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ABSTRACT

In this paper it is shown how to compute optimal temperature pro�les for post-exposure bake of photo-resist. The

pro�les are optimal in the sense that the worst case non-uniformity of the dissolution rate in the photo-resist is

minimized. This yields uniform development pro�les, which make over-development unnecessary. The optimal

strategy turns out to be to heat and cool with maximum speed. This means that the only variable that remains to

optimize in each speci�c case is the total time of baking. This is a signi�cant reduction in optimization complexity,

and it agrees with common industrial practice.
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1. INTRODUCTION

In manufacturing of wafers it is of critical importance that the line-width of the features etched or deposited on the

wafer is the desired one. The line-width depends on the temperature during the post-exposure bake. The objective

in this work is to �nd optimal temperature pro�les with respect to the critical dimension mentioned above.

Equations are known that relate the bake temperature to the dissolution rate of the resist pro�le during develop-

ment. By considering uniformity speci�cations in this parameter it is shown that good performance can be achieved.

The optimal temperature pro�le is obtained by iterating over linear programs.

The resist considered is a deep-ultraviolet acid hardening resist (Shipley XP-8843 or SNR 248). For this case the

optimal strategy turns out to be to heat and cool with maximum speed. This means that the only variable that

remains to optimize in each speci�c case is the total time of baking. This is a signi�cant reduction in optimization

complexity, and it agrees with common industrial practice.

The paper is organized as follows. In Section 2 the models used in the optimization are presented. In Section

3 the optimization problem is posed, and in Section 4 the solution is presented and discussed. Finally, in Section 5

some concluding remarks are given.

2. MODELS

In this section the models needed to simulate and optimize the temperature pro�les for post-exposure bake are

presented. The manufacturing steps considered are described in Figure 1. The �rst step is the exposure of the photo-

resist in those locations where it is to be developed away. The exposure will result in a certain concentration of acid

in the photo-resist, denoted by Ca(x; z) where the coordinates x and z are related to the wafer and photo-resist as in

Figure 2. The second step is the baking of the photo-resist. This is the step for which optimal temperature pro�les

will be computed. It results in a dissolution rate R(x; z). The third step is the development of the photo-resist, in

which the exposed and baked resist is dissolved. The result is a resist pro�le which can be described as a function

z(x).
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Figure 1. The manufacturing steps relevant for design of optimal temperature pro�les.
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Figure 2. Coordinate-system orientation relative to the wafer and the photo-resist.

2.1. Exposure

To obtain the acid concentration Ca(x; z) in the photo-resist from the exposure dose IS it is necessary to model the

illumination, the optics, the mask, and the optical absorption of photo-resist. It is assumed that the light source is

circular and of uniform intensity and that the optics can be described with a coherent point spread function for clear

aperture. Let

K(x) =
J1(j�xj)
j�xj

be the point spread function, and

J0(x1; x2) = 2
J1(��jx1 � x2j)
��jx1 � x2j

the mutual intensity function, where J1(�) is the Bessel function of �rst order. Then the surface light intensity is

given by Hopkins equation:

I(x; 0; t) =

Z Z
f(�1)J0(�1; �2)f

�(�2)K(x� �1)K
�(x� �2)d�1d�2

where

f(x) =

� p
Is; x 2 X

0; x =2 X

is the object transmittance, i.e. the mask. The parameters are the source wave length � = 248 � 10�9 m, the

numerical aperture of the projection system Np = 0:42, the coherence parameter � = 0:5, the exposure dose Is = 30

mJ=cm2, and a normalization constant � = 2�Np=�.

There are ways to compute the integral above e�ciently. However, this is not the scope of this paper. Here it

has been computed with brute force discretization. The resulting cross-section surface intensity for a mask with a

square feature is seen in Figure 3.

The optical absorption of photo-resist can be described by the following partial di�erential equations1,2:

@I(x; z; t)

@z
= �I(x; z; t) (ACa(x; z; t) +B)

@Ca(x; z; t)

@t
= �I(x; z; t)Ca(x; z; t)C
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Figure 3. The mask and the resulting light surface intensity.
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Figure 4. The resulting acid concentration and light intensity in the photo-resist after exposure.

where I(x; z; t) is the light intensity in the photo-resist, and where Ca(x; z; t) is the normalized acid concentration

in the photo-resist. The boundary condition for the light intensity, I(x; 0; t) is obtained from Hopkin's equation,

and the boundary condition for the normalized acid concentration is given by Ca(x; 0; t) = exp(�I(x; 0; t)Ct). The
initial conditions for the light intensity are given by I(x; z; 0) = I(x; 0; t) exp (�(A+B)z), and for the normalized

acid concentration by Ca(x; z; 0) = 1. The parameters A, B, and C are the so-called Dill's parameters. In the

computations made they were taken to be A = �0:7 �m�1, B = 1:16 �m�1, and C = 0:0023 cm2/mJ. For the

same reason as mentioned before brute force discretization has been used to solve the equation. The results for an

exposure time of 5 seconds is shown in Figure 4.
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Figure 5. Temperature pro�le used for baking.

2.2. Bake

To model the bake of the photo-resist the local extent of cross-linking has to be related to the photo-generated acid

concentration. The following equations describe the reaction2:

dCas(x; z; t)

dt
= k1(T )(1� Cas(x; z; t))C

m
a (x; z; t)

dCa(x; z; t)

dt
= �k2(T )Ca(x; z; t)

ki(T (t)) = ki0 exp (�Eai=kT (t))

where Cas is the normalized concentration of activated cross-linking sites, T = T (t) is the bake temperature, k is

Boltzmann's constant, k10 = 6:56 � 1011 s�1, k20 = 4600 s�1, Ea1 = 0:88 eV, and Ea2 = 0:43 eV. The initial

conditions are Cas(x; z; 0) = 0, and for Ca the value obtained from the exposure step. This equation can be solved

with any standard ODE solver. In Figure 6 is shown the resulting acid concentration and concentration of activated

cross-liking sites after baking with the temperature pro�le in Figure 5. A model for the dissolution rate is given

by2:

R(x; z) = R0 (1� p(Cas(x; z))=C0)
�

where Cas is the normalized concentration of activated cross-linking sites after bake, p is a 6:th order polynomial,

R0 = 350 �A/s, C0 =6.3, and � = 6:5. The dissolution rate is shown in Figure 7.

2.3. Development

A very simpli�ed development model is given by

dz(x; t)

dt
= R(x; z)

It can be solved with any standard ODE-solver. The resulting resist pro�le is shown in Figure 7.

2.4. Summary

The model described above has been validated assuming anti-reective coating.2 It is believed that the model of

development could be more detailed. As will be seen later, this model is not of crucial importance in the optimization,

since it is the dissolution rate that will be optimized.
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Figure 6. The resulting acid concentration and concentration of activated cross-liking sites after baking.
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Figure 7. The dissolution rate obtained from baking and the resulting resist pro�le after development.
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3. OPTIMIZATION PROBLEM

In this section the optimization problem will be formulated, and an algorithm for how to solve it will be proposed.

The light intensity and exposure time are considered to be given. The objective is to �nd a temperature pro�le within

a certain subset of admissible pro�les that makes the resist pro�le as close as possible to a binary valued function.

Unfortunately the model for development, simple as it may look, is non-linear, since the dissolution rate depends

on z. However, a su�cient condition for the development pro�le to be binary valued is that the dissolution rate is

uniform, and that is the criterion that will be considered. In case the di�erential equations for the bake had been

linear, this problem could have been formulated as a Linear Program (LP) after discretization of the time-variable.

Instead the resulting algorithm will linearize the bake di�erential equations around the temperature pro�le, discretize

the resulting linear di�erential equation in time to get a linear di�erence equation. Then an LP is solved to get a

modi�ed temperature pro�le, and the whole procedure is repeated until it converges.

The optimization problem considered is to minimize the worst case non-uniformity of the dissolution rate:

minimizeT2T max
z

�
max
x2I

R(x; z)�min
x2I

R(x; z)

�
(1)

where I is de�ned in Figure 8 and where T is the set of T such that T (t0) = T0, T (t1) = T1, Tmin � T (t) � Tmax,

and Smin � dT (t)=dt � Smax for t0 � t � t1. The algorithm used can be stated as follows:

Compute surface intensity

Compute initial acid concentration

Initialize temperature trajectory

LOOP until converged{

Solve bake ODE

Linearize bake ODE

Discretize linearized ODE

Set up and solve LP

Update temperature trajectory

}

The remaining part of this section will be devoted to the four latter steps in the loop above. The linearization of

the bake ODE is straight forward, and results in a time-varying linear di�erential equation in new variables

�x(t) =

�
�Cas(t)

�Ca(t)

�
=

�
Cas(t)� C0

as(t)

Ca(t)� C0
a(t)

�
; �R(t) = R(t)�R0(t); �T (t) = T (t)� T 0(t)

where C0
as, C

0
a , and R0 is the solution to the nonlinear ODE for T = T 0. The linearized equation reads

d�x(t)

dt
= A(t)�x(t) +B(t)�T (t) (2)

�R(t) = C(t)�x(t) (3)



and it is an approximation to the original bake equations for small values of �T . The matrices A(t), B(t) and C(t)

are functions of C0
as, C

0
a , and T 0 obtained by taking partial derivatives with respect to Cas, Ca, and T in the right

hand sides of the bake-equation and the equation for the dissolution rate.3

The next step is to discretize this equation in time. Use the following approximations for kh � t � (k + 1)h:

A(t) =
1

2
(A(kh) +A((k + 1)h)) =: �A(k)

B(t) =
1

2
(B(kh) +B((k + 1)h)) =: �B(k)

�T (t) = �T (kh) +
t� kh

h
[�T ((k + 1)h)��T (kh)]

Consider the adjoint matrix di�erential equation

d�(t)

dt
= ��(t) �A(k); �(kh) = I

which has the solution �(t) = expf� �A(t� kh)g. Then the solution to the di�erential equation in (2) is given by

�x(t) = ��1(t)

"
�x(kh) +

Z (k+1)h

kh

�(s)B(s)�T (s)ds

#
; kh � t � (k + 1)h

Some computations show that the integral can be expressed asZ (k+1)h

kh

�(s)B(s)�T (s)ds =

Z h

0

e�
�A(k)s �B(k)ds�T ((k + 1)h)� 1

h

Z h

0

Z s

0

e�
�A(k)� �B(k)d�ds� ~T

where � ~T = �T ((k + 1)h)��T (kh). These integrals can be expressed in terms of a matrix exponential.4 To this

end introduce the matrix

D(k) =

2
4 �A(k) I 0

0 �A(k) �B(k)

0 0 0

3
5

and let 2
4F1(k) G1(k) H1(k)

0 F2(k) G2(k)

0 0 F3(k)

3
5 = eD(k)h

Then it holds that

�x((k + 1)h) = F1(k)�x(kh) +G2(k)�T ((k + 1)h)� 1

h
H1(k)� ~T

De�ne

�(k) =

�
F1(k) � 1

h
H1(k)

0 0

�
; �(k) =

�
G2(k)� 1

h
H1(k)

1

�

��(k) =

�
�x(k)

�T (kh)

�
; �u(k) = �T ((k + 1)h)

C�(k) =
�
C(kh) 0

�
; �y(k) = �R(kh)

Then

��(k + 1) = �(k)��(k) + �(k)�u(k)

�y(k) = C�(k)�(k)

The whole above procedure holds for any point (x; z); in particular it can be done for a grid of values. Let the values

of �y(N) for these grid values be collected in the column matrix �Y . It is now clear that the above di�erence

equation can be iterated to construct a matrix 	 such that with

�U =

2
64

�u(0)
...

�u(N � 1)

3
75



it holds that

�Y = 	�U

which is a linear mapping from the change in the the temperature pro�le to the change in the dissolution rate. The

true dissolution rate Y is obtained by adding the nominal Y 0 obtained by solving the bake equations for the nominal

T 0, i.e. Y = Y 0 +�Y . In the same way U = U0 +�U . Hence

Y � Y 0 = 	(U � U0) or Y = 	U + Y 0 �	U0

So there is an a�ne mapping from U to Y , i.e. from the temperature pro�le to the dissolution rate. This is valid for

small deviations from the nominal values (U0; Y 0). This will now be used to set up the LP in standard form.

First notice that (1) is equivalent to

minimize max
z

(�(z)� (z))

subject to (z) � R(x; z) � �(z); x 2 I

T 2 T
where �(z) and (z) are functions of z. This can be further rewritten as

minimize �

subject to �(z)� (z) � �;8z
(z) � R(x; z) � �(z); x 2 I

T 2 T
with � as a new variable. If now only values of (x; z) on the grid are considered,  is de�ned to be the column matrix

of values of (z) on this grid, � is de�ned similarly, and if 	I contains the rows in 	 which give values of �Y de�ned

for x 2 I , then the following LP is obtained:

minimize �

subject to � �  � �1

 � 	IU + Y 0
I �	IU

0 � �

U 2 U
where U de�nes the set of admissible U . In order to make sure that the linearization is a good approximation to the

original problem the following constraint is a part of the de�nition of U :
�Umin � U � U0 � �Umax

Notice that all inequalities for column matrices de�ned above are to be interpreted as component-wise inequalities.

Also notice that it might be better from a numerical point of view to replace the optimization variable U with �U .

4. EXAMPLES

In this section two examples will be presented. The only di�erence between them is the sample interval, which is 10

s in the �rst example and 5 s in the second example. In both examples the following values were used to constrain

the temperature pro�les: T0 = T1 = Tmin = 20�C, Tmax = 200�C, Smin = �5�C/s, and Smax = 5�C/s. The results

are shown in Figures 9 and 10. It is seen that a uniform dissolution rate yields a binary valued development pro�le,

which makes over-development unnecessary. Also the optimal strategy is to heat and cool with maximum speed.

This means that the only variable that remains to optimize in each speci�c case is the total time of baking. This

is a signi�cant reduction in optimization complexity, and it agrees with common industrial practice. The optimal

strategy reduced the development time by about 20% and the bake time by about 30% in these examples.

The most time consuming step in each iteration was to discretize the linearized di�erential equation in time.

The reason for this is that a large matrix exponential has to be computed for each discrete time step. This is

computationally very expensive. Most likely it should be possible to speed this up by designing a special purpose

routine for the speci�c application of this paper.



0 10 20 30 40 50 60 70
20

40

60

80

100

120

140

time (s)

T
 (

de
gr

ee
 C

)

0 10 20 30 40 50 60 70
20

40

60

80

100

120

140

time (s)

T
 (

de
gr

ee
 C

)

0

0.5

1

0

0.5

1

1.5

2

2.5
0

50

100

150

200

250

300

350

z (um)x (um)

R
 (

A
a/

s)

0

0.5

1

0

0.5

1

1.5

2

2.5
0

50

100

150

200

250

300

350

z (um)x (um)

R
 (

A
a/

s)

0
10

20
30

40

0

0.5

1

1.5

2

2.5
0

2000

4000

6000

8000

10000

12000

x (um) Time (s)

z 
(A

a)

0
10

20
30

40

0

0.5

1

1.5

2

2.5
0

2000

4000

6000

8000

10000

12000

x (um) Time (s)

z 
(A

a)

Figure 9. The initial and optimal temperature pro�les, dissolution rates, and resist pro�les for the case when the

sample interval is 10 s.
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Figure 10. The initial and optimal temperature pro�les, dissolution rates, and resist pro�les for the case when the

sample interval is 5 s.



5. CONCLUSIONS

In this paper it has been investigated how the resist development non-uniformity depends on the temperature pro�le

during post-exposure bake. It has been seen that a uniform dissolution rate implies a binary-valued resist pro�le,

and that a uniform dissolution rate can be obtained by solving a sequence of LPs. The optimal strategy for the

examples considered was to heat and cool with maximum speed. Hence it is su�cient to optimize over the bake

time to get the optimal solution. This is a one-parameter optimization, and hence this is a signi�cant reduction in

complexity. The optimal strategy reduced the bake time by about 30%. Shorter baking time, down to the optimal

value, also results in shorter development time. Hence optimal temperature pro�les for post-exposure bake increases

throughput in the manufacturing of integrated circuits.
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