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Abstract—We present two novel algorithms at the ingress and

zero. It is also easy in practice because there are efficient algo-

egress of packet switches with QoS provisioning and fairmess con- rithms, such as the interior point method [3], that find the glob-

straints. We first provide a sulite of generalized weighted fair queu-
ing formulations for output link scheduling, where the weights can
be dynamically optimized under QoS constraints using the tool of

ally optimal solution as fast as linear programming. However,
identifying and formulating convex optimization problems may

geometric programming. We then provide a suite of active queue NOt be straight forward.

management formulations for flexible ingress buffer management,
using the tool of semefinite programming. Both sets of formula-

tions are nonlinear, and are special cases of convex optimization
problems, which can be solved globally and as efficiently as linear

problems.

I. INTRODUCTION

Acrchitectures and algorithms for high performance packet
switch with Quality of Service (QoS) provisioning have re-
ceived much attention in recent years [1]. Incoming packets
with different priorities contend for limited resources in both
the buffer and the switch fabric. Queuing mechanism, switch
scheduling method and link scheduling algorithm used in the
switch will therefore affect the QoS parameters of throughput
and delay that each packet experiences. In addition to providing
preferential treatment to high priority connections, fairness is-
sues must also be taken into account in order to avoid excessive
throughput or delay degradation for low priority connections.

This paper focuses on both link scheduling, which is usu-
ally used at the egress, and active queue management, which
is usually implemented at the ingress. By using the powerful
computational tools of convex optimization, in particular, geo-
metric programming and semidefinite programming, we pro-
vide a suite of formulations that efficiently find the optimal
tradeoff between prioritized treatment and fairness constraints.
Although these formulations are nonlinear problems, they be-
long to the class of convex optimization and can be solved in
polynomial time.

Il. CONVEX OPTIMIZATION, GEOMETRIC PROGRAMMING
AND SEMIDEFINITE PROGRAMMING

Convex optimization [2] refers to minimizing a convex ob-
jective function subject to a convex constraint set. Solving con-
vex optimization problems is easy. It is easy in theory because
a local minimum is a global minimum and the duality gap is

The particular type of convex optimization we use for Gen-
eralized Weighted Fair Queuing in section Il is in the form of
geometric programming. We first introduce the following

Definition 1: A monomial is a function f : R™ — R,
where the domain contains all real vectors with positive com-
ponents:

— ;01,02 |,
= czi'z,

f(x) oo c>0anda; ER (1)
Definition 2: A posynomial is a sum of monomials f(z) =

Ek ckxllj’lk xg’Zk ... :L-an .

For example, f(z) = x‘{x;ﬁ is a monomial and f(z) =
z2r3+ Qxfa:;l is a posynomial. Geometric programming is an
optimization problem in the following form:

X

minimize  fo(x)
subjectto  fi(z) < 1 )
h]’ (m) =1

where fy and f; are posynomials and h; are monomials. Ge-
ometric programming in the above form is not a convex op-
timization problem. However, with a change of variables:
y; = log z; and by, = log c;, We can put it into convex form:

minimize  po(y) = log., exp(al,y + bok)
subjectto  pi(y) = logd, exp(a;ﬁy +bi) < 0
4(y) = ajy+b; =0
3)

It can be verified that the log of sum of exponentials is a convex
function. Therefore, p; are convex functions and g; are affine
functions, and we have a convex optimization problem. Note
that if all posynomials are in fact monomials, geometric pro-
gramming becomes linear programming.

Geometric programming has been used in different engi-
neering applications. Recent examples include CMOS op-amp
design [4] and resource allocation in wireless networks [5].
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The particular type of convex optimization we use for active
gueue management in section 1V is semidefinite programming.
When inequality constraints of an optimization problem is gen-
eralized to inequalities induced by the convex positive semidef-
inite cone, we have the following semidefinite program (SDP):

T

minimize c' T
subjectto x1Fy + -+ + zn,Fy, + GO> (4)
Az =0

where F; = FI' € R¥*k and the inequality constraint will be
called linear matrix inequality, with A > 0 denoting that A is
a positive semidefinite matrix. There are some common meth-
ods to be used to convert our problem at hand to a semidefi-
nite program. They include converting a linear inequality into
a linear matrix inequality with diagonal matrices, introducing
a dummy variable for conversion to epigraph form, and using
Schur’s complement [2].

The running time of convex optimization usually scales with
the logarithm of the problem size, and for most practical appli-
cations, converge in 5 to 10 iterations. We can also use three
types of heuristics that simplify the computation even further:

1) Use the structure of the problem to simplify the algorith-
mic steps.

2) Simplify the problem input data structure.

3) Perform incremental update of the current optimal solu-
tions whenever input data changes in real time applica-
tions.

I1l. GENERALIZED WEIGHTED FAIR QUEUING
A. Introduction

Weighted fair queuing [6] (WFQ) is a commonly used tech-
nique to strike a proper balance of resource allocation with pre-
scribed fairness parameters. It is particularly widely used in
egress link scheduling algorithms in many packet switch archi-
tectures. However, there is a major limitation on weighted fair
queuing methods, its fairness parameters cannot be dynamically
optimized in a computationally efficient way.

By using geometric programming, we provide a method to
optimize the fairness parameter for a particular connection un-
der a variety of constraints on fairness parameters for other con-
nections. The objective can also be optimizing for a weighted
sum of connections with non-integer weights, or for the worst
performing connection. Such formulations can accommodate
a large number of variables for dynamic and constrained opti-
mization of WFQ parameters.

We first give a briefly overview of the Generalized Processor
Sharing (GPS) scheme, which WFQ approximates on a packet
by packet base. Suppose there are N connections trying to
share a resource with a total rate of r. For example, there are 16
virtual output ports sharing one egress linecard with a transmis-
sion rate of r packets per second. Assign a positive real number
¢; to connection 4. This number prescribes the QoS parameter

for the connection. Note that ¢; are fixed parameters. Share the
resource according to the following formula:

l( 1, 2) Z ﬁ (5)
Sj(t1,t2) = ¢;
where S;(t1, t2) is the amount of resources allocated to connec-
tion ¢ from time ¢; to ¢s.

It has been be shown that such a GPS algorithm would guar-
antee that the rate g; received by connection i is bounded by

i
Z;'V=1 ; '

The ideal GPS assumes infinite divisibility of data flow.
WFQ approximates the ideal GPS and assumes that a packet
cannot be further divided in scheduling. In this section, we
present a flexible and efficient way to optimize the fairness pa-
rameters ¢; for GPS, and the packet based approximation in
WEFQ is straight forward.

9i = (6)

B. Convex Optimization Formulations

In this subsection, we show formulations that optimize the
performance of weighted fair queuing subject to fairness con-
straints. We call this the Generalized Weighted Fair Queuing.

Suppose we would like to maximize the rate of a particular
connection ¢*, subject to fairness constraints on the rates for
other connections, by varying the QoS parameters ¢;. Although
this is a nonlinear problem, we can turn this problem into a
geometric programming problem, which is as easy to solve for
global optimality as a linear problem.

Proposition 1: The following Generalized Weighted Fair
Queuing formulation is a convex optimization problem with
WFQ parameters ¢; as the optimization variables.

maximize  g; 0
subjectto g; > b, i#£i*

where b; are the QoS constraint constants that lower bound the
provisioned rate each connection receives. The proof is rather
straight forward after rewriting the objective as minimization of
g% and the constraints as i < bi It can be verifed that both
the objective function and the constraints are posynomials of
the variables ¢;.

In fact, we can maximize not just for one connection, but
a weighted sum of many connections in a set I to achieve pro-
portional fairness, or the worst case connection to achieve min-
max fairness. For proportional fairness, it would be desirable to
jointly optimize ¢; and weights w;. Indeed, the fairness weights
in the proportional fairness algorithm can become problem vari-
ables and be allowed to be non-integers, and while still main-
taining the geometric program form.

Proposition 2: The following variations of Generalized
Weighted Fair Queuing are convex optimization problems with
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Fig. 1. Simulation 1 for Generalized WFQ

the WFQ parameters ¢; and the fairness weights w; as the op-
timization variables.

mazximize ) w;g;, i €1

subjectto g; > b; ®)
w; > Wigp
wi < Wiub

where w; i, and w;_,,p are constants of upper bounds and lower
bounds for fairness weights w;, respectively.

Proposition 3: The following variations of Generalized
Weighted Fair Queuing are convex optimization problems with
the WFQ parameters ¢; as the optimization variables.

min; g;

mazximize
S b ©)

subjectto  g;

The proofs of Propositions 2 and 3 follow the same out-
line as the proof of Proposition 1. Depending on how often the
fairness parameters need to be optimized, we can use the com-
putationally efficient primal dual interior point algorithms [3]
for infrequent parameter optimization, or even simpler heuris-
tics through approximations in algorithm and problem setup for
frequent parameter optimization. Incremental parameter update
with minimal computational load can also be supported. Details
of the simplified heuristics are developed in [8].

C. Simulations

We present two numerical examples on the basic version of
Generalized Weighted Fair Queuing as in Proposition 1. In the
first example shown in Figure 1, we have an egress link of a total
rate of 10M bps to be shared by 10 connections with different
QoS requirements. We would like to optimize for connection 1,
subject to constraints for all the other connections. The resulted
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Fig. 2. Simulation 2 for Generalized WFQ

rates g; through geometric programming is shown together with
the optimal values of the variables ¢;, and the required rates b;.
As can be seen from the difference between rates allocated g;
and rates required b;, the convex optimization results satisfy the
QoS constraints for all connections while finding the globally
optimal set of ¢; to maximize the throughput for connection 1.

Another example is shown in Figure 2. The simulation setup
is similar to that in example 1, except that the QoS constraints
for all connections are more stringent. Therefore, in order to
meet these constraints, the optimized rate for connection 1 is
much smaller than that in example 1. This shows the effect
of constraint tightness on the optimal value of the objective
function. A more complete picture of the slackness of the con-
straints can be shown through the dual problem of geometric
programming, which has an interesting physical interpretation

[5].

IV. FLEXIBLE ACTIVE QUEUE MANAGEMENT
A. Introduction

During congestion, buffer overflow will occur and tail drop
will take place. In order to prevent the undesriable and unfair
effects of tail drop, we need to implement active queue man-
agement and systematically drop packets. The basic version
current used are RED [7] and its variations. In this section, we
provide a new algorithm with much flexibility using the tool of
semidefinite programming.

At a particular time slot, we are given a non-negative matrix
A that represents the switching to be done in a switch with N
input ports and N output ports. For a given routing table and
incoming traffic, A;; is the proportion of traffic coming in at
input port ¢ that is intended for and needs to be routed to output
port j. It is easy to verify that Ej A;; = 1, and therefore A is
a stochastic matrix. Let z be the incoming traffic vector, where
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z; is the amount of ingress traffic coming to input port ¢ of the
switch. The amount of egress traffic at output ports is there-
fore y = Az. Therefore, egress port traffic is the image of the
ingress port traffic under the linear transformation represented
by the stochastic matrix A.

Ideally, the given switching matrix should be a permutation
matrix and have only one positive entry in each row, which im-
plies that packets from only one input port needs to be switched
to each output port and no contention is resulted. However, this
condition does not hold in general, and contention avoidance
needs to be done by active queue management during conges-
tion.

Our task is to design a queue management matrix B that
acts as a filter before passing on the traffic to the scheduling
algorithm in the switching fabric. B is designed based on the
given switching matrix A so as to minimize potential contention
under QoS constraints, where B;; is the actual proportion of
signals coming into input port ¢ that will be switched to output
port j. In general, B # A because A just arises from the given
traffic pattern that may not represent the best tradeoff between
collision avoidance and active queue management.

The variables of this optimization are B;;, the entries of B.
The intuition behind the algorithm is that by decreasing some
entries of B and increasing other entries, we are shaping the
incoming traffic. Some streams of traffic might have a lower
priority and yet they have more packets to be switched than
those with higher priority. Therefore, we would increase the
weight of those higher priority streams in the switching matrix
and decrease the weight of the lower priority streams. We hope
that we can also reduce the number of packets to be switched to
the output ports after this shaping.

B. Convex Optimization Formulations

The basic problem formulation is as follows:

minimizd| Bl

subject to Bi; > 0
10
B;; > KijAiy, i #J

where || B|| is the spectral norm of B and K;; represent the fair-
ness constraints. We now first explain the objective function of
the above optimization problem in terms of eigenvalue analysis
and induced matrix norms, followed by an explanation of the
QoS constraints.

In general, we would like the size of B, properly measured
by some metrics, be small so that the aggregate potential con-
tention is reduced. There are two reasons why || B|| is a good
measure of potential collision at the output ports, and therefore
an appropriate objective function to be minimized. First, let
C = B!B. By the definition of the spectral norm of a matrix,
|1Bl| = \/Tmaz, Where o4, is the largest eigenvalue of C.
Each entry in C represents the amount of collision between any
two input ports I(¢) and I(j) on all output ports O(k):

Cij = y_(I(@) = O(k)I(j) = O(k)).

k

Since all traffic vectors z coming into the switch can be de-
composed into a linear combination of eigenvectors of C, min-
imizing o,,,4, IS equivalent to minimizing the worst mode of
total contention caused by all possible traffic vectors z.

Another intrepretation stems from the fact that the spectral
norm is an induced norm. Specifically, there is a corresponding
vector norm |z| such that || B|| = max|, —; |Bz|. A minimax
intrepretation of the objective function in problem (10) follows:

min max | Bz|
B |z|=1

In this minimax interpretation, the incoming traffic chooses
the worst case for contention, and we design the switching ma-
trix B so as to avoid contention under the worst case traffic.

As for the constraints, the constants K;; > 0 represents
the fairness weight attached to the traffic stream from input ¢
to output j. Larger K;; implies higher priority for the connec-
tion from input port 7 to output port 5. If allowed by the fairness
constraints, some proportion of the traffic at an input port can be
dropped with a certain probability, so as to minimize potential
contention in the current time slot,hence achieving the goals of
active queue management. Therefore, we have the substochas-
tic constraint Zj B;; <1

This problem can be put into the form of a semidefinite pro-
gram, with efficient algorithms for finding the globally optimal
solutions.

Proposition 4: The optimization problem (10) is a SDP and
therefore a convex optimization problem.

Proof We prove the above proposition by converting the op-
timization problem in problem (10) into the standard SDP form.
We introduce a dummy variable ¢, and show that problem (10)
is equivalent to the following epigraph form

minimize t

subject to ||B|| < t
t > 0
Bi; > 0 (11
>iBij <1
B;; > KAy, i #j
which, by Schur’s complement, is equivalent to
minimize t
) tI B
subject to( BT I > = 0
t > 0 (12)
B;; > 0
Ej Bi]’ S 1
B;; > KijAij, i#J
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This is in the standard form of SDP with the first constraint
being the linear matrix inequality constraint. Now fast algo-
rithms [3] can be used to solve this convex optimization prob-
lem.

C. Extensions

We briefly mention two extensions of the basic formulation
in the previous subsection. First, we sometimes are interested
in the dual problem of optimizing the QoS parameters subject
to a size constraint on matrix C'. Through the use of convex op-
timization and its heuristics, we can indeed maximize the fair-
ness constraint K;; for a pair of high priority connection across
the switch fabric, subject to a constraint on the total potential
collision and fairness constraints on all other K;;.

Second, apart from minimizing the spectral norm of B, we
can use any other induced norms for B as the measure of the
size of B and the objective to be minimized.

Proposition 5: Any induced matrix norm B is a convex
function of B.

Proof. The induced norm [2]

Bz
I1Blla,p = SUp| o
2#0 |z|b

can be expressed as a function

f(B) =sup{a'Bz : |z]o- < 1,[l2]| <}

where |z|4+ is the dual norm of |z|,. Since f is a supreme
of a family of convex functions, it is also a convex function.

Therefore we can replace the spectral norm in problem (10)
by any other induced matrix norm and the minimax interpreta-
tion follows. Details of these examples and extensions can be
found in [8].

D. The Worst Queue Management Matrix

In this subsection, we prove a related result, that convex
optimization can also be used to find the worst case queue man-
agement matrix B, if we measure the size of B by the product
of all its singular values, or equivalently, the product of all the
eigvevalues of the potential collision matrix C = B!B. By
making the assumptions that ", B;; < 1 (putting an upper
bound on the total potential traffic each output port can handle),
we can maximize the product of all eigenvalue of C as follows.

mazimize[]| o;(B!B)
subject to B;;
>; Bij
> Bij
B'B

(13)

IV Y ININ IV
NO»—A»—‘O

ijAij, 1 £ J

Proposition 6: Problem (13) is a convex optimization prob-
lem.

The proof is outlined as follows.  Since >, Ci; =
Zj >« BirBjr < 1, it can be shown from Perron-Frobenious
theory of non-negative matrices that 1 > det(C) > 0,
and that maximizing [Jo;(C) is equivalent to minimiz-
ing —logdet(C). Furthermore, the second derivative of
g(t) = —logdet(Z + tV') evaluated at O is non-negative, and
—logd et(C) is therefore a convex function of C. Proposition
6 follows.

V. CONCLUSIONS

We show that the computationally efficient tools of con-
vex optimization can be effectively used in designing QoS and
fairness constrained algorithms for high performance packet
switches. In particular, we provide a Generalized Weighted
Fair Queuing for output link scheduling, as well as several pro-
portional and minmax fairness extensions, through geometric
programming. We also provide a flexible active queue man-
agement formulation, and prove that it can be transformed into
semidefinite programming problems. Although these formula-
tions are nonlinear problems, globally optimal solutions effi-
ciently found through convex optimization algorithms.
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