Optimization of Phase-Locked Loop Circuits via Geometric Programming

D. Colleran, C. Portmann, A. Hassibi, C. Crusius, S. S. Mohan, S. Boyd, T. H. Lee, and M. Hershenson

BARCELO-NA

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

Simulation-based methods

Geometric programming-based method

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

Geometric programming

A monomial function g(x) has the form

 $g(x) = c x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} \quad (c > 0)$ • A *posynomial* function f(x) is a sum of monomials For example, $f(x) = 2x_1x_2^{-0.7} + .5x_1^2x_3^5$ Geometric program (GP) is minimize $f_0(x)$ subject to $f_i(x) \le 1$ i = 1, ..., m $g_i(x) = 1$ i = 1, ..., p $x \ge 0$

GPs can be easily transformed into convex problem

Solving GP's

New interior point methods for GP

are extremely fast

 find globally optimal solution or provide proof of infeasibility

are independent of starting point

For PLL synthesis: 40k optimization variables and 150k constraints takes ~90 minutes on 2GHz PC

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

GP electrical models

• Complex GP models can be developed including shortchannel effects, finite output impedance, etc..., e.g., $g_{\rm m} = \sum c_{\rm i} I_{\rm DS}^{\alpha_{1,\rm i}} L^{\alpha_{2,\rm i}} W^{\alpha_{3,\rm i}} V_{\rm DS}^{\alpha_{4,\rm i}} V_{\rm SB}^{\alpha_{5,\rm i}}$

GP models – Id vs. Vds, 0.18µm

GP physical models

Posynomial expressions for Width and height, e.g., $Height = 2x_0 + x_1 + W$ • AD, AS, PD & PS, e.g., $AD = N_f (W + 2W_D) (L_D + L_{DIF} + H_{DIF})$

Placement and Routing

- Symmetry Constraints
- Mirroring Nets
- Net Matching
- Alignment
- Capacitance
 Constraints
- Shielding
- EM/IR drop considerations
- Dummy poly for matching and STI

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

PLL topology

Charge pump PLL with low-power programmable dividers (12 bit, >2GHz)

Variables include device dimensions (W,L) and # of ring oscillator stages (S)

Charge pump topology

Example current mirror equalities (monomial):

 $L_{M5c} = L_{M5b}$

 $V_{
m gov,M5c}=V_{
m gov,M5b}$

VCO topology

Example saturation margin inequalities (posynomial):

 $V_{\rm d} \geq V_{\rm gov,M1v}$

 $V_{\rm d} \leq V_{\rm dd} - V_{\rm gov,M3v}$

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

Second-order PLL system-level equations, in monomial form

 ω

 $K_{\mathbf{v}}$

$$\gamma = \sqrt{\frac{K_{\rm Cp}K_{\rm VCO}}{2\pi NPC_1}}, \, \zeta = \frac{\omega_{\rm n}RC_1}{2}$$

$$K_{\rm CP} = I_{\rm ref} \left(rac{W_{\rm M5c} L_{\rm M5b}}{W_{\rm M5b} L_{\rm M5c}}
ight)$$

$$y_{\text{CO}} = g_{\text{m,M1v}} \left(\frac{W_{\text{M3v}}}{W_{\text{M2v}}} \right) \left(\frac{\partial \omega_{\text{vcO}}}{\partial I_{\text{ring}}} \right)$$

Power consumption (posynomial)

 $Power = Power_{CP} + Power_{VCO} \\ + Power_{digital} < Power_{spec}$

 $Power_{CP} = V_{dd} (4I_{ref} + I_p) + Power_{Acp}$

 $Power_{VCO} = V_{dd} \left(I_{d,M2v} + I_{ring} \right) + Power_{Avco}$

Accumulated jitter, T_{ai} (posynomial) $T_{aj}^2 = \sigma_{j,pk}^2 < (T_{aj,spec})^2$ $\sigma_{\rm j,pk}^2 = \left(\kappa_{\rm LF}^2 + \kappa_{\rm VCO}^2\right) \frac{1}{2\zeta\omega_{\rm n}}$ t^{0.5} LF Ventl From McNeil (JSSC 1997): ₹R M2 $\kappa_{\rm LF}^2 = 4kTR\left(\frac{K_{\rm VCO}^2}{2\omega^2}\right)$

VCO

Vdd

Using Hajimiri's phase noise model (JSSC 1998):

Static phase error, T_{err} (posynomial)

$$\Gamma_{\rm err}^2 = \sigma_{\rm Ip}^2 \frac{t_{\rm r, PFD}^2}{I_{\rm p}^2} < (T_{\rm err})^2$$

$$\sigma_{\mathrm{Ip}}^{2} = \frac{I_{\mathrm{p}}}{I_{\mathrm{ref}}} \left(\sigma_{\mathrm{I_{d,M5b}}}^{2} + \sigma_{\mathrm{I_{d,M7b}}}^{2} \right)$$

 $G \longrightarrow I_{D} \qquad \sigma_{I_{C}}^{2}$

$$\sigma_{\mathrm{I_{d,M5b}}}^{2} = \left(\frac{\sigma_{\beta}I_{\mathrm{d,M5b}}}{\sqrt{W_{\mathrm{M5b}}L_{\mathrm{M5b}}}}\right)^{2} + \left(\frac{\sigma_{\mathrm{V_{t}}}g_{\mathrm{m,M5b}}}{\sqrt{W_{\mathrm{M5b}}L_{\mathrm{M5b}}}}\right)^{2}$$

- Motivation
- Geometric programming (GP)
- GP compatible transistor models
- Clock generation PLL topology
- PLL design in GP form
- Silicon results

GP vs. Silicon – 0.18um PLL arrays

#	Fref	Fvco	T _{pj}	Φ_{e}	Power [mW]		T _{aj} [ps]	
	[MHz]	[MHz]	[ps]	[ps]	GP	Meas	GP	Meas
1	50	1200-1900	2.2	93	11.0	10.8	5.7	6.2
2	33	600-1600	2.1	62	8.8	7.3	7.5	8.0
3	10	1500	4.2	54	7.9	6.0	15.3	14.4
4	20	400	2.7	28	3.2	2.8	14.3	12.0
5	25	250	3.1	16	3.0	3.0	9.7	9.6
6	3-6	81-135	5.9	48	2.7	2.5	27.9	24.2

Good agreement between GP and silicon meas.

GP vs. Silicon – 0.13um PLL arrays

#	Fref	Fvco	T _{pj}	Φ_{e} Power [mW]		r [mW]	T _{aj} [ps]	
	[MHz]	[MHz]	[ps]	[ps]	GP	Meas	GP	Meas
1	50-155	800-1600	5.4	40	18.3		8.9	7.7
2	25-50	500-1000	3.2	47	13.2		13.9	13.1
3	20	1000-1400	4.3	53	17.8	12.6	5.8	5.4
4	24	192-384	4.1	43	11.7	11.1	6.7	6.9
5	90-105	900-1050	4.6	30	10.1	6.1	4.7	6.7
6	0.5	512	12.7	22	13.3	8.53	44.9	43.5

Good agreement between GP and silicon meas.

Acc. jitter vs. ΔF_{vco} trade-off analysis

Power vs. ΔF_{vco} trade-off analysis

Automated design does not translate into performance degradation

PLL	Fref	Fvco	Taj,noise	Трј,	Tpj,noise	
#	[MHz]	[MHz]	[ps]	[ps]-[%T\	/co/%Vdd]	
1	5	50	195	40.1	0.020	
2	80	160	56.5	16.0	0.026	
3	9.7	1244	65.5	3.8	0.047	
4	20	1000-1400	125	7.9	0.079	
5	20	1000-2000	147	8.1	0.081	

Simulated 0.13 μ m, worst case PVT (FF, -40C or 125C) with 10% step on Vdd

Comparison to Literature

- 0.10 %Tvco/%Vdd for 2.5V, 800-1400MHz PLL (M. Mansuri, ISSCC 2003)
- 0.08 %Tvco/%Vdd for 2.0V, 800-1330MHz PLL with voltage regulator (V. Van Kaenel, JSSC 1998)

Conclusions

- First demonstration of fully-automated PLL design, from specification to GDSII
- PLL design problem cast in GP form reduces design time from weeks to hours
- Measured 0.18 μm and 0.13 μm CMOS PLL arrays agree with GP predictions (e.g. 1.9 GHz, 11 mW PLL with 5.8 ps long-term jitter)
- Robust, systematic, and efficient PLL design