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ABSTRACT
We consider a sensor network in which each sensor takes
measurements, at various times, of some unknown parame-
ters, corrupted by independent Gaussian noises. Each node
can take a finite or infinite number of measurements, at arbi-
trary times (i.e., asynchronously). We propose a space-time
diffusion scheme, that relies only on peer-to-peer commu-
nication, and allows every node to asymptotically compute
the global maximum-likelihood estimate of the unknown pa-
rameters. At each iteration, information is diffused across
the network by a temporal update step and a spatial update
step. Both steps update each node’s state by a weighted av-
erage of its current value and locally available data: new
measurements for the time update, and neighbors’ data for
the spatial update. At any time, any node can compute
a local weighted least-squares estimate of the unknown pa-
rameters, which converges to the global maximum-likelihood
solution. With an infinite number of measurements, these
estimates converge to the true parameter values in the sense
of mean-square convergence. We show that this scheme is
robust to unreliable communication links, and works in a
network with dynamically changing topology.

Categories and Subject Descriptors: G.1.6
[Numerical Analysis]: Optimization – least squares meth-
ods; G.1.3 [Numerical Analysis]: Numerical Linear Alge-
bra – Linear systems (direct and iterative methods).

General Terms: Algorithms, Theory.

Keywords: distributed algorithms, sensor networks, least-
squares, estimation.

1. INTRODUCTION
With advances in integrated circuits, radio technology and

mechanical miniaturization, future sensor networks will con-
sist of nodes integrated with substantial capabilities for sens-
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ing, communication, computing and actuation. In-network
signal processing and data fusion is considered a critical
functionality for such intelligent or autonomous sensor net-
works. This opens new opportunities for the development of
robust, asynchronous, distributed algorithms that work in
a dynamically changing environment. The diffusion equa-
tion, as one of the most fundamental governing equations of
the physical world, gives a natural algorithm for distributed
computing and information fusion, with inherent robustness
to various failures, and the ability to adapt to changes in
the network topology. In this paper, we focus on a specific
model of in-network collaborative signal processing, where
the common goal is linear parameter estimation. We pro-
pose a fully distributed space-time diffusion scheme that en-
ables every node to asymptotically compute the maximum
likelihood solution.

1.1 Maximum-likelihood parameter
estimation

We consider estimation of a vector of unknown parameters
θ ∈ Rm using a network of n distributed sensors. In our
setup, each sensor node can take multiple measurements,
each at a different time, occurring asynchronously in the
network. Let Ti ⊆ {0, 1, 2, . . .} denote the set of times that
node i takes measurements. We assume all measurements
are linear, with additive noise:

yi(t) = Ai(t)θ + vi(t), t ∈ Ti, i = 1, . . . , n,

where yi(t) ∈ Rmi(t) is the measurement, Ai(t) is a known
matrix that relates the unknown parameter to the ith sensor
measurement at time t, and vi(t) is a measurement noise.
We assume vi(t) are independent Gaussian random variables
with zero mean and covariance matrix Σi(t). The total num-
ber of measurements taken by each sensor, |Ti|, can be finite
or infinite. For convenience of presentation, we assume for
now that all |Ti| are finite. We will give extensions to the
infinite case in §6.

With the assumption that every sensor takes a finite num-
ber of measurements, we can denote the aggregate measure-
ment of all sensors as a vector

y = Aθ + v,

where y is a column vector obtained by stacking the mea-
surements yi(t), A is a matrix obtained by stacking the ma-
trices Ai(t), and v is a column vector obtained by stacking
the noises vi(t). Since the noises vi(t) are independent, the
covariance matrix of v is a block diagonal matrix with Σi(t)



on its diagonal blocks. We assume that the matrix A has
full column rank. The maximum-likelihood (ML) estimate
of θ, given the measurement y, is the weighted least-squares
approximate solution

θ̂ML =
“
AT Σ−1A

”−1

AT Σ−1y. (1)

Since Σ is block diagonal, we have

AT Σ−1A =

nX

i=1

X

t∈Ti

Ai(t)
T Σi(t)

−1Ai(t)

AT Σ−1y =
nX

i=1

X

t∈Ti

Ai(t)
T Σi(t)

−1yi(t).

This estimate is unbiased (i.e., E θ̂ML = θ) and has error
covariance matrix

QML = E
“
(θ̂ML − θ)(θ̂ML − θ)T

”
=

“
AT Σ−1A

”−1

. (2)

More generally, if the noises are not Gaussian, but are in-
dependent and have zero mean and covariances Σi(t), the
formula (1) gives the linear minimum-variance unbiased es-
timate of θ, given the measurements.

1.2 Peer-to-Peer least-squares problem
The Peer-to-Peer least-square (P2PLS) problem is to com-

pute the maximum-likelihood estimate θ̂ML in (1) using a
distributed sensor fusion scheme. In such a scheme, there is
no fusion center that collects and processes all measurement
data, and the sensor nodes do not have global knowledge of
the network topology. Each sensor only exchanges data with
its neighbors and carries out local computation. The goal is
for every sensor to eventually have a good estimate of the
unknown parameters, e.g., to obtain θ̂ML. This is particu-
larly important if the sensor nodes are carrying out multiple
tasks (e.g., a team of robots) and need the estimate θ̂ML to
make local decisions.

There are many ways to do distributed sensor fusion.
One straightforward method is flooding. Each sensor node
broadcasts all its stored data (i.e., yi(t), Ai(t) and Σi(t) for
some subset of the sensor nodes) to its neighbors, and stores
all new data received. Eventually each node has all the data
in the network, and thus can act as a fusion center to obtain
θ̂ML. This method can require a large amount of data com-
munication, storage memory, and book-keeping overhead.
Much more sophisticated algorithms for distributed detec-
tion, estimation and inference in sensor networks can be
found in, e.g., [10, 8, 1, 12, 18].

In [23] we proposed a simple iterative scheme for dis-
tributed sensor fusion based on average consensus (e.g., [22,
17]). It can be considered as an algorithm for a special
case of the P2PLS problem where each sensor makes a sin-
gle measurement at time t = 0 (i.e., Ti = {0} for all i).
This scheme does not involve explicit point-to-point message
passing or routing; instead, it diffuses information across the
network by updating each node’s data with a weighted av-
erage of its neighbors’ data. At each iteration, every node
can compute a local weighted least-square estimate, which
eventually converges to the global maximum-likelihood so-
lution. This scheme is robust to unreliable communication
links (e.g., due to mobility, fading or power constraints in
wireless sensor networks). We showed that it works in a net-
work with dynamically changing topology, provided that the

set of infinitely occurring communication graphs is jointly
connected. Related work on distributed sensor fusion based
on average consensus includes [14, 5, 6].

In this paper, we present a space-time diffusion scheme for
the general P2PLS problem. This approach can be thought
of as an extension of the distributed average consensus ap-
proach (space diffusion) presented in [23]. More specifically,
at each iteration, it diffuses information by a temporal up-
date step and a spatial update step. In the temporal update
step, each node takes a weighted average of its local data
and the new measurement if available. In the spatial update
step, each node updates its data with a weighted average of
its own and neighbors’ data (they maintain the same data
structure). The averaging weights are time varying and de-
pend on the number of measurements each node has made.
If every node takes a finite number of measurements, we
show that the space-time diffusion scheme converges to the
maximum likelihood solution under a similar condition to
that required for convergence of space diffusion. In the case
of an infinite number of measurements, we are able to show
convergence of the nodes that take measurements most fre-
quently, but we conjecture that convergence occurs under
much weaker assumptions.

1.3 Outline
The rest of this paper is organized as follows. In §2 we

review the space diffusion scheme (distributed average con-
sensus) and the related convergence result. In §3 we give
the space-time diffusion scheme for the scalar case and state
its convergence result for a finite number of measurements.
In §4 we show how the space-time diffusion scheme is con-
structed and prove its convergence when there are finitely
many measurements. In §5 we apply the space-time diffusion
scheme to solve the general P2PLS problem. In §6 we give
a convergence result which holds when there are infinitely
many measurements. In §7 we demonstrate the space-time
diffusion scheme with numerical examples.

2. REVIEW OF SPACE DIFFUSION
First we introduce some notation. We represent the time-

varying communication graphs of the sensor network by
undirected graphs G(t) = (V, E(t)), where V = {1, 2, . . . , n}
is the set of nodes and E(t) is the set of active links at time t.
The sequence of communication graphs {G(t)}∞t=0 can be ei-
ther deterministic or stochastic. In the latter case, we as-
sume that they are independent of the measurement noises.
Let Ni(t) = {j ∈ V | {i, j} ∈ E(t)} denote the set of neigh-
bors of node i at time t. In a peer-to-peer network, each
node is only allowed to communicate with its instantaneous
neighbors in Ni(t), and may carry out local computation.

The space diffusion scheme works for the special case of
|Ti| = 1 for i = 1, . . . , n. For convenience, we also assume
that every sensor takes its measurement at t = 0. Alterna-
tively, we can assume that a node that takes its first mea-
surement at a later time is not connected to any other nodes
until its measurement is taken. We demonstrate the basic al-
gorithm with the scalar case, where the measurements have
the form

yi = θ + vi, i = 1, . . . , n.

Here θ is a scalar to be estimated and the noises vi are
independent Gaussian random variables with zero mean and
unit variance. In this case the maximum-likelihood estimate



is simply the average of the measurements:

θ̂ML =
1

n

nX

i=1

yi.

In the space diffusion algorithm, each node maintains a
state xi(t) initialized as xi(0) = yi. Then each node updates
its state according to the equation

xi(t + 1) = xi(t) +
X

j∈Ni(t)

wij(t) (xj(t) − xi(t)) (3)

for i = 1, . . . , n, where the weights wij(t) are determined as

wij(t) =
1

1 + max{di(t), dj(t)}
, {i, j} ∈ E(t). (4)

We call these the Metropolis weights. Equivalently, each
node updates its state with a weighted average of its previ-
ous value and the states at its instantaneous neighbors.

The following theorem concerning the convergence of (3)
was established in [23]:

Theorem 1. If the set of communication graphs that oc-
cur infinitely often is jointly connected, then the states in the
iteration (3) converge to the average of their initial values.

For a finite collection of graphs with the same vertex set
{(V, Ek)}p

k=1, we say that they are jointly connected if the
graph (V,∪p

k=1Ek) is connected. Since the number of nodes n
is finite, there can be only a finite number of possible com-
munication graphs, and so there is at most a finite number
of infinitely occurring communication graphs. An equivalent
statement of the condition in Theorem 1 is that the graph
(V, ∪s≥tE(s)) is connected for all t ≥ 0 [3].

Distributed average consensus belongs to a more general
class of distributed agreement problems [20, 21], in which
the final agreement value does not need to be the average.
Algorithms for distributed consensus find applications in,
e.g., distributed load balancing in parallel computers [7, 4],
and multi-agent coordination and flocking [11, 14, 9, 13, 16].

3. SPACE-TIME DIFFUSION
As in the previous section, we first consider a scalar ver-

sion of the P2PLS problem. Suppose all measurements taken
by the sensors have the form

yi(t) = θ + vi(t), t ∈ Ti, i = 1, . . . , n, (5)

where θ is a scalar to be estimated, and vi(t) are indepen-
dent Gaussian random variables with zero mean and unit
variance. We assume for now that all |Ti| are finite. In
this case, the maximum-likelihood solution (1) is simply the
average of all measurements,

θ̂ML =

Pn
i=1

P
t∈Ti

yi(t)Pn
i=1 |Ti|

. (6)

In the P2PLS problem, we want to asymptotically com-
pute θ̂ML at each node i by a distributed iterative algorithm.

The space-time diffusion scheme we propose is a nontriv-
ial generalization of space diffusion with Metropolis weights.
In this scheme, each node i maintains a scalar state xi(t),
and keeps track of its time degree di(t), the total num-
ber of measurements it has taken up to time t (the space
degree is |Ni(t)|). At t = 0, the initial states xi(0) are

left unspecified. However, we initialize the time degrees
by di(−1) = 0 (the negative index is for notational conve-
nience). For t = 0, 1, 2, . . ., each iteration of this algorithm
includes two steps: temporal update and spatial update.

• Temporal update (also called measurement update).
For each node i = 1, . . . , n, if t ∈ Ti, let

di(t) = di(t − 1) + 1
xi(t+) = (1 − 1/di(t)) xi(t) + (1/di(t))yi(t);

(7)

otherwise let

di(t) = di(t − 1), xi(t+) = xi(t). (8)

Here we use the time label t+ to signify the states after
temporal update. We assume that temporal updates
are finished instantaneously at each node, thus t+ and
t are essentially the same integer.

• Spatial update. This step is executed at node i only
if di(t) > 0, i.e., only if it has taken at least one mea-
surement. Each node communicates with its neighbors
about their time degrees and calculates its own space-
time degree

dST
i (t) = di(t) +

X

j∈Ni(t)

dj(t). (9)

Then it broadcasts its current state xi(t+) and space-
time degree to its neighbors. Based on received in-
formation from its neighbors, each node calculates the
Metropolis weights

Wij(t) = min
n

1/dST
i (t), 1/dST

j (t)
o

, {i, j} ∈ E(t),

(10)
and updates its state using the equation

xi(t+1) = xi(t+)+
X

j∈Ni(t)

dj(t)Wij(t)(xj(t+)−xi(t+)).

(11)

Theorem 2. Suppose every sensor makes a finite number
of measurements. If the set of communication graphs that
occur infinitely often is jointly connected, then the states in
the space-time diffusion scheme all converge to the space-
time average; i.e.,

lim
t→∞

xi(t) =

Pn
i=1

P
t∈Ti

yi(t)Pn
i=1 |Ti|

, i = 1, . . . , n. (12)

We prove this theorem in the next section. The proof also
shows how the space-time diffusion scheme is constructed.

4. CONVERGENCE WITH A FINITE
NUMBER OF MEASUREMENTS

The convergence of the space-time diffusion scheme with a
finite number of measurements can be proved by considering
distributed average consensus on space-time graphs.

We construct the space-time graph at time t as follows.
First note that the time-degree di(t) is the total number of
measurements taken at node i up to time t. In addition to
the physical node i, we add di(t)− 1 virtual nodes at node i
(see Figure 1). We associate each measurement with one of
the di(t) nodes. Let Vi(t) denote the set of these di(t) nodes
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Figure 1: A simple space-time graph with two vir-
tual nodes added at node i. The physical nodes are
drawn as solid dots and the virtual nodes are drawn
as small circles; The physical links are drawn as solid
lines and the virtual links are drawn as dashed lines.

at node i. We connect every pair of nodes within the set
Vi(t), thus forming a complete subgraph with di(t) nodes.
We denote this complete subgraph by Gi(t). Recall that E(t)
is the set of active links of the communication graph. For
every {i, j} ∈ E(t), we add the link {i′, j′} for every pair of
i′ ∈ Vi(t) and j′ ∈ Vj(t), except the link {i, j} which already
exists. All these added links connect to one or two virtual
nodes, and they are called virtual links (see Figure 1). We
denote this space-time graph at time t by GST(t).

In the space-time graph, each node is associated with a
single measurement. Therefore we can allocate a state at
every node (physical or virtual), initialize it by the asso-
ciated measurement, and then conduct distributed average
consensus on space-time graphs. More specifically, let xv

i (t)
be the state associated with a node v ∈ Vi(t). The space
diffusion algorithm (3) for distributed average consensus on
space-time graphs has the form

xv
i (t + 1) = xv

i (t) +
X

u∈Vi(t)

Wii(t)
“
xu

i (t) − xv
i (t)

”

+
X

j∈Ni(t)

X

u∈Vj(t)

Wij(t)
“
xu

j (t) − xv
i (t)

”
,(13)

where Wii(t) and Wij(t) are the Metropolis weights for the
space-time graph GST(t). To obtain these weights, we note
that the degree of every node belonging to the set Vi(t) is

di(t) − 1 +
X

j∈Ni(t)

dT
j (t) = dST

i (t) − 1.

Applying the formula for Metropolis weights (4) yields the
weights in (10). Note that every link between two differ-
ent sets Vi(t) and Vj(t), physical or virtual, have the same
Metropolis weight given in equation (10). For links within
the complete subgraph Gi(t), the Metropolis weight is given
by Wii(t) = 1/dST

i (t).
Applying Theorem 1 to the equation (13) shows that every

state xv
i (t) converges to the space-time average θ̂ML given

in (6) if the collection of space-time graphs that occur in-
finitely often is jointly connected. By our construction of
the space-time graphs, this is equivalent to the condition
that the collection of infinitely occurring physical graphs is
jointly connected.

The major disadvantage of this basic averaging scheme is
that it requires each physical node to keep track of multiple
states, associated with additional virtual nodes. We have al-
ready seen how the constructed symmetry in the space-time
graph reduces the number of different Metropolis weights:
The weight on {u, v} with u ∈ Vi(t) and v ∈ Vj(t) only de-
pends on i and j, and not on the specific identification of the
nodes u and v. Next we introduce a simple trick to make
all states at the same physical node completely equivalent,
so we only need to maintain a single copy of it.

Instead of conducting average consensus on the sequence
of space-time graphs GST(t), we insert a graph GT(t) imme-
diately before every GST(t). The graph GT(t) is the union
of the complete subgraphs Gi(t) at all of the nodes. Now we
conduct average consensus on the sequence of space-time
graphs

GT(0), GST(0), GT(1), GST(1), GT(2), GST(2), . . . . (14)

We note that the graph GT(t) contains only links {u, v} such
that u and v belong to the same set Vi(t) for some i. Thus
the iterations on the graphs GT(t) are implemented at each
node independently; the last term in the equation (13) van-
ishes. The equation becomes

xv
i (t + 1) = xv

i (t) +
X

u∈Vi(t)

W ′
ii(t)

“
xu

i (t) − xv
i (t)

”
.

Moreover, since the subgraphs Gi(t) are complete and they
are isolated from each other, we have W ′

ii(t) = 1/di(t), and
the above equation further simplifies to

xv
i (t + 1) =

1

di(t)

X

u∈Vi(t)

xu
i (t). (15)

Thus all the states at the nodes in Vi(t) become identical,
equal to their average, after this iteration. Therefore we only
need to keep a single copy of the states afterward, which we
denote by xi(t+).

The next iteration is on the graph GST(t). Substituting all
xv

i (t) by xi(t+) in equation (13), we see that the second term
on the right hand side vanishes, and the equation simplifies
to

xv
i (t+1) = xi(t+)+

X

j∈Ni(t)

dj(t)Wij(t)
“
xj(t+)−xi(t+)

”
. (16)

So it turns out that xv
i (t + 1) are the same for v ∈ Vi(t).

Thus we only need to keep a single copy of it and denote it
by xi(t + 1). We see that the above iteration (16) is pre-
cisely the spatial update (11). Now it is also clear that the
iteration (15) on GT(t) is equivalent to the temporal update,
being equation (7) with new measurement and equation (8)
without new measurement. In summary, distributed aver-
age consensus on the sequence of graphs in (14) is equivalent
to the space-time diffusion algorithm (7)-(11).

Finally, we note that the graphs that occur infinitely of-
ten in the sequence GST(t) also occur infinitely often in the
sequence (14). Therefore the same convergence condition on
the physical graphs applies here.

5. P2PLS BY SPACE-TIME DIFFUSION
Now we explain how the space-time diffusion scheme can

be used to compute θ̂ML in the general setup described



in §1.1. Throughout this section, we assume that the collec-
tion of infinitely occurring (physical) communication graphs
is jointly connected.

5.1 The space-time diffusion scheme
As in the scalar case, this is a distributed iterative algo-

rithm. In this scheme, each sensor node maintains a local
composite information matrix Pi(t) ∈ Rm×m and a local
composite information state qi(t) ∈ Rm. Each node also
keeps track of its time degree di(t). At t = 0 let di(−1) = 0
and the values of Pi(0) and qi(0) can be left unspecified. For
t = 0, 1, 2, . . ., each iteration consists of two steps: temporal
update and spatial update.

• Temporal update (or Measurement update). For ev-
ery node i = 1, . . . , n, if t ∈ Ti, let

di(t) = di(t − 1) + 1,

and compute

Pi(t+) =

„
1 −

1

di(t)

«
Pi(t) +

1

di(t)
Ai(t)

T Σi(t)
−1Ai(t)

qi(t+) =

„
1 −

1

di(t)

«
qi(t) +

1

di(t)
Ai(t)

T Σi(t)
−1yi(t);

Otherwise, let

di(t) = di(t − 1), Pi(t+) = Pi(t), qi(t+) = qi(t).

• Spatial update. For every node i with di(t) > 0,
compute the space-time degree using (9) and also the
Metropolis weights Wij using (10). Then it updates
its local data using the equations

Pi(t + 1) = Pi(t+) +
X

j∈Ni(t)

dj(t)Wij(t)(Pj(t+) − Pi(t+))

qi(t + 1) = qi(t+) +
X

j∈Ni(t)

dj(t)Wij(t)(qj(t+) − qi(t+)).

In other words, this algorithm conducts space-time diffusion
entry-wise for the information matrices Ai(t)

T Σi(t)
−1Ai(t)

and information vectors Ai(t)
T Σi(t)

−1yi(t). By Theorem 2,
we have

lim
t→∞

Pi(t) =
1Pn

i=1 |Ti|

nX

i=1

X

t∈Ti

Ai(t)
T Σi(t)

−1Ai(t),

lim
t→∞

qi(t) =
1Pn

i=1 |Ti|

nX

i=1

X

t∈Ti

Ai(t)
T Σi(t)

−1yi(t).

Therefore, each node asymptotically computes the ML esti-
mate (1) via

θ̂ML = lim
t→∞

Pi(t)
−1qi(t), i = 1, . . . , n.

This scheme has many nice properties that make it partic-
ularly attractive for distributed data fusion in ad hoc net-
works with dynamically changing topology. In particular,
it doesn’t involve explicit point-to-point message passing or
routing. Instead, it iteratively diffuses information in the
network by the temporal update and spatial update steps.
Some key features of the algorithm are:

• Universal data structure. All the nodes keeps track of
its time degree di(t), and maintain the same, fixed data
structure: Pi(t) ∈ Rm×m and qi(t) ∈ Rm, which are
independent of local measurement dimensions mi(t).

• Isotropic protocol for communication and computing.
All the nodes communicate with their instantaneous
neighbors, and use the same rule to compute space-
time degree dST

i (t) and the Metropolis weights Wij(t).

• Robust to link failures and topology changes. With
a finite number of measurements at every node, this
scheme works provided the infinitely occurring com-
munication graphs is jointly connected. As we will see
in §6, the connectivity condition can be further weak-
ened with an infinite number of measurements.

Other distributed algorithms have been proposed to solve
the normal equation

“
AT Σ−1A

”
θ̂ML = AT Σ−1y

directly by either iterative methods such as block Gauss-
Seidel iteration [8], or by Gauss elimination [15]. However,
they must wait to start until all measurements are taken,
and may not enjoy all the nice properties above. The space-
time diffusion scheme can start at a node whenever it has
taken one measurement. Moreover, as we will show next, it
allows every node to generate a useful intermediate estimate
before convergence.

5.2 Properties of intermediate estimates
The true maximum likelihood estimate can be found at

every node only in the limit as t → ∞. In this section we
study the properties of the intermediate estimates,

θ̂i(t) = Pi(t)
−1qi(t), i = 1, . . . , n, (17)

available at node i as soon as Pi(t) is invertible. The follow-
ing theorem shows that these intermediate estimates have
some nice properties.

Theorem 3. Assume that the communication graph G(t),
as a random variable, is independent of the measurement
noise v. Then all the intermediate estimates θ̂i(t) are unbi-
ased estimates of the true parameter, i.e.,

E θ̂i(t) = θ, i = 1, . . . , n, (18)

whenever θ̂i(t) is defined (i.e., when Pi(t) is invertible); and
the error covariance matrix at each node converges to that
of the global ML solution, i.e.,

lim
t→∞

E
h
(θ̂i(t) − θ)(θ̂i(t) − θ)T

i
=

“
AT Σ−1A

”−1

. (19)

Here the expectation is taken with respect to both the mea-
surement noise v and the sequence of random graphs {G(t)}∞

t=0.
These results also hold if the sequence of time-varying com-
munication graphs is a given deterministic sequence.

This theorem has the same form as Theorem 3 in [23],
which was proved for the space-diffusion case. Here the proof
is omitted since it is essentially the same as in [23]. The only
difference is that we should consider distributed average con-
sensus on the constructed space-time graph. As in the space
diffusion case, the intermediate estimates at each node can
be interpreted as a block-scaled weighted least-squares solu-
tion. They all converge to the maximum likelihood solution
as time goes to infinity.



6. CONVERGENCE WITH AN INFINITE
NUMBER OF MEASUREMENTS

If the number of measurements |Ti| is infinite for some
or all the nodes, then we need to show that all the local
estimates converge to the true parameter, in the sense that
the error covariance matrix converges to zero. To simplify
the presentation, we focus on the scalar case in §3. In this
case, we expect that every scalar state converges to the true
parameter; i.e.,

lim
t→∞

xi(t) = θ, i = 1, . . . , n.

This result looks like a distributed version of the law of large
numbers. In fact, if every node takes an infinite number of
measurements and they never communicate with each other,
then the space-time diffusion scheme only has the temporal
average step (7) at each iteration (in this case we let xi(t +
1) = xi(t+)). Then the law of large numbers can be directly
applied at every node to show that its state xi(t) converges
to the true parameter θ almost surely.

However, when there is interprocess communication, the
spatial update step couples the states at different nodes,
so we cannot use the (simple version of the) law of large
numbers. One may argue that since the estimation error
variance for a finite number of measurements is

σ2
ML =

1Pn
i=1 |Ti|

(assuming all measurements have unit variance), it con-
verges to zero if some |Ti| goes to infinity. The flaw in this
argument is that the above variance is asymptotic and it
can only be achieved as time goes to infinity even if all Ti

are finite. Nevertheless, we are able to show the following
convergence result with an infinite number of measurements.

Theorem 4. In the space-time diffusion scheme described
in §3, let dtot(t) =

Pn
i=1 di(t) be the total number of mea-

surements taken at time t. If a node i satisfies the condition

lim inf
t→∞

di(t)

dtot(t)
> 0, (20)

Then the estimate xi(t) converges to θ in mean-square sense.

The proof of Theorem 4 is given in the appendix. The
condition (20) is satisfied, e.g., if a node takes at least one
measurement in every T steps for some T > 0. In this
case, we have lim inft→∞ di(t)/dtot(t) > 1/T . Note that in
the above theorem, we do not assume the joint connected-
ness of the set of infinitely occurring communication graphs,
because every node that has an infinite number of measure-
ments has sufficient information for its estimate to converge
to the exact parameter.

Theorem 4 does not tell the full story. In particular, it
does not specify the convergence behavior of the rest of the
nodes. We would expect that the state at every node that
takes an infinite number of measurements converges to θ.
For nodes that only take a finite number of measurements,
we would expect their convergence with some additional as-
sumptions on the communication graphs, similar to that in
Theorem 1. Thus we have the following conjecture:

Conjecture 5. Let G(∞) = (V, ∪s≥tE(s)). Suppose ev-
ery connected component of G(∞) that contains a node with
a finite number of measurements also contains at least one
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Figure 2: A sensor network with 1000 nodes. Nodes
in the four square regions labeled A, B, C and D
take measurements at different paces.
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Figure 3: Estimation error variance at 4 nodes, each
being a representative from the four regions A, B,
C and D (big black dots in Figure 2).

node with an infinite number of measurements. Then every
state xi(t) in the space-time diffusion scheme converges (in
mean square) to the true parameter θ.

We hope to prove the conjecture in future work. While
the proof of convergence with an infinite number of measure-
ments is more challenging than the case with a finite number
of measurements, our goal in practice is often to obtain good
intermediate estimates, rather than waiting for the asymp-
totic results. From this perspective, the space-time diffusion
scheme has many nice properties. For example, the unbiased
property of the intermediate estimates (18) is not affected
by whether the sets Ti are finite or infinite, since there are
only a finite number of measurements taken whenever an
intermediate estimate is queried.

7. NUMERICAL EXAMPLES
Consider a sensor network with its communication graph

shown in Figure 2. This graph is generated as follows. We
first randomly generate n = 1000 sensor nodes, uniformly
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Figure 4: Error variance profile of the whole net-
work at time t = 100.
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work at time t = 1000.

distributed on the unit square [0, 1] × [0, 1]; then we use
Delaunay triangularization to generate the edges [19] (such
that no nodes are contained in any triangle’s circumcircle).
The graph has 1000 nodes and 2975 edges, with maximum
degree 11 and minimum degree 3.

For simplicity, we use the scalar model in §3 to demon-
strate the convergence behavior of space-time diffusion. In
this case, each measurement is corrupted by a Gaussian
noise with zero mean and unit variance; see equation (5).
The estimation error at each node is

x̃i(t) = xi(t) − θ, i = 1, . . . , n

where xi(t) is the state at node i in the space-time diffu-
sion scheme (7)-(11). We will focus on the error variances

E x̃i(t)
2.

In our simulation, the communication graph is dynami-
cally changing: at each time t, each edge is available with
probability 1/2, independent of other edges and all previ-
ous steps. We let every node take a measurement at time
t = 0; then they take new measurements at different paces
as follows. We partition the network in four square regions
A, B, C and D, as shown in Figure 2. Nodes in region A do

not take any more measurements for t > 0. At each time
t > 0, every node in region B takes a new measurement
with probability 1/4, every node in region C does so with
probability 1/2, and every node in region D always takes a
new measurement. All the random events are independent
of each other.

Figure 3 shows the estimation error variances at four dif-
ferent nodes, each being a representative from the four re-
gions (identified as big black dots in Figure 2). Figures 4
and 5 show the error variance profile of the whole network
at time t = 100 and t = 1000, respectively. (These are in-
terpolated surface plots that pass through the data points.)
From these plots, we can see a clear tradeoff between the
convergence speeds of temporal update and spatial update.
In the beginning, new measurements account for most of the
decrease in error variances through temporal update. Thus
the four regions have quite different error variance profiles;
the more frequently measurements are taken, the smaller
the error variances are (see Figure 4). After a while, the
smoothing effect of the spatial update becomes more obvi-
ous. For example, Figure 5 shows that the error variance
profile of region A, where no measurements are taken after
t = 0, is lower than that of regions B and C. This transition
occurs at around t = 900, as indicated in Figure 3. We also
notice that region A has a smoother profile than the other
three regions, regardless of their average heights.

We should note that the tradeoff between the convergence
speeds of temporal and spatial updates depends on the par-
ticular sensor network setup and parameters used. For ex-
ample, if the communication graphs have rapid mixing prop-
erties (e.g., expander graphs) and the nodes take new mea-
surements at a relatively slow pace, then the convergence of
the spatial update can dominate the convergence of tempo-
ral update. In this case, the error variance profile can be
rather flat at most times.

APPENDIX
In this appendix, we prove Theorem 4. Let’s start by writing
a single equation for the space-time diffusion scheme. The
measurement update (7) and time update (11) equations can
be combined as

x(t + 1) = fW (t)D(t)−1D(t − 1)x(t)

+fW (t)
`
I − D(t)−1D(t − 1)

´
y(t),

(21)

where the matrix fW (t) is given by

fWij(t) =

8
<
:

dj(t) min
˘
1/dST

i (t), 1/dST
j (t)

¯
if {i, j} ∈ E(t)

1 −
P

k∈Ni(t)
fWik(t) if i = j

0 otherwise,

the matrix D(t) is a diagonal matrix whose diagonal ele-
ments are the time degrees di(t). The components of the
vector y(t) is the measurement yi(t) if t ∈ Ti and can be
arbitrary if t /∈ Ti (in this case di(t) = di(t − 1) and 1 −
d−1

i (t)di(t − 1) = 0). For convenience of later derivation,
we set yi(t) = θ if t /∈ Ti, which can be thought of as a
measurement with zero noise).

Notice that fW (t) is stochastic, thus θ1 = fW (t)θ1. Sub-
tracting θ1 from both sides of the equation (21) yields

x(t + 1) − θ1 = fW (t)D(t)−1D(t − 1)(x(t) − θ1)

+fW (t)
`
I − D(t)−1D(t − 1)

´
(y(t) − θ1).



Letting x̃(t) = x(t) − θ1, the above equation becomes

x̃(t + 1) = fW (t)D(t)−1D(t − 1)x̃(t)

+fW (t)
`
I − D(t)−1D(t − 1)

´
v(t),

(22)

where vi(t) is the measurement noise if t ∈ Ti and zero
otherwise. From the above equation, we further obtain

x̃(t) =

t−1X

τ=0

A(t − 1)A(t − 2) · · ·A(τ + 1)B(τ)v(τ),

where

A(t) = fW (t)D(t)−1D(t − 1)

B(t) = fW (t)
`
I − D(t)−1D(t − 1)

´
.

Since A(t) and B(t) are independent of the measurement
noise v(t), it is easy to show that E x̃(t) = 0. In other
words,

E xi(t) = θ, i = 1, . . . , n, t = 0, 1, . . . .

Thus xi(t) is always an unbiased estimate of θ. This result
holds regardless of the sizes of Ti and how frequent every
node makes measurements.

Next we show that the error variances converge to zero;
i.e.,

lim
t→∞

E x̃2
i (t) = 0, i = 1, . . . , n.

First we need to introduce some notation. Let

πi(t) =
di(t)

dtot(t)
, i = 1, . . . , n

and let Π(t) denote the diagonal matrix whose diagonal en-
tries are π1(t), . . . , πn(t). So we have Π(t) = (1/dtot(t))D(t).
We define a new state vector

z(t) = Π(t − 1)1/2 x̃(t) = Π(t − 1)1/2 (x(t) − θ1),

and let

P (t) = Π(t)1/2 fW (t) Π(t)−1/2

u(t) = Π(t)1/2 v(t).

We note that the matrix P (t) is symmetric because for
{i, j} ∈ E(t),

Pij(t) = πi(t)
1/2fWij(t)πj(t)

−1/2

= di(t)
1/2dj(t) min

n
1/dST

i (t), 1/dST
j (t)

o
dj(t)

−1/2

= di(t)
1/2dj(t)

1/2 min
n

1/dST
i (t), 1/dST

j (t)
o

= Pji(t).

We have the following equation by left multiplying Π(t)1/2

on both sides of the equation (22):

z(t + 1) =

s
dtot(t − 1)

dtot(t)
P (t)D(t)−1/2D(t − 1)1/2z(t)

+P (t)
`
I − D(t)−1D(t − 1)

´
u(t).

Apparently z(t) has zero mean. We consider its covariance
matrix

Q(t) = E z(t)z(t)T ,

which satisfies the equation

Q(t + 1) =

dtot(t−1)

dtot(t)
P (t)D(t)−1/2D(t−1)1/2Q(t)D(t−1)1/2D(t)−1/2P (t)

+P (t)
`
I − D(t)−1D(t−1)

´
Σu(t)

`
I − D(t)−1D(t−1)

´
P (t)

where Σu(t) = E u(t)u(t)T . Next we take the spectral norm
of both sides of the above equation. Using standard inequal-
ities for the spectral norm, we have

‖Q(t+1)‖ ≤
dtot(t−1)

dtot(t)
‖P (t)‖2

‚‚‚D(t)−1/2D(t−1)1/2
‚‚‚

2

‖Q(t)‖

+
‚‚I − D(t)−1D(t−1)

‚‚2
‖P (t)‖2‖Σu(t)‖.

We can simplify the above inequality by making the fol-
lowing observations. First, we have ‖P (t)‖ = 1 because
P (t) is symmetric and is similar to the stochastic matrix

fW (t). Second, we have
‚‚‚D(t)−1/2D(t − 1)1/2

‚‚‚ ≤ 1 because

di(t − 1) ≤ di(t) for i = 1, . . . , n. Therefore, we obtain the
inequality

‖Q(t+1)‖ ≤
dtot(t−1)

dtot(t)
‖Q(t)‖+

‚‚I − D(t)−1D(t−1)
‚‚2

‖Σu(t)‖.

(23)
From this we can show that the sequence ‖Q(t)‖ converges
to zero. We need the following lemma (see, e.g., [2]).

Lemma 6. Let Yt, Wt, Zt be three sequences such that Wt

is nonnegative for all t. Assume that

Y (t + 1) ≤ Y (t) − W (t) + Z(t), t = 0, 1, . . . ,

and that the series
PT

t=0 Z(t) converges as T → ∞. Then
either Y (t) → −∞ or Y (t) converges to a finite value and
in the later case

P∞
t=0 W (t) < ∞.

In correspondence with the notation of the lemma, let

Y (t) = ‖Q(t)‖

W (t) =

„
1 −

dtot(t − 1)

dtot(t)

«
‖Q(t)‖

Z(t) =
‚‚I − D(t)−1D(t − 1)

‚‚2
‖Σu(t)‖.

Now let’s take a closer look at the sequence

‚‚I − D(t)−1D(t − 1)
‚‚ =

(
0 if t /∈ ∪n

i=1Ti

1/ min
i:t∈Ti

di(t) otherwise.

Note that the possible values in the sequence are 0, 1, 1/2, 1/3, . . .,
and each nonzero value can occur at most n times (they may
not occur in order). Therefore,

∞X

t=0

‚‚I − D(t)−1D(t − 1)
‚‚2

≤ n
∞X

k=1

1

k2
< ∞.

By assumption ‖Σu(t)‖ is bounded for all t. Thus by Lemma 6
the inequality (23) implies that the sequence ‖Q(t)‖ con-
verge to a finite value and

∞X

t=1

„
1 −

dtot(t − 1)

dtot(t)

«
‖Q(t)‖ < ∞. (24)

Let the limit of ‖Q(t)‖ as t → ∞ be c, which is obviously
nonnegative. Suppose c > 0. Then there exist a T such that



‖Q(t)‖ ≥ (1/2)c for all t ≥ T . Therefore

∞X

t=T

„
1 −

dtot(t − 1)

dtot(t)

«
‖Q(t)‖ ≥

c

2

∞X

t=T

„
1 −

dtot(t − 1)

dtot(t)

«

≥
c

2

∞X

k=1

1

dtot(T ) + kn

= ∞.

We have the last inequality by the observation that the se-
quence 1 − dtot(t − 1)/dtot(t) is nonzero whenever dtot(t)
increases (new measurements are made), and it can increase
at most by n in one step. This causes contradiction with
equation (24). So we must have c = 0; i.e.,

lim
t→∞

‖Q(t)‖ = 0.

In particular, as the diagonal entries of Q(t), we have

lim
t→∞

πi(t − 1)E x̃i(t)
2 = 0, i = 1, . . . , n.

For those nodes that take measurements most frequently,
i.e., those satisfy

lim inf
t→∞

πi(t) = lim inf
t→∞

di(t)

dtot(t)
> 0,

we must have

lim
t→∞

E x̃2
i (t) = 0.

This completes the proof of Theorem 4.
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