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Abstract

We consider the problem of choosing a lin-
ear classifier that minimizes misclassification
probabilities in two-class classification, which
is a bi-criterion problem, involving a trade-
off between two objectives. We assume that
the class-conditional distributions are Gaus-
sian. This assumption makes it computation-
ally tractable to find Pareto optimal linear
classifiers whose classification capabilities are
inferior to no other linear ones. The main
purpose of this paper is to establish several
robustness properties of those classifiers with
respect to variations and uncertainties in the
distributions. We also extend the results to
kernel-based classification. Finally, we show
how to carry out trade-off analysis empiri-
cally with a finite number of given labeled
data.

1. Introduction

We consider two-class (binary) classification in which
the input (or instance) space X is R

n, and the output
(or class label) set Y is {−1,+1}. An input-output
pair (x, y) where x ∈ X and y ∈ Y is called an exam-
ple. An example is called negative (positive) if its label
is −1 (+1). We assume that examples (x, y) are drawn
randomly and independently according to a fixed prob-
ability distribution D over X × Y. We use D− (D+)
to denote the marginal distribution of inputs in the
negative (positive) class.
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1.1. Trade-off in Two-Class Classification

A (binary) classifier h : X → Y assigns a binary class
label to each instance from X . The classification per-
formance of a classifier h can be summarized by the
pair (Ptn(h), Ptp(h)) of correct classification capabili-
ties. Here, Ptn(h) is the true negative rate (the prob-
ability that a negative example is classified correctly)
and Ptp(h) is the true positive rate (the probability
that a positive example is classified correctly):

Ptn(h) = Pr(h(x) = −1 | y = −1),

Ptp(h) = Pr(h(x) = +1 | y = +1).

The performance can also be summarized by the
misclassification capabilities: the false positive rate
Pfp(h) = 1 − Ptn(h) and the false negative rate
Pfn(h) = 1 − Ptp(h). The (expected) error rate of h
(the probability that an example drawn randomly
from X × Y according to D is misclassified by h) is
π−Pfp(h) + π+Pfn(h), where π− = Pr(y = −1) and
π+ = Pr(y = 1) are prior class probabilities.

Suppose we are given a family H of classifiers. A
standard classification problem is to find a classifier
over this family that minimizes the error rate. In
many applications, however, we want to know the
possible trade-off of misclassification costs associated
with the false positive and negative rates (Bach et al.,
2005), which is called cost-sensitive learning. There
has been a growing interest in taking into account
skewed or asymmetric misclassification costs in the lit-
erature (Bach et al., 2005; Wu et al., 2005; Zadrozny
et al., 2003; Zhu & Wu, 2004).

Cost-sensitive learning with the family H is a bi-
criterion problem, involving a trade-off between two
classification probabilities. We say that a given pair
(α, β) of correct classification probabilities is achiev-
able (by H) if there is a classifier h ∈ H such that
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Ptn(h) ≥ α and Ptp(h) ≥ β. The collection of all
achievable pairs (α, β) defines a region in [0, 1]× [0, 1].
We call the curve along the upper boundary of the re-
gion the optimal trade-off curve. We say that a classi-
fier h ∈ H is Pareto optimal if the pair (Ptn(h), Ptp(h))
is on the optimal trade-off curve. We should mention
that the definitions introduced above can be extended
to optimal trade-off analysis with two objectives which
are not associated with specific distributions, such as
Chebyshev bounds on the true negative and positive
rates.

We can carry out optimal trade-off analysis with
other combinations of classification and misclassifica-
tion probabilities that involve a trade-off, e.g., the
true and false positive rates. (The optimal trade-off
curve between these rates is called the receiver operat-
ing characteristic (ROC).) The Pareto optimal linear
classifiers remain the same, regardless of the combina-
tion used.

Optimal trade-off analysis with all classifiers amounts
to performing a log-likelihood ratio test, which is
known as the Neyman-Pearson lemma (Lehmann &
Romano, 2005). We call the resulting optimal classi-
fiers Neyman-Pearson (NP) optimal. In general, such
classifiers are nonparametric. On the other hand,
Pareto optimal classifiers are parametric if the fam-
ily H is parameterized by a finite number of parame-
ters.

1.2. Pareto Optimal Linear Classification with

Gaussian Data

A classifier of the form h(x) = sgn
(

aT x − b
)

, where
sgn(·) is the sign function, is called linear. This classi-
fier has parameters a (the slope or weight vector) and b
(the threshold). We identify it with (a, b). The family
of linear classifiers is given by H

H = {(a, b) | a ∈ R
n\{0}, b ∈ R}.

(We rule out linear classifiers with zero slope, since
they lack classification capabilities.)

We consider optimal trade-off analysis with linear clas-
sifiers in the generative setting, in which we estimate
the class-conditional distributions from given training
inputs and find Pareto optimal classifiers with the es-
timates. We assume that the class-conditional distri-
butions are Gaussian D− = N(µ−,Σ−) and D+ =
N(µ+,Σ+). Here, we use N(µ,Σ) to denote the Gaus-
sian distribution with mean µ and covariance Σ. We
assume that Σ− and Σ+ are positive definite.

When the class-conditional distributions are Gaus-
sian, NP optimal classifiers have quadratic decision

boundaries (Hastie et al., 2001, §4.3). In the case of
Σ− = Σ+, the quadratic decision boundaries become
linear. In this case, Pareto optimal linear classification
generates NP optimal classifiers.

1.3. Related Work

Recently, Bach et al. (2005) have proposed a method
for carrying out an approximate trade-off analysis with
linear classifiers. The method finds the linear classifier
that minimizes the convex function

f(a, b)

= C−Ex∼D
−

φ
(

b − aT x
)

+ C+Ex∼D+
φ
(

aT x − b
)

,

where C− (C+) represents the misclassification cost as-
sociated with the false positive (negative) rate. Here,
φ is a convex loss function (e.g., the hinge loss or lo-
gistic loss) that approximates the true loss function

φ0−1(z) =

{

1 if z > 0
0 if z < 0,

leading to a convex approximation to the true misclas-
sification cost C−Pfp(a, b) + C+Pfn(a, b). By changing
the ratio of C− and C+, we can find a parameterized
family of linear classifiers with different misclassifica-
tion costs. The method can be viewed as a discrim-
inative approach to an approximate optimal trade-off
analysis with linear classifiers (Bach et al., 2005).

1.4. Brief Overview

Pareto optimal linear classification with Gaus-
sian class-conditional distributions is computationally
tractable. Moreover, it requires the estimation of only
the first two moments of the class-conditional distri-
butions, i.e., the means and covariances. The main
purpose of this paper is to show that the linear classi-
fiers found with the Gaussian assumption have other
desirable features than the two mentioned above:

• The classifiers remain Pareto optimal, although
the true distributions are mixtures of normal dis-
tributions with the same means and scaled covari-
ances.

• The classifiers with true negative and positive
rates greater than 0.5 remain Pareto optimal, al-
though we judge the classification probabilities of
a classifier with Chebyshev bounds on the rates.

• The classifiers remain Pareto optimal, although
we judge the classification probabilities with their
worst-case values over the distributions whose
maximum allowable deviations from the Gaussian
distributions in the Kullback-Liebler divergence
are known.
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The true distributions considered in the first result are
called scale mixtures of normal distributions and can
exhibit heavy-tail phenomena. The result implies that
Pareto optimal linear classifiers are robust with respect
to possible heavy-tail phenomena.

The last two results show that Pareto optimal linear
classification has some desirable worst-case robustness
properties with respect to variations and uncertainties
in the distributions. In particular, the second result
is related to the minimax probability machine (MPM)
(Lanckriet et al., 2002) and its extension, the mini-
mum error minimax probability machine (MEMPM)
(Huang et al., 2004), which find Pareto optimal linear
classifiers with the Chebyshev bounds.

Before describing in detail the three results listed
above in §3–§5, we show in §2 how the optimal trade-
off curve can be found efficiently via convex optimiza-
tion. We extend the results to kernel-based classifica-
tion in §6. In §7, we show how one can carry out empir-
ical trade-off analysis with a finite number of examples
with known labels. In §8, we give our conclusions.

2. Pareto Optimal Linear Classifiers

With the Gaussian assumption, we can compute the
true negative and positive rates of any linear classifier
(a, b) as

Pr(aT x < b | y = −1) = Φ

(

b − aT µ−
√

aT Σ−a

)

,

Pr(aT x > b | y = +1) = Φ

(

aT µ+ − b
√

aT Σ+a

)

,

(1)

where Φ is the cumulative distribution function (CDF)
of the standard normal distribution. Optimal trade-
off analysis with linear classifiers is a bi-criterion opti-
mization problem with the two objectives above. We
denote as L(µ−,Σ−, µ+,Σ+) the set of Pareto opti-
mal linear classifiers found via solving this bi-criterion
problem. (See Boyd and Vandenberghe (2004, §4.7.5)
for more on bi-criterion optimization.)

2.1. Optimal Trade-off Curve

The pair (0.5, 0.5) is always achievable and hence is
below or on the optimal trade-off curve of true negative
and positive rates. Let A be the point on the optimal
trade-off curve with true negative rate 0.5, and let B
be the point with true positive rate 0.5. The two points
A and B are given by

A = (0.5,Φ(r1)), B = (Φ(r2), 0.5),
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Figure 1. Optimal trade-off curve with Gaussian class-
conditional distributions.

where

r1 = sup
b=aT µ

−
,a∈Rn\{0}

aT µ+ − b
√

aT Σ+a

= sup
a∈Rn\{0}

aT µ+ − aT µ−
√

aT Σ+a

=
[

(µ+ − µ−)T Σ−1
+ (µ+ − µ−)

]1/2
,

r2 = sup
b=aT µ+,a∈Rn\{0}

b − aT µ−
√

aT Σ−a

= sup
a∈Rn\{0}

aT µ+ − aT µ−
√

aT Σ−a

=
[

(µ+ − µ−)T Σ−1
− (µ+ − µ−)

]1/2
.

(2)

Suppose µ+ 6= µ−. Then, the point (0.5, 0.5) is below
the optimal trade-off curve. We can divide the curve
into three segments: one from (0, 1) to A, one between
A and B, and one from B to (0, 1). (See Figure 1.) The
segment from (0, 1) to A corresponds to Pareto opti-
mal linear classifiers (a, b) with Ptn(a.b) ≤ 0.5, and the
one from B to (1, 0) corresponds to Pareto optimal lin-
ear classifiers (a, b) with Ptp(a.b) ≤ 0.5. Those classi-
fiers sacrifice one objective significantly in favor of the
other. The middle segment corresponds to Pareto op-
timal linear classifiers with true negative and positive
rates greater than 0.5, and so are of practical interest,
unless the misclassification costs are highly skewed.

2.2. Trade-off Analysis via Convex

Optimization

The segment between A and B can be found via solv-
ing a convex problem of the form

minimize
√

aT Σ+a + λ
√

aT Σ−a
subject to aT (µ+ − µ−) = 1,

(3)
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in which the variable is a ∈ R
n and λ > 0 is a (varying)

parameter. Since the objective of (3) is strictly convex,
this problem has a unique solution. Let aλ be the
unique solution and define

bλ = µT
+aλ − dλ

(

aT
λ Σ+aλ

)1/2
,

where dλ is the inverse of the optimal value of (3). The
family of Pareto optimal linear classifiers (a?, b?) with
Ptn(a?, b?), Ptp(a?, b?) > 0.5 is given by {(aλ, bλ) | 0 <
λ < ∞}. The proof is given in Kim et al. (2006), a
longer version of this paper.

The other two segments can also be found via convex
optimization; see Kim et al. (2006) for the details.

3. A General Condition for Pareto

Optimality

The following proposition is instrumental in
studying the robustness properties of the family
L(µ−,Σ−, µ+,Σ+).

Proposition 1 Suppose that the true negative and
positive rates for any linear classifier (a, b) with a 6= 0
can be written as

Ptn(a, b) = κ−

(

b − aT µ−
√

aT Σ−a

)

,

Ptp(a, b) = κ+

(

aT µ+ − b
√

aT Σ+a

)

,

(4)

where κ− and κ+ are strictly increasing over R. Then,
the set of linear classifiers Pareto optimal with the two
objectives in (4) is given by L(µ−,Σ−, µ+,Σ+).

The proof is given in Kim et al. (2006).

As a direct consequence of this proposition, for any
positive scaling parameters λ− and λ+, Pareto op-
timal linear classification with D− = N(µ−, λ−Σ−)
and D+ = N(µ+, λ+Σ+) is the same as that with
D− = N(µ−,Σ−) and D+ = N(µ+,Σ+). The use-
fulness of Proposition (1) is not limited to this simple
case.

4. Classification with Scale Mixtures of

Normal Distributions

A scale mixture of normal distributions has the prob-
ability density function (PDF)

pX(x) =

∫

1
√

(2π)n|Σ|
e−(x−µ)T λΣ(x−µ)pΛ(λ) dλ,

where |Σ| is the determinant of Σ. Here λ is called the
mixing parameter, and pΛ is called the mixing distri-
bution. Note that x is drawn according to N(µ, λΣ)

where λ is in turn drawn according to the mixing dis-
tribution pΛ. (If the mixing parameter has a point
mass at λ = 1, then the distribution of x is equal to the
normal N(µ,Σ).) The mean of x is µ, and the covari-
ance is λ̄Σ if the mixing parameter has a finite mean
λ̄ = E λ. We denote the distribution as S(µ,Σ, pΛ).

By varying the mixing distribution, we can gener-
ate a wide variety of heavy-tailed distributions, in-
cluding multivariate t-distributions and multivariate
Cauchy distributions (Andrew & Mallows, 1974; Genz
& Bretz, 2001). Scale mixtures of normal distributions
have been widely used to model heavy-tailed phenom-
ena of multivariate data. For instance, those distri-
butions have been used in statistical image modeling
(Wainwright & Simoncelli, 2001).

The following lemma shows how to evaluate analyt-
ically classification probabilities of a linear classifier
with a scale mixture of normal distributions.

Lemma 1 Suppose that x ∼ S(µ,Σ, pΛ). Then,

Pr(aT x > b) = κ

(

aT µ − b√
aT Σa

)

,

where

κ(u) =

∫ ∞

0

Φ
(

u/
√

λ
)

pΛ(λ) dλ. (5)

The proof is given in Kim et al. (2006).

The function κ defined above is strictly increasing,
since Φ is. The following corollary then follows from
Proposition 1.

Corollary 1 For any mixing distributions p− and p+,
the set of Pareto optimal linear classifiers for the class-
conditional distributions D− = S(µ−,Σ−, p−) and
D+ = S(µ+,Σ+, p+) is given by L(µ−,Σ−, µ+,Σ+).

NP optimal classifiers for scale mixtures of normal dis-
tributions depend on the mixing distributions, unlike
Pareto optimal linear classifiers.

5. Robust Linear Classification

In the previous section, we have assumed that the
class-conditional distributions D− and D+ are fixed
and from the family of scale mixtures of normal dis-
tributions. In this section we consider the case where
these distributions are not known, but certain prior
information about them is given. We assume that
D− ∈ D− and D+ ∈ D−, where D− and D+ are the
sets of possible distributions. We will judge the classifi-
cation probabilities of a classifier h by their worst-case
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values, over D− ∈ D− and D+ ∈ D+,

Pwc
tn (h) = inf{Pr(h(x) < 0) | x ∼ D− ∈ D−},

Pwc
tp (h) = inf{Pr(h(x) > 0) | x ∼ D+ ∈ D+}.

We seek Pareto optimal classifiers which are inferior to
no other classifiers with the worst-case values above.

5.1. Classification with Chebyshev Bounds

As a first example, we consider the case in which the
means and covariances of the class-conditional distri-
butions are known exactly but otherwise arbitrary:

D− ∈ D− = D(µ−,Σ−), D+ ∈ D+ = D(µ+,Σ+).

Here, we use D(µ,Σ) to denote the set of distribu-
tions with mean µ and covariance Σ and otherwise
arbitrary. The nominal distributions are the Gaussian
N(µ−,Σ−) and N(µ+,Σ+).

Using the Chebyshev bound (Marshall & Olkin, 1960),
we can compute the worst-case true negative and pos-
itive rates as

Pwc
tn (a, b) = inf

{

Pr(aT x < b) | x ∼ D− ∈ D−

}

= Ψ

(

b − aT µ−
√

aT Σ−a

)

,

Pwc
tp (a, b) = inf

{

Pr(aT x > b) | x ∼ D+∈D+

}

= Ψ

(

aT µ+ − b
√

aT Σ+a

)

,

(6)

where Ψ is defined by

Ψ(u) = u2
+/(1 + u2

+), u+ = max{u, 0}.

See, e.g., Lanckriet et al. (2002) for the proof.

The function Ψ is strictly increasing over (0,∞).
This property allows us to carry out Pareto optimal
linear classification with the worst-case classification
probabilities in (6) without solving the associated bi-
criterion optimization problem.

Proposition 2 A linear classifier is Pareto optimal
with the worst-case classification probabilities in (6) if
and only if it is Pareto optimal linear with (1) and its
true negative and positive rates are greater than 0.5.

The proof is given in Kim et al. (2006).

Figure 2 illustrates the link, established above, be-
tween Pareto optimal linear classification with the two
objectives in (6) and that with the two in (1). Here,
the dotted curve corresponds to the optimal trade-off
curve of the two objectives in (1). The curve from
C to D (excluding C and D) corresponds to the op-
timal trade-off curve of the worst-case probabilities
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Figure 2. Optimal trade-off curve with Chebyshev bounds.

in (6). The two points C and D are C = (0,Ψ(r1))
and D = (Ψ(r2), 0) with r1 and r2 in (2). (Any point
on the line from D to (0, 1) or from C to (1, 0) is not
on the optimal trade-off curve, since it is inferior to a
point on the same line which is achievable.) Proposi-
tion 2 implies that the optimal trade-off curve of the
worst-case probabilities in (6) can be easily computed
with the classifiers found in §2.2.
We close by clarifying the link between the MEMPM
and Pareto optimal linear classification described
above. The MEMPM amounts to solving a problem of
the form

maximize θα + (1 − θ)β

subject to Ψ

(

b − aT µ−
√

aT Σ−a

)

≥ α,

Ψ

(

aT µ+ − b
√

aT Σ+a

)

≥ β,

aT µ− < b < aT µ+,

(7)

where θ ∈ (0, 1) controls the weights of the worst-case
classification probabilities. (The MPM corresponds to
the special case of α = β.) This problem is to find
a Pareto optimal linear classifier with the worst-case
classification probabilities in (6). Proposition 2 then
tells us that the MEMPM in fact finds a linear classi-
fier which is Pareto optimal for D− = N(µ−,Σ−) and
D+ = N(µ+,Σ+).

5.2. Classification with KL Divergence Bounds

As another example, we consider the case in which the
first and second moments of the true class-conditional
distributions are uncertain, but their maximum al-
lowable deviations from the nominal distributions are
known in terms of a distance metric. We use, as
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the distance metric between two distributions, the
Kullback-Liebler (KL) divergence (negative relative
entropy):

dKL(P || Q) =

∫

log
dP

dQ
dP,

where dP/dQ denotes the Radon-Nikodym derivative
of P with respect to Q.

We assume that the true class-conditional distribu-
tions are subject to

D− ∈ Dδ
−

(µ−,Σ−), D+ ∈ Dδ+
(µ+,Σ+), (8)

where δ− and δ+ are positive constants. (The choice
of δ− = δ+ = 0 corresponds to the Gaussian setting
considered in §2.) Here, we use Dδ(µ,Σ) to denote
the set of distributions with mean µ and covariance
Σ that satisfy dKL(D||N(µ,Σ)) ≤ δ. The nominal
distribution of the negative examples is N(µ−,Σ−),
and that of the positive examples is N(µ+,Σ+).

The following lemma shows that we can evaluate ana-
lytically the worst-case true negative and positive rates
over the families above.

Lemma 2 For any µ ∈ R
n and any symmetric posi-

tive definite Σ ∈ R
n×n, we have

inf
{

Pr
(

aT x ≥ b
)

| x ∼ P, dKL(P || N(µ,Σ)) ≤ δ
}

= κδ

(

µT a − b√
aT Σa

)

, ∀ a ∈ R
n\{0}, ∀ b ∈ R, ∀ δ ≥ 0

where

κδ(u) = 1 − f−1
δ (Φ(−u)),

fδ(ε) = sup
v>0

e−d(v + 1)ε − 1

v
.

(9)

The proof is given in Kim et al. (2006).

Now, we have

Pwc
tn (a, b)

= inf
{

Pr(aT x < b) | x ∼ D− ∈ Dδ
−

(µ−,Σ−)
}

= κδ
−

(

b − aT µ−
√

aT Σ−a

)

,

Pwc
tp (a, b)

= inf
{

Pr(aT x > b) | x ∼ D+ ∈ Dδ+
(µ+,Σ+)

}

= κδ+

(

aT µ+ − b
√

aT Σ+a

)

.

For any δ > 0, κδ is strictly increasing. The following
corollary now follows from Proposition 1.

Corollary 2 The set of Pareto optimal linear clas-
sifiers with the worst-case classification probabilities
above is given by L(µ−,Σ−, µ+,Σ+).

6. Kernel-Based Classification

In this section, we show how to extend the results es-
tablished above to kernel-based classification.

6.1. Trade-off Analysis with Kernel-Based

Classifiers

In kernel-based binary classification, we seek a classi-
fier h : X → Y of the form h(x) = sgn(aT φ(x) − b),
where a ∈ H is a weight vector in a high-dimensional
(possibly infinite) Hilbert space H, φ is a map from X
into H, and b ∈ R is the threshold. The space H is
called the feature space. The feature space and map-
ping are defined implicitly through a kernel (function)
K : X ×X → R that satisfies K(x, z) = φ(x)T φ(z) for
all x, z ∈ X . Here, wT v denotes the inner product be-
tween w, v ∈ H. See, e.g., Schölkopf and Smola (2002)
for more on kernel-based classification.

For the extension, we associate two Gaussian
N(µ̃−, Σ̃−) and N(µ̃+, Σ̃+) in H with the negative
class and positive class, respectively. As in linear clas-
sification, kernel-based classification involves a trade-
off between two objectives. All results established
above can be readily extended to optimal trade-off
analysis with linear classifiers in the feature space. For
instance, the extension of the computational method
described in §2.2 leads to a convex problem of the form

minimize
(

aT Σ̃+a
)1/2

+ λ
(

aT Σ̃−a
)1/2

subject to aT (µ̃+ − µ̃−) = 1,
(10)

where a ∈ H is the variable and λ > 0 is fixed.

The data for the extension, i.e., the means and co-
variances of N(µ̃−, Σ̃−) and N(µ̃+, Σ̃+), can be esti-
mated from given training inputs. Let {x1, . . . , xm+

}
be the training inputs from the positive class and let
{xm++1, . . . , xm} be from the negative class. The sam-
ple means are given by

µ̃+ =
1

m+

m+
∑

i=1

φ(xi), µ̃− =
1

m−

m
∑

i=m++1

φ(xi),

where m− = m − m+. The (regularized) sample co-
variances are given by

Σ̃+ =
1

m+

m+
∑

i=1

(φ(xi) − µ̃+)(φ(xi) − µ̃+)T + δ+I,

Σ̃− =
1

m−

m
∑

i=m++1

(φ(xi) − µ̃−)(φ(xi) − µ̃−)T + δ−I,
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where δ+ and δ− are positive regularization parame-
ters. Since the covariances may be singular, we add
(small) regularization terms to the covariances.

6.2. Kernel Trick

We describe how the kernel trick (Schölkopf & Smola,
2002) can be extended to the kernel-based classifica-
tion method described above, based on the sample
means and covariances. The extension is nearly iden-
tical to that of the MPM to kernel-based classification
described in Lanckriet et al. (2002).

Let G ∈ R
n×n be the Gram matrix that contains as

its entries the inner products in H between all pairs of
the images of the training inputs {x1, . . . , xm}:

Gij = k(xi, xj).

Then, we can reformulate (10) as

minimize
(

αT F+α
)1/2

+ λ
(

αT F−α
)1/2

subject to αT G(g+ − g−) = 1,
(11)

where the variable is α ∈ R
m, and

g+ =

[

(1/m+)1m+

0m
−

]

, g− =

[

0+

(1/m−)1m
−

]

,

F+ = GJ+JT
+G + δ+G, F− = GJ−JT

−G + δ−G,

J+ = diag
(

(1/m
1/2
+ )

[

I − (1/m+)1m+
1T

m+

]

, 0m
−

)

,

J− = diag
(

0m+
, (1/m

1/2
− )

[

I − (1/m−)1m
−

1T
m

−

])

.

Here 0n denotes the vector of all zeros in R
n, and

diag(A1, . . . , An) denotes the diagonal matrix whose
diagonal block entries are Ai. The solution of (10) is
given by a? =

∑m
i=1 α?φ(xi), where α? is the solution

of (11).

The optimal classifier determined by this solution can
be expressed as

f(z) = sgn

(

m
∑

i=1

α?
i k(xi, z) − bλ

)

with the threshold bλ = α?T Gg+ − d?
(

α?T F+α?
)1/2

,
where d? is the inverse of the optimal value of (11).
Note that this expression requires us to evaluate the
kernel function at the pairs (xi, z), i = 1, . . . ,m, not
the feature mapping.

7. Empirical Trade-off Analysis

7.1. Trade-off Analysis with Finite Samples

There are several ways of carrying out empirical trade-
off analysis with a finite number of given labeled data.
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Figure 3. Empirical trade-off analysis results for the iono-
sphere benchmark data set.

We describe a procedure, based on the resampling
technique (Efron & Tibshirani, 1993).

We first randomly partition the data set into a train-
ing set and a test set. We use the training set to esti-
mate the sample means and covariances. We then find
linear and kernel-based classifiers using the methods
described in §2 and §6. For each Pareto optimal linear
classifier found, we compute its true negative and pos-
itive rates with the test set. We repeat this procedure
many times and collect the results. Finally, we com-
pute the trade-off curve via constrained least-squares
regression with the collected results, while taking into
account the monotonicity of the trade-off curve.

7.2. An Illustrative Example

We illustrate empirical trade-off analysis with the iono-
sphere benchmark data set from the UCI repository
(Newman et al., 1998). This data set consists of 351
points in R

34. We used 70% of the data set as the
training set.

Figure 3 shows the empirical trade-off analysis results
for the ionosphere data set. Here, we used the Gaus-
sian kernel (e−‖x−y‖2/σ), where the parameter σ was
tuned via cross validation for equal prior class prob-
abilities. For this benchmark data set, kernel-based
classification is far superior to linear classification.

8. Conclusions

We have studied Pareto optimal linear classifica-
tion under the Gaussian assumption on the class-
conditional distributions, and studied its several ro-
bustness properties. We have also clarified the link
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between this classification method and the MEMPM.
The classification performance of these robust classifi-
cation methods is comparable to that of support vector
machines (SVMs) (Lanckriet et al., 2002; Huang et al.,
2004), which are regarded as the state-of-the-art kernel
methods. The numerical comparison result in conjunc-
tion with this link supports empirically Pareto optimal
linear classifiers found under the Gaussian assumption.

The robustness analysis is based on the assumption
that there is no estimation error in the estimates of
the means and covariances. Pareto optimal linear clas-
sification may suffer from the so-called small sample
problem with a small number of training inputs, since
the covariances are hard to estimate accurately.

We mention two future research directions. One is
to incorporate confidence band analysis in empirical
trade-off analysis, which is in spirit similar to confi-
dence band analysis in ROC curves (Macskassy et al.,
2005). The other is to compare the generative ap-
proach described in this paper with the discriminative
approach in Bach et al. (2005). To this end, the area
under the optimal trade-off curve plays the same role
as the area under the ROC curve (AUC) in ROC anal-
ysis.
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