x, z)+r(x)
$$

- variable x is parameter in statistical model
- z is observed data; A contains associated regressors
- L is loss function, convex in first argument
- r is convex regularizer
- includes LASSO, SVM, logistic regression, ...
- in graph form, $f(y)=L(y, z), g(x)=r(x)$

Radiation treatment planning

$$
\begin{array}{ll}
\operatorname{minimize} & f(y) \\
\text { subject to } & y=A x, \quad x \geq 0
\end{array}
$$

- x gives n beam intensities; y is radiation dose to m voxels
- A depends on beam/voxel geometry/physics; $A_{i j} \geq 0$
- objective is $f(y)=\sum_{i=1}^{m} f_{i}\left(y_{i}\right)$, with

$$
f_{i}\left(y_{i}\right)= \begin{cases}w_{i}^{-}\left(d_{i}-y_{i}\right)_{+}+w_{i}^{+}\left(y_{i}-d_{i}\right)_{+} & \text {voxel } i \text { in tumor } \\ w_{i}^{+} y_{i} & \text { voxel } i \text { not in tumor }\end{cases}
$$

- d_{i} is prescribed dosage; w_{i}^{+}, w_{i}^{-}are positive weights
- in graph form, $g(x)=I_{+}(x)$ encodes $x \geq 0$

Portfolio optimization

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x-\gamma x^{T}\left(F F^{T}+D\right) x \\
\text { subject to } & x \geq 0, \quad \mathbf{1}^{T} x=1
\end{array}
$$

- $x \in \mathbf{R}^{n}$ gives portfolio weights (allocation)
- μ is expected asset return vector
- $\Sigma=F F^{T}+D$ is asset return covariance ('factor model')
- $F \in \mathbf{R}^{n \times k}$ is factor loading, D is diagonal ('idiosyncratic risk')
- objective is risk-adjusted return; $\gamma>0$ is risk aversion parameter
- in graph form: $y=\left[\begin{array}{c}F^{T} \\ \mathbf{1}^{T}\end{array}\right] x \in \mathbf{R}^{k+1}$,

$$
g(x)=-\mu^{T} x+\gamma x^{T} D x+I_{+}(x), \quad f(y)=\gamma y^{T} y+I_{y_{k+1}=1}(y)
$$

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

Dual problem

- Lagrange function: $L(x, y, \nu)=f(y)+g(x)+\nu^{T}(A x-y)$
- dual function:

$$
\inf _{x, y} L(x, y, \nu)=-f^{*}(\nu)-g^{*}\left(-A^{T} \nu\right)
$$

- dual problem, with new variable $\mu=-A^{T} \nu$

$$
\begin{array}{ll}
\operatorname{maximize} & -f^{*}(\nu)-g^{*}(\mu) \\
\text { subject to } & \mu=-A^{T} \nu
\end{array}
$$

... also a graph form problem

- duality gap $\eta=f(y)+f^{*}(\nu)+g(x)+g^{*}(\mu)$
- for (x, y, μ, ν) feasible, $\eta \geq 0$ (and gives bound on suboptimality)

Optimality conditions

1. primal feasibility: $y=A x$
2. dual feasibility: $\mu=-A^{T} \nu$
3. zero gap: $f(y)+f^{*}(\nu)+g(x)+g^{*}(\mu)=0$

- for any x, y, μ, ν (by definition),

$$
f(y)+f^{*}(\nu) \geq \nu^{T} y, \quad g(x)+g^{*}(\mu) \geq \mu^{T} x
$$

so can replace zero gap with Fenchel feasibility:

$$
f(y)+f^{*}(\nu)=\nu^{T} y, \quad g(x)+g^{*}(\mu)=\mu^{T} x
$$

- same as: y minimizes $f(y)-\nu^{T} y, x$ minimizes $g(x)-\mu^{T} x$

Outline

```
Graph form problem
```


Dual and optimality conditions

Algorithm

Pre-conditioning

ADMM for constrained minimization

- convex constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & \phi(x) \\
\text { subject to } & x \in \mathcal{C}
\end{array}
$$

- ADMM (alternating directions method of multipliers): for $k=1,2, \ldots$

$$
\begin{aligned}
& x^{k+1 / 2}:=\operatorname{prox}_{\phi}\left(x^{k}-\tilde{x}^{k}\right) \\
& x^{k+1}:=\Pi\left(x^{k+1 / 2}+\tilde{x}^{k}\right) \\
& \tilde{x}^{k+1}:=\tilde{x}^{k}+x^{k+1 / 2}-x^{k+1}
\end{aligned}
$$

until converged
$-\operatorname{prox}_{\phi}$ is proximal operator of ϕ,

$$
\operatorname{prox}_{\phi}(v)=\underset{x}{\operatorname{argmin}}\left(\phi(x)+(\rho / 2)\|x-v\|_{2}^{2}\right)
$$

- convergence theory: $x^{k}-x^{k+1 / 2} \rightarrow 0, \phi\left(x^{k+1 / 2}\right) \rightarrow \inf _{x \in \mathcal{C}} \phi(x)$

Graph projection ADMM [Parikh 2014]

- apply ADMM for constrained minimization to graph form problem
- yields graph projection ADMM:
for $k=1,2, \ldots$

$$
\begin{aligned}
& \left(x^{k+1 / 2}, y^{k+1 / 2}\right):=\left(\operatorname{prox}_{g}\left(x^{k}-\tilde{x}^{k}\right), \operatorname{prox}_{f}\left(y^{k}-\tilde{y}^{k}\right)\right) \\
& \left(x^{k+1}, y^{k+1}\right):=\Pi\left(x^{k+1 / 2}+\tilde{x}^{k}, y^{k+1 / 2}+\tilde{y}^{k}\right) \\
& \left(\tilde{x}^{k+1}, \tilde{y}^{k+1}\right):=\left(\tilde{x}^{k}+x^{k+1 / 2}-x^{k+1}, \tilde{y}^{k}+y^{k+1 / 2}-y^{k+1}\right)
\end{aligned}
$$

until converged

- projection onto \mathcal{G} is

$$
\Pi(c, d)=K^{-1}\left[\begin{array}{c}
c+A^{T} d \\
0
\end{array}\right], \quad K=\left[\begin{array}{cc}
I & A^{T} \\
A & -I
\end{array}\right]
$$

Efficient graph projection

- direct method:
- factorize K (which is quasidefinite)
- cache factorization so each subsequent iteration is a back-solve
- indirect/iterative method:
- use CG/LSQR to approximately compute projection
- warm start subsequent projections from last iterate

Iterate properties

- iterates $\left(x^{k}, y^{k}, \mu^{k}, \nu^{k}\right)$ are primal and dual feasible,

$$
A x^{k+1 / 2}=y^{k+1 / 2}, \quad-A^{T} \nu^{k+1 / 2}=\mu^{k+1 / 2}
$$

and Fenchel feasible in limit (when f and g are smooth)

- with $\mu^{k+1 / 2}=-\rho\left(x^{k+1 / 2}-x^{k}+\tilde{x}^{k}\right), \nu^{k+1 / 2}=-\rho\left(y^{k+1 / 2}-y^{k}+\tilde{y}^{k}\right)$,

$$
\left(x^{k+1 / 2}, y^{k+1 / 2}, \mu^{k+1 / 2}, \nu^{k+1 / 2}\right)
$$

is Fenchel feasible, and primal and dual feasible in limit:

$$
A x^{k+1 / 2}-y^{k+1 / 2} \rightarrow 0, \quad A^{T} \nu^{k+1 / 2}+\mu^{k+1 / 2} \rightarrow 0
$$

(with no assumptions on f and g)

Outline

Graph form problem

Dual and optimality conditions

Algorithm

Pre-conditioning

Pre-conditioning

- with D, E invertible, define $\hat{y}=D y, \quad \hat{x}=E^{-1} x$
- solve (graph form) problem with variables \hat{x}, \hat{y}

$$
\begin{array}{ll}
\operatorname{minimize} & f\left(D^{-1} \hat{y}\right)+g(E \hat{x}) \\
\text { subject to } & \hat{y}=(D A E) \hat{x}
\end{array}
$$

- called pre-conditioned graph form problem
- scaling D and E has same effect as changing ρ
- goal: choose D, E so
- graph projection ADMM is not (much) harder to carry out
- practical convergence is faster
- first condition holds when f, g are separable and D, E are diagonal

Diagonal pre-conditioning

- heuristic: choose diagonal D, E so that $\sigma_{i}(D A E) \approx 1$
- supported by (some) theory, numerical experiments
- heuristic for heuristic: equilibrate $D A E$
i.e., choose D and E so that rows (and columns) have same norm:

$$
\sum_{j=1}^{n}\left(D_{i i} A_{i j} E_{j j}\right)^{2}=n \alpha, \quad \sum_{i=1}^{m}\left(D_{i i} A_{i j} E_{j j}\right)^{2}=m \alpha
$$

- find D and E by minimizing convex function

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2} e^{u_{i}+v_{j}}-n \mathbf{1}^{T} u-m \mathbf{1}^{T} v
$$

by (simple) coordinate minimization; take $D_{i i}=e^{u_{i} / 2}, E_{j j}=e^{v_{j} / 2}$ (recovers Sinkhorn-Knopp algorithm)

Outline

Graph form problem
Dual and optimality conditions
Algorithm
Pre-conditioning

POGS

Proximal Graph Solver (POGS)

- developed by Chris Fougner
- open source C++ implementation, on github
- targets CPUs and GPUs, with various wrappers
- handles sparse and dense A, direct and indirect solvers
- for now, only fully separable f and g
- includes proximal operator library; easy to extend
- algorithm only slightly more complicated than description above (e.g., adaptive ρ-update, regularized equilibration)

Testing

- POGS was tested on many problem instances
- from many application areas
- of varying dimensions
- of varying difficulty
- results verified against (high accuracy) interior-point method (where possible)
- since we want a general solver, no tuning of any POGS algorithm parameters
- timing includes transfer to/from GPU, factorization, ...

POGS-GPU versus SDPT3

results for 3 GHz Core i7, Nvidia K40

Performance summary

POGS-GPU versus SDPT3

- POGS solves problems $1000 \times$ larger in same time
- POGS solves same problems $100 \times$ (or more) faster
- limitation is GPU memory

Radiation treatment planning

- 0.4 GB problem, $m=360000$ voxels, $n=360$ beams
- checked against interior-point method and actual treatment plan used
- solve times
- conventional method: 8 hours
- ECOS (interior-point method): 1 hour
- POGS (cold start): 5 seconds
- POGS (warm start): 2 seconds
- enables real-time treatment planning

