
PID Design by Convex-Concave Optimization
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Abstract— This paper describes how PID controllers can
be designed by optimizing performance subject to robustness
constraints. The optimization problem is solved using convex-
concave programming. The method admits general process
descriptions in terms of frequency response data and it can
cope with many different constraints. Examples are presented
and some pitfalls in optimization are discussed.

I. INTRODUCTION

Controller design is a rich problem because it requires

that many factors related to performance and robustness are

taken into account [18]. Many features can be captured by

formulating the design problem as a constrained optimization

problem [1], [7], [12], [13], [15], [17].

Convex programming [3] is a powerful optimization tech-

nique, which has guaranteed convergence and efficient algo-

rithms that have been packaged in easy-to-use tools [5], [9].

There is a modification called convex-concave optimization

which admits nonconvex criteria and constraints [4], [20].

There is in general no guarantee of convergence to a global

minimum but the algorithms converge to a saddle point or

local minimum.

In this paper we will consider convex-concave program-

ming for design of PID controllers. Following the ideas

in [2], [15] we consider maximization of integral gain

subject to robustness constraints on the sensitivities and other

constraints. Both disturbance attenuation and response time

are inversely proportional to integral gain. Unconstrained

maximization of integral gain does not necessarily lead

to good controllers because the responses may be highly

oscillatory.

PID controllers have been designed using optimization

earlier with similar problem formulations [1], [7], [15].

The proposed method is similar to M-constrained Integral

Gain Optimization, MIGO [10], [11], but it admits more

flexible constraints and the computations are simpler. Similar

approaches using linear programming can be found in [12],

[13], [17], and [6] for MIMO systems. The advantages of

convex-concave optimization are that the software package

CVX [5], [9] allows for very compact programs, and many

different criteria and constraints can be accommodated. The

technique can also be extended to more complicated systems.

II. PID DESIGN

Consider a closed loop system with PI or PID control.

The process transfer function is P (s), and controller transfer
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functions are

CPI(s) = kp +
ki
s
, CPID(s) = kp +

ki
s

+ kds,

where kp, ki, and kd are the controller parameters. A block

diagram of the system is shown in Fig. 1.

Measurement noise can be reduced by a second order filter

with the transfer function

Gf (s) =
1

1 + sTf + s2T 2
f /2

, (1)

where Tf is the filter time constant. A first order filter may

suffice for PI control but a second order filter is required to

ensure roll-off when derivative action is used; see [1].

The combinations of the controllers and the filter transfer

functions are denoted by

C(s) = CPI(s)Gf (s), C(s) = CPID(s)Gf (s).

Using this representation ideal controllers can be designed

for the augmented plant P (s)Gf (s).
A good controller should give a closed-loop system with

a fast response to command signals ysp, load disturbances d
should be well attenuated and measurement noise should not

generate too large control signals. In addition the closed-loop

system should be insensitive to variations in the dynamics of

the process P (s).
Common criteria for control performance are the inte-

grated error and the integrated absolute error

IE =

∞
∫

0

e(t)dt, IAE =

∞
∫

0

|e(t)| dt,

where e is the control error due to a unit step load disturbance

applied at the process input or the process output or a unit

step change in the command signal. The quantities IE and

IAE are good measures of load disturbance attenuation for

controllers with integral action. For systems that are well

damped, the two criteria are approximately the same. It can

be shown [1] that

IE =
1

ki
(2)

ysp
ΣΣΣ
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y
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Fig. 1. Block diagram.
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for a unit step disturbance and 1/(P (0)ki) for a set-point

step. Minimizing IE does not guarantee that the responses are

satisfactory because the responses may be highly oscillatory.

Combined with robustness constraints, minimization of IE

may, however, give controllers with good properties [1]. That

this is not always the case will be investigated in Example 4.

The sensitivity function and the complementary sensitivity

functions are defined as

S(s) =
1

1 + L(s)
, T (s) =

L(s)

1 + L(s)
(3)

where L(s) = P (s)C(s) is the loop transfer function.

Robustness to process uncertainty can be captured by con-

straints on the maximum sensitivities Ms and Mt

Ms = max
ω

|S(iω)| , Mt = max
ω

|T (iω)| . (4)

Such constraints have nice geometric interpretations in

the Nyquist plot of the loop transfer function. Requirements

on the sensitivities mean that the Nyquist plot is outside

circles; see Figure 4.15 in [1]. Process uncertainty can be

represented by circles around the nominal loop transfer

function. These constraints are well captured by convex-

concave programming as will be shown in Sec. IV-A and

IV-B.

It is important that the control actions generated by

measurement noise are not too large. The fluctuations in the

control signal can be computed from the transfer functions of

the process and the controller and a characterization of the

measurement noise, like its spectral density. Such detailed

information is rarely available for PI or PID control and we

will therefore use simpler measures.

The transfer function from measurement noise n to con-

troller output for the closed loop system is

Gun(s) = C(s)S(s). (5)

The transfer function Gun can be characterized by its largest

value

Mun = max
ω

|Gun(iω)| . (6)

To ensure that measurement noise does not generate too large

control actions we can introduce constraints on the transfer

function Gun. For processes with P (0) 6= 0 and controllers

with integral action we have Gun(0) = 1, and hence Mun ≥
1.

An approximate expression for Mun is the high-frequency

controller gain kd/Tf where Tf is the parameter of the

noise filter (1). The parameter Tf can be determined as a

compromise between noise injection and load disturbance

attenuation. For a given Tf the condition is then a constraint

on the derivative gain kd which fits well into convex-concave

optimization.

The constraints on noise injection can also be dealt with

in this framework, design of the filter time constant can be

dealt with iteratively as described in [16].

III. CONVEX-CONCAVE OPTIMIZATION

Convex-concave optimization [4], [20] is a procedure for

problems where the optimization criterion and constraints are

written as a difference between two convex functions,

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0 i = 1, . . . ,m

where fi and gi are convex functions. This is not a convex

problem since −gi is concave. The convex functions are

left unchanged and all concave functions are replaced by

linearizations around the current solution point xk, i.e.,

replace f(x)− g(x) by

f̂(x) = f(x)− g(xk)−∇g(xk)
T (x− xk). (7)

This convex approximation is an upper bound on the function

being approximated. It follows that the resulting convex

constraints are more conservative than the original: the

feasible set will be a convex subset of the original feasible

set. The new problem can be solved efficiently to produce

a new feasible point xk+1, and the procedure is repeated.

Since the approximation is conservative, the new iterate is

guaranteed to be feasible, and not to have larger objective

value.

The iterative procedure converges to a saddle point or a

local minimum [20]. Even though there is no guarantee of

convergence to a global minimum, experience has shown the

method to often be effective in producing good solutions.

IV. OPTIMIZATION

The constraints presented in the following sections will

be defined frequency-wise and the considered optimization

problems will have an infinite number of constraints. In order

to obtain a tractable optimization problem, the problems are

solved over a grid of frequency points. Since the problem

is convex, a large number of constraints can efficiently be

handled and a fine grid can therefore be used.

Since the convex-concave procedure is iterative there is a

need for an initial controller. The initial controller needs to

stabilize the system. For a stable plant it will suffice to choose

the initial controller parameters to be zero but care must be

taken if the process is open loop unstable; see Example 3.

The objective of the optimization is to minimize IE under

robustness constraints. From (2) it can easily be seen that

minimizing IE is equivalent to

maximize ki. (8)

A. Circle constraints

Consider a circle with centre c and radius r. The constraint

that the Nyquist plot should lie outside the circle is equivalent

to

r − |L− c| = r − g(α) ≤ 0, (9)

where α =
(

kp ki kd
)T

. The inequality constraint (9) is

a convex-concave constraint since g(α) is a convex function.

Using (7) on (9) we obtain

f̂(α) = r −ℜ

(

(Lk − c)∗

|Lk − c|
(L− c)

)

≤ 0
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where ℜ and ∗, denotes the real part and complex conjugate

respectively, and Lk, is the open-loop transfer function with

the controller parameters from the last iteration.

The classical robustness constraints given by the sensitiv-

ity functions imply that L(iω) should be outside two circles

with centres in cs = −1 and ct = −M2
t /(M

2
t − 1) and radii

rs = 1/Ms and rt = Mt/(M
2
t − 1) respectively; see [1].

B. Process uncertainty

The robustness constraints can be generalized to settings

with process uncertainties. Consider a process P̃ with uncer-

tainties such that for each frequency point the Nyquist plot

is known to lie within a circle with a frequency dependent,

radius ρ, i.e.,

P̃ (iω) = P (iω) + ∆(iω), |∆(iω)| ≤ ρ(iω).

A constraint specifying that the Nyquist plot should lie

outside a circle with centre c and radius r is then

r − |PC +∆C − c| ≤ 0. (10)

Furthermore,

inf
|∆|≤ρ

{|1 + PC +∆C|} = max(|1 + PC| − ρ|C|, 0)

where the equality follows from the triangle inequality and

by choosing the magnitude as |∆| = min
(

ρ, |1+PC|
|C|

)

and

the phase as arg (∆) = arg (1 + PC)−arg (C). Hence, (10)

can be formulated as

r − |L− c|+ ρ|C| ≤ 0 (11)

for which the concave part can be approximated in the same

way as the circle constraints.

C. Curvature constraints

Minimization of IE may sometimes give Nyquist curves

with very small curvature; see Example 4. A constraint

on the curvature can be expressed as a convex-concave

constraint. To obtain this constraint the loop transfer function

is decomposed as L(iω) = x(ω) + iy(ω). Furthermore, let

dots denote derivatives of the corresponding variables with

respect to ω. The curvature of L at a frequency point ω is

then given by

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.

To avoid kinks in the Nyquist plot we introduce a constraint

limiting its curvature by γ. The constraint can then be

formulated as ℑ(L̇∗L̈)− γ|L̇|
3
≤ 0, equivalent to

αTQα− γ|Zα|
3
≤ 0 (12)

where Q is an indefinite, rank one matrix. Since Q is rank

one, it has only one eigenvalue different from zero, whose

sign determines whether the matrix is positive semi-definite

or negative semi-definite. Hence, the constraint given by (12)

fits nicely into the convex-concave framework and can be

written as

αTQpα− αTQnα− γ|Zα|
3
≤ 0. (13)

TABLE I

CONTROLLER PARAMETERS AND PERFORMANCE MEASURES FOR THE

SYSTEM IN EXAMPLE 1 AND EXAMPLE 2

Optimization ki IE IAE ymax

Ex. 1 PI 11.54 8.67e-2 9.98e-2 17.83e-2
Ex. 1 PID 48.25 2.07e-2 3.14e-2 8.84e-2

Ex. 2 PI 7.43 13.46e-2 14.92e-2 19.45e-2
Ex. 2 PID 26.81 3.73e-2 4.63e-2 10.57e-2

where either Qp or Qn is zero and where the nonzero matrix

is positive semi-definite. Utilizing (7), a convex approxima-

tion of (13) is given by

f̂(α) = αTQpα+Akα+ bk ≤ 0 (14)

Ak = −αT
kQn − 3γ|Zαk|α

T
k Z

HZ

bk = αkQnαk + 2γ|Zαk|
3

where H denotes the Hermitian transpose.

V. EXAMPLES

The proposed design method will be illustrated by four

examples. The examples share some common features. In

all examples the integral gain is maximized. The robustness

constraints are Ms = Mt = 1.4 unless otherwise stated.

A grid of 1000 logarithmically spaced frequencies between

ωmin = 10−2 [rad/s] and ωmax = 102 [rad/s] is used in all

examples. The initial controller parameters are zero unless

otherwise stated. For the examples provided, the optimization

algorithm converges to a solution within seven iterations ex-

cluding the optimization problem with curvature constraints

in Example 4, for which 11 iterations were needed.

Example 1. Heat conduction

An advantage of the method is that it can be applied

to processes where the transfer function is only given as

a frequency response or processes described by partial dif-

ferential equations. We illustrate with a simple example of a

process representing heat conduction where the process has

the transfer function

P (s) = e−
√
s. (15)

Maximizing integral gain with constraints on the maximum

values of the sensitivity functions using the convex-concave

procedure gives the following PI and PID controllers

CPI = 2.94 +
11.54

s
, CPID(s) = 7.40 +

48.25

s
+ 0.46s.

Some performance measures are given in Table I. The

Nyquist plots of the loop transfer functions are shown in

Fig. 2, red dashed lines for PI control and blue solid lines

for PID control. The unit step load disturbance responses are

shown in Fig. 3. Notice that IE is less than IAE because the

responses are oscillatory. The criterion IE does not penalize

oscillatory responses, on the contrary, an oscillatory response

may give lower IE. The PID controller has significantly better

performance than the PI controller, which is not surprising

because the process (15) has lag-dominated dynamics.
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Fig. 2. Nyquist plots of the loop transfer functions for PI control (red

dashed lines) and PID control (blue solid lines) of the process P (s) = e−
√
s

in Example 1. The robustness constraints Ms = 1.4 and Mt = 1.4 are
shown in red and black circles.
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Fig. 3. Responses to a unit step load disturbances for PI (red dashed) and

PID control (blue solid) of the process P (s) = e−
√
s in Example 1.

Example 2. Explicit Process Uncertainty

Process uncertainty can be accounted for explicitly as

discussed in Sec. IV-B. To illustrate this we will consider

the same system as in Example 1 but we will now assume

that the process transfer function has a relative uncertainty of

20%. Maximizing integral gain with constraints on the max-

imum values of the sensitivity functions using the convex-

concave procedure gives the following PI and PID controllers

CPI = 2.37 +
7.43

s
, CPID = 5.74 +

26.81

s
+ 0.36s.

Some performance measures are given in Table I. The

Nyquist plots of the loop transfer functions are shown in

Fig. 4, red dashed lines for PI control and blue solid lines

for PID control. The unit step load disturbance responses are

shown in Fig. 5.

Comparing the Nyquist plots in Fig. 2 and Fig. 4 we can

see that adding uncertainties in the process model moves the

Nyquist curve further away from the robustness circles in

such a way that the robustness constraints are satisfied for all

uncertainties in the uncertainty set. The resulting controllers

obtained for the uncertain processes are less aggressive, the

time responses are more sluggish and hence, the performance

measures deteriorate compared with the controllers obtained

in Example 1.
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Fig. 4. Nyquist plots of the loop transfer functions for PI control (red

dashed lines) and PID control (blue solid lines) of the process P (s) = e−
√
s

with 20% relative uncertainty in Example 2. The robustness constraints
Ms = 1.4 and Mt = 1.4 are shown in red and black circles.
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Fig. 5. Responses to a unit step load disturbances for PI (red dashed) and

PID control (blue solid) of the process P (s) = e−
√
s with 20% relative

uncertainty in Example 2.

Example 3. Unstable Process

For unstable processes it is necessary to choose the initial

controller parameters so that the loop transfer functions has

the correct winding number. If the initial controller stabilizes

the plant and satisfies the constraints, the winding number

is preserved in the iterations if the frequency points are

sufficiently dense.

To illustrate this consider PI control of an unstable process

with the transfer function

P (s) =
1

(s− 1)(1 + 0.1s)
.

The initial stabilizing controller is chosen as C0(s) = 6 + 1

s .

This controller gives a loop transfer function that satisfies the

encirclement condition and the constraints on the sensitivity

functions as is shown in Fig. 6. The integrated error with

the initial controller is IE0 = 1. Maximizing integral gain

with constraints on the maximum values of the sensitivity

functions using the convex-concave procedure gives the PI

controller

CPI(s) = 4.67 +
1.76

s

with IE = 0.57. Responses of the closed-loop system to a

unit load disturbance at the process input are shown in Fig. 7.

The responses are well damped and, hence, IE is equal to
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Fig. 6. Nyquist plots of the loop transfer functions for PI control of the

unstable process P (s) =
1

(s− 1)(0.1s+ 1)
in Example 3. The robustness

constraints Ms = 1.4 and Mt = 1.4 are shown in red and black circle
respectively. The loop transfer function corresponding to the initial controller
parameters kp = 6 and ki = 1 are shown in dashed curve. The loop transfer
function corresponding to the optimal controller parameters kp = 4.67 and
ki = 1.76 are shown in solid curves.
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Fig. 7. Responses to a unit step load disturbances for PI control of the

unstable system P (s) =
1

(s− 1)(1 + 0.1s)
in Example 3. The responses

corresponding to the initial controller parameters kp = 6 and ki = 1
are shown in dashed curves. The responses corresponding to the optimal
controller parameters kp = 4.67 and ki = 1.76 are shown in solid curve

IAE. The Nyquist plots for the loop transfer functions can

be seen in Fig. 6.

Example 4. Nyquist plots with kinks

The previous examples show that minimization of IE

subject to robustness constraints give controllers with good

properties. However, minimizing IE does not, in general,

guarantee well-behaved closed loop system; see [1]. The

reason is that minimization of IE may result in closed

loop systems with poorly damped oscillations. Intuitively

we may expect that the tendency for oscillatory responses

is counteracted by the robustness constraint. The following

example shows that difficulties may indeed occur. Consider

a process with the transfer function

P (s) =
1

(s+ 1)3
. (16)

Assuming that we only impose a constraint on the sensitivity

function, maximizing integral gain using the convex-concave

procedure gives the PID controller

CIE(s) = 3.31 +
6.62

s
+ 6.26s. (17)

The poles for the closed-loop system are located in s =
−1.25 ± 1.73i,−0.25 ± 0.87i which suggests that the step

responses will be poorly damped. The blue curve in Fig. 8

shows that the Nyquist plot of the loop transfer function has

a kink and the corresponding time responses in Fig. 9 are

highly oscillatory. This behaviour is counter-intuitive because

we may expect that strong robustness constraints may induce

closed loop systems with good damping. This is indeed the

case for PI control but not for PID control [2], [15]. The kink

will be a little smaller with tighter robustness constraints but

it remains even if we require that sensitivities are less than

1.1. The problem is discussed in [1] where it is labelled

the derivative cliff ; see Figure 6.24 in [1]. The problem can

be avoided in several different ways, one way is to change

the criterion to IAE; see [8]. Another is to constrain the

optimization so that the edges are avoided. In the MIGO

design the edges are avoided by restricting the derivative

gain. Other attempts to constrain the controller have also

been proposed, the derivative gain has been restricted to the

largest gain of a PD controller that maximizes proportional

gain [1] and the constraint Ti = 4Td is proposed in [19].

When using convex-concave optimization the problem can

be avoided by introducing a curvature constraint on the loop

transfer function.

The Nyquist plots in Fig. 8 and the time responses in

Fig. 9 also show results for two modified controllers. The

green curve shows a PID controller where the derivative gain

is restricted to the derivative gain of a PD controller that

maximizes proportional gain with the robustness constraint.

The red curve shows results where the curvature of L(iω) is

restricted to Ms.

Controller parameters and performance criteria are sum-

marized in Table II. It is clear that the controller obtained by

minimizing IE subject to robustness constraints gives oscilla-

tory and unsatisfactory behaviour. By limiting the derivative

part the oscillations are damped and IAE is reduced. The

drawback with this approach is that two optimizations need

to be performed. However, the performance, in terms of IAE,

is better for the controller obtained by limiting the curvature

of the Nyquist plot. The approach in which the curvature

is limited, renders a controller whose performance is close

to the controller obtained using the algorithms from [8]

which minimizes IAE subject to constraints on the sensitivity

functions.

VI. CONCLUSIONS

We have shown that design of PID controllers can be

captured in a format that is well suited for convex-concave

optimization. The criterion is to minimize IE or equivalently

to maximize integral gain subject to robustness constraints.

To avoid oscillatory responses we have also introduced a

constraint on the curvature of the Nyquist curve of the
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Fig. 8. Nyquist plots of the loop transfer functions for PID control of the
process P (s) = (s + 1)−3 in Example 4. All curves are obtained from
optimization problems where the sensitivity constraint was Ms = 1.4. The
blue curve is obtained with no additional constraints. The green curve is
obtained with the additional constraint kd ≤ 3.82. The red curve is obtained
with the additional constraint that the curvature of the Nyquist plot is less
than Ms. The cyan curve is obtained by minimizing IAE using the algorithm
in [8].

loop transfer function. The optimization problems are con-

veniently solved using CVX, the code is very compact and

additional convex-concave constraints can be included.

Since the PID controller only has three parameters the

design problem can be solved by gridding. This approach

[14] has the advantage that any criteria and constraints can

be used. However, the complexity of gridding increases dra-

matically with the number of controller parameters. Convex

optimization does not suffer from this difficulty and it can

therefore also be applied to other controller structures such

as multi-variable PID or fixed higher-order controllers.
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controllers based on constrained optimisation. In Control Theory and

Applications, IEE Proceedings-, volume 149, pages 32–40. IET, 2002.
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