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Abstract
We consider the problem of minimizing a composite convex function with two dif-
ferent access methods: an oracle, for which we can evaluate the value and gradient, 
and a structured function, which we access only by solving a convex optimization 
problem. We are motivated by two associated technological developments. For the 
oracle, systems like PyTorch or TensorFlow can automatically and efficiently com-
pute gradients, given a computation graph description. For the structured function, 
systems like CVXPY accept a high level domain specific language description of the 
problem, and automatically translate it to a standard form for efficient solution. We 
develop a method that makes minimal assumptions about the two functions, does not 
require the tuning of algorithm parameters, and works well in practice across a vari-
ety of problems. Our algorithm combines a number of well-known ideas, including 
a low-rank quasi-Newton approximation of curvature, piecewise affine lower bounds 
from bundle-type methods, and two types of damping to ensure stability. We illus-
trate the method on stochastic optimization, utility maximization, and risk-averse 
programming problems, showing that our method is more efficient than standard 
solvers when the oracle function contains much data.
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1  Introduction

Our story starts with a well studied problem, minimizing a convex function that is the 
sum of two convex functions with different access methods, referred to as a composite 
function (Nesterov 2013). The first function is smooth, and we can access it only by a 
few methods, such as evaluating its value and gradient at a given point. The other func-
tion is not necessarily smooth, but is structured, and we can access it only by solving a 
convex optimization problem that involves it. In the typical setting, the second function 
is one for which we can efficiently compute its proximal operator, usually analytically. 
Here we assume a bit more for the second function, specifically, that we can minimize 
it plus a structured function of modest complexity.

Our goal is to minimize such functions automatically, with a method that works 
well across a large variety of problem instances using its default parameters. We 
leverage new technological developments: systems for automatic differentiation that 
automatically and effficiently compute gradients given a computation graph descrip-
tion, and systems for solving convex optimization problems described in a domain 
specific language for multiple parameter values.

1.1 � Oracle‑structured composite function

We seek to minimize h(x) = f (x) + g(x) over x ∈ �n . We assume that

–	 f ∶ � → � is convex and differentiable, where 𝛺 ⊆ �n is convex and open. We 
assume that a point x0 ∈ � is known.

–	 g ∶ �n
→ � ∪ {+∞} is convex, with closed sublevel sets, and not necessarily 

differentiable. Infinite values of g encode constraints on x.

Our method will access these two functions in very specific ways.

–	 We can evaluate f(x) and ∇f (x) at any x. For x ∉ � , our oracle returns the value 
+∞ for f(x). (We will discuss a few other possible access methods for f in the 
sequel.)

–	 We can minimize g(x) plus another structured function. Here we use the term 
structured loosely, to mean in the sense of Nesterov, or as a practical matter, in a 
disciplined convex programming (DCP) description. This is an extension of the 
usual assumption in composite function minimization that the proximal operator 
of g can be evaluated analytically.

We refer to f as the oracle part of the objective, g as the structured part of the objec-
tive, and h = f + g as an oracle-structured composite objective. We denote the opti-
mal value of the problem as

Assumptions. We assume that the sublevel sets of h are compact, and h⋆ < ∞ (so at 
least some sublevel sets are nonempty). These assumptions imply that f (x) + g(x) 

h⋆ = inf
x
(f (x) + g(x)).
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has a minimizer, i.e., a point x⋆ with h(x⋆) = h⋆ . Our convergence proofs make the 
typical assumption that ∇f  is Lipschitz continuous with constant L, but we stress 
that this is not used in the algorithm itself.

Optimality condition. The optimality condition is

where �g(x) denotes the subdifferential of g at x. For x ∈ � and q ∈ �g(x) , we can 
interpret ∇f (x) + q as a residual in the optimality condition. (We will use this in the 
stopping criterion of our algorithm.) Our access to f directly gives us ∇f (x) ; we will 
see that our access method to g indirectly produces a subgradient q ∈ �g(x).

1.2 � Practical considerations

We are motivated by two technological considerations related to our access methods 
to f and g, which we mention briefly here.

Handling f. To handle f we can rely on automatic differentiation systems that have 
been developed in recent years, such as PyTorch (Paszke et al. 2019), TensorFlow 
(Abadi et al. 2015), and Zygote/Flux/Autograd (Innes et al. 2019, 2018; Maclaurin 
et al. 2015). Automatic differentiation is an old topic (Adamson and Winant 1969; 
Nolan 1953) (see Baydin et al. 2018 for a recent review), but these recent systems 
go way beyond the basic algorithms for automatic differentiation, in terms of ease of 
use and run-time efficiency, across multiple computation platforms. We describe f 
(but not its gradient) using existing libraries and languages; thereafter, f(x) and ∇f (x) 
can be evaluated very efficiently, on many computation platforms, ranging from 
single CPU to multiple GPUs. These systems are widely used throughout machine 
learning, mostly for fitting deep neural networks.

Handling g. To handle g we make use of domain specific languages (DSLs) for 
convex optimization, such as CVX (Grant and Boyd 2014), CVXPY (Agrawal et al. 
2018; Diamond and Boyd 2016), and Convex.jl (Udell et al. 2014). These systems 
take a description of g in a special language based on disciplined convex program-
ming (DCP) (Grant et al. 2006). This description of g is then automatically trans-
formed into a standard form, such as a cone program, and then solved. Recently, 
such systems have been enhanced to include parameters, which are constants in the 
problem each time it is solved, but can be changed and the problem re-solved effi-
ciently, skipping the compilation process. These systems are reasonably good at pre-
serving structure in the problem during compilation, so the solve times can be quite 
small when exploitable structure is present, which we will see is the case in our 
method.

We mention that g can contain hidden additional variables. By this we mean that 
g has the form g(x) = infz G(x, z) , where G is convex in (x,  z). Roughly speaking, 
z is the hidden variable that does not appear in f. Such functions are immediately 
handled by structured systems, without any additional effort. In particular, we do not 
need to work out an analytical form for g(x). In this case just evaluating g requires 
solving an optimization problem (over z). Our method will avoid any evaluations of 
g.

(1)∇f (x) + q = 0, q ∈ �g(x),
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When to just use a structured solver. Finally, we mention that if f is simple enough 
to be handled by a DCP-based system, then simply minimizing f + g using such a 
system is the preferred method of solution. We are interested here in problems where 
this is not the case. Typically this means that f is complex in the sense of involving 
substantial data, for example, a sample average of some function with 106 or more 
samples. (We will see this phenomenon in the numerical examples given in Sect. 5.)

Contribution. The method we propose in the next section is in the family of vari-
able metric bundle methods, and closely related to a number of other methods found 
in the literature (we review related work in Sect. 2.9). As an algorithm, our method 
is not particularly novel; we consider our contribution to be its careful design to 
be compatible with our access methods, and the efficiency of the method compared 
with standard solvers when the function f contains a large amount of data.

2 � Oracle‑structured minimization method

In this section we propose a generic method for solving the oracle-structured mini-
mization problem, which we call oracle-structured minimization method (OSMM). 
OSMM combines several well known methods from optimization, including vari-
able metric or quasi-Newton curvature estimates to accelerate convergence, bundle 
methods that build up a piecewise affine model, and two types of damping, based on 
a trust penalty and a line search. These are chosen to be compatible with our access 
methods.

We will denote the iterates with a superscript, so xk denotes the kth iterate of the 
algorithm. We will let xk+1∕2 denote the tentative iterate at the (k + 1) st iteration, 
before the line search. We will assume that x0 ∈ � , i.e., f (x0) < ∞ . Our algorithm 
will guarantee that xk ∈ � for all k. It is a descent method, i.e., h(xk+1) < h(xk) . 
While h(x0) = ∞ is possible, we will see that h(xk) < ∞ for k ≥ 1.

As with many other optimization algorithms, OSMM is based on forming an 
approximation of the function f in each iteration.

2.1 � Approximation of the oracle function

In iteration k, we form a convex approximation of f, given by f̂k ∶ �n
→ � ∪ {∞} , 

based on information obtained from previous iterations and possibly prior knowl-
edge of f. The approximation has the specific form

Here Hk is positive semidefinite, and lk ∶ �n
→ � ∪ {∞} is a convex minorant of f, 

i.e., lk(x) ≤ f (x) for all x.
Assumptions on Hk . The only assumption we make about Hk is that it is positive 

semidefinite and bounded, i.e., there exists a C such that ‖Hk‖2 ≤ C for all k. In 
practice, Hk accelerates convergence by serving as an estimate of the curvature of 
f. The simplest choice, Hk = 0 , results in an algorithm that converges but does not 
offer the practical benefit of convergence acceleration.

(2)f̂k(x) = lk(x) + (1∕2)(x − xk)THk(x − xk).
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Choice of Hk . There are many ways of choosing a positive semi-definite 
Hk to approximate the curvature of f at xk . One obvious choice is the Hessian 
Hk = ∇2f (xk) , but this requires that f be twice differentiable, and also violates our 
assumption about how we access f. A lesser violation of the access method might use 
an approximation of the Hessian based on evaluations of the mapping z ↦ ∇2f (xk)z 
(i.e., Hessian-vector multiplication), which can be practical in many cases (Erdogdu 
and Montanari 2015). A simple and effective choice is Hk = (ak∕n)I , where ak is 
an approximation of ��∇2f (xk) , obtained for example by the Hutchinson method 
(Hutchinson 1989; Meyer et al. 2021).

Quasi-Newton methods are a general class of curvature approximations that are 
compatible with our assumptions on the access method for f. These methods, which 
have a very long history, build up an approximation of Hk using only the current 
and previously evaluated gradients (Broyden 1965; Byrd et al. 1994; Davidon 1959; 
Dennis and Moré 1977; Fletcher and Powell 1963). When Hk is low rank, or diago-
nal plus low rank, the method is practical even for large values of n. (Such methods 
are often called limited memory, since they do not require the storage of an n × n 
matrix.) For OSMM we propose to use the low-rank quasi-Newton choice given in 
(Fletcher 2005), described in detail in Sect. A.1. We can express Hk as

where Gk ∈ �n×r , and r is a chosen (maximum) rank for Hk.
As many others have observed, limited memory quasi-Newton methods deliver 

most of their benefit for relatively small values of r, like r = 10 or r = 20 . These val-
ues allow the methods to be used even when n is very large (say, 105 ), since the stor-
age requirement (specifically, of Gk ) grows linearly with r, and the computational 
cost of evaluating xk+1∕2 grows quadratically in r, and only linearly in n.

Assumptions on lk . We make the usual assumption on the minorant lk that it is 
tight at xk , i.e., lk(xk) = f (xk) . It follows that f̂k(xk) = f (xk) . It also follows that lk is 
differentiable at xk , and ∇lk(xk) = ∇f (xk) . To see this, we note that since lk is a mino-
rant of f, tight at xk , we have

The first inclusion can be seen since any affine lower bound on lk , tight at xk , is also 
an affine lower bound on f, tight at xk , so its linear part is a subgradient of f at xk . 
The right-hand equality holds since f is differentiable, so its subdifferential contains 
only one element, its gradient. Finally, since �lk(xk) contains only ∇f (xk) , we con-
clude it is differentiable at xk , with gradient ∇f (xk).

In addition to the mathematical assumptions about lk described above, we will 
assume that lk has a structured description. This implies that f̂k has a structured 
description.

Minorants. The simplest minorant is the first order Taylor approximation

A more complex minorant is the piecewise affine minorant

(3)Hk = GkG
T
k
,

𝜕lk(x
k) ⊆ 𝜕f (xk) = {∇f (xk)}.

lk(x) = f (xk) + ∇f (xk)T (x − xk).
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which uses all previously evaluated gradients of f.
For OSMM we propose the piecewise affine minorant

the pointwise maximum of the affine minorants from the previous M gradient evalu-
ations, where M is the memory. With memory M = 1 , this reduces to the Taylor 
approximation.

The problem of choosing the memory M is very similar to the problem of choos-
ing r, the rank of the curvature approximation. The storage requirements grows lin-
early with M, and the computational cost of evaluating xk+1∕2 grows quadratically 
with M. As with the choice of r, small values such as M = 10 or M = 20 seem to 
work well in practice.

We mention a few additional useful minorants that use additional prior informa-
tion about f or its domain � . First, we can add to lk constraints that contain � . Sup-
pose we know that 𝛺̃ ⊃ 𝛺 , where 𝛺̃ has a structured description, e.g., a box. We can 
then use the minorant

where I𝛺̃ is the indicator function of 𝛺̃ . In a similar way, if a (constant) lower bound 
� on f is known, we can replace any minorant lk with max{lk(x),�}.

If it is known that f is �-strongly convex, we can strengthen the piecewise affine 
minorant (4) to the piecewise quadratic minorant

(Each term in the maximum has the same quadratic part (�∕2)‖x‖2
2
 , so lk can be 

expressed as a piecewise affine function plus (�∕2)‖x‖2
2
.)

Lower bound. We observe that

is a lower bound on the optimal value h⋆ . It can be computed using a system for 
structured optimization. At iteration k we let Lk denote the best (largest) lower bound 
found so far,

2.2 � Tentative update

At iteration k, our tentative next iterate xk+1∕2 is obtained by minimizing our approx-
imation of f, plus g and a trust penalty term:

lk(x) = max
i=1,…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
,

(4)lk(x) = max
i=max{0,k−M+1},…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
,

lk(x) = max
i=max{0,k−M+1},…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
+ I𝛺̃(x),

lk(x) = max
i=max{0,k−M+1},…,k

�
f (xi) + ∇f (xi)T (x − xi) + (�∕2)‖x − xi‖2

2

�
.

�k = inf
x

(
lk(x) + g(x)

)

(5)Lk = max{�1,… ,�k}.
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The last term is a (Levenberg-Marquardt or proximal) trust penalty, which penalizes 
deviation from xk ; the positive parameter �k scales the trust penalty. We assume that 
xk+1∕2 in (6) can be computed using a system for structured optimization. (The mini-
mizer in (6) exists and is unique, so xk+1∕2 is well defined. To see this we observe 
that the objective is finite for x = xk , and the function being minimized is strictly 
convex.) We note that while f̂k(xk+1∕2) and g(xk+1∕2) are finite, f (xk+1∕2) = ∞ (and 
therefore also h(xk+1∕2) = ∞ ) is possible.

The two quadratic terms in the objective in (6) can be combined to express the 
tentative update as

which shows that the trust penalty term can be interpreted as a regularizer for the 
curvature estimate Hk.

In the DCP description of the problem (7), using (3) we express the last term as

This keeps the problem (7) tractable when r ≪ n and n is large. In particular, there is 
no need to form the n × n matrix Hk.

Tentative update optimality condition. For future reference, we note that the opti-
mality condition for the minimization in (7) that defines xk+1∕2 is

When lk is the piecewise affine minorant (4), its subdifferential �lk(xk+1∕2) has the 
form

the convex hull of the gradients associated with the active terms in maximum defin-
ing lk . In the simplest case when lk is differentiable at xk+1∕2 , i.e., only one term is 
active, this reduces to {∇lk(xk+1∕2)} = {∇f (xi)} , where i is the (unique) index for 
which lk(xk+1∕2) = f (xi) + ∇f (xi)T (xk+1∕2 − xi).

Once xk+1∕2 is computed by solving problem (6), we can recover specific subgra-
dients in the subdifferentials �lk(xk+1∕2) and �g(xk+1∕2) that satisfy (8). As explained 
in Sect.  A.2, the subgradient in �lk(xk+1∕2) has the form 

∑
i �i∇f (x

i) , where �i are 
nonnegative and sum to one, and positive only for i associated with active terms in 
the maximum that defines lk(xk+1∕2) . The specific subgradient in �g(xk+1∕2) is

which will be useful in a stopping criterion, as we shall see later in Sect. 2.6.

(6)xk+1∕2 = argminx

�
f̂k(x) + g(x) +

𝜆k

2
‖x − xk‖2

2

�
.

(7)xk+1∕2 = argminx

(
lk(x) + g(x) +

1

2
(x − xk)T (Hk + �kI)(x − xk)

)
,

1

2
(x − xk)T (Hk + �kI)(x − xk) =

1

2
‖GT

k
(x − xk)‖2

2
+

�k

2
‖x − xk‖2

2
.

(8)0 ∈ �lk(x
k+1∕2) + �g(xk+1∕2) + (Hk + �kI)(x

k+1∕2 − xk).

(9)�lk(x
k+1∕2) = ��{∇f (xi) ∣ lk(x

k+1∕2) = f (xi) + ∇f (xi)T (xk+1∕2 − xi)},

(10)qk+1 = −
∑
i

�i∇f (x
i) − (Hk + �kI)(x

k+1∕2 − xk) ∈ �g(xk+1∕2),
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2.3 � Descent direction

If xk is a fixed point of the tentative update, i.e., xk+1∕2 = xk , then xk is optimal. To 
see this, if xk+1∕2 = xk , from (8) we have

so xk is optimal. From the first inclusion in (11), we can also conclude that xk mini-
mizes lk(x) + g(x) , so Lk = lk(x

k) + g(xk) = f (xk) + g(xk) , i.e., the lower bound in (5) 
is tight when xk+1∕2 = xk.

If xk+1∕2 ≠ xk , the tentative step

is a descent direction for h at xk , i.e., for small enough t > 0 we have 
h(xk + tvk) < h(xk) . That is, the directional derivative h�(xk;vk) is negative.

To see this, we first observe that by (7),

since xk+1∕2 minimizes the left-hand side, and the right-hand side is the same expres-
sion, evaluated at xk . We also have

Combining these two inequalities we get

Finally, we observe that

since lk is differentiable at xk , with ∇lk(xk) = ∇f (xk) . So we have

which shows that vk is a descent direction for h at xk.

2.4 � Line search

The next iterate xk+1 is found as

(11)0 ∈ �lk(x
k) + �g(xk) = ∇f (xk) + �g(xk),

(12)vk = xk+1∕2 − xk

(13)lk(x
k+1∕2) + g(xk+1∕2) +

1

2
(vk)T (Hk + 𝜆kI)v

k < lk(x
k) + g(xk),

lk(x
k+1∕2) + g(xk+1∕2) ≥ lk(x

k) + g(xk) + (lk + g)�(xk;vk).

(lk + g)�(xk;vk) < −
1

2
(vk)T (Hk + 𝜆kI)v

k.

(lk + g)�(xk;vk) = (f + g)�(xk;vk) = h�(xk;vk),

(14)h�(xk;vk) < −
1

2
(vk)T (Hk + 𝜆kI)v

k,

(15)xk+1 = xk + tkv
k = xk + tk(x

k+1∕2 − xk),
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where tk ∈ (0, 1] is the step size. When tk = 1 , we say the step is un-damped. We will 
choose tk using a variation on a traditional Armijo-type line search (Armijo 1966) 
that avoids additional evaluations of g.

For t ∈ [0, 1] we define

Since the second and third terms are the chord above g, we have, for t ∈ [0, 1],

Evidently �k(0) = h(xk) , and �k is differentiable, with

Since ∇f (xk) = ∇lk(x
k) and lk is convex, we get

so we have

Combining this with (13), we obtain

Thus for t > 0 small,

Step length. Let �, � ∈ (0, 1) . We take tk = � j , where j is the smallest nonnegative 
integer for which

holds. (The condition  (20) holds for some j by (19).) A nice feature of this line 
search is that it does not require any additional evaluations of the function g (which 
can be expensive), since we already know g(xk) and g(xk+1∕2) . As has been noted by 
many authors, the choice of the line search parameters � and � is not critical. Tradi-
tional default values such as

work well in practice.

(16)�k(t) = f (xk + tvk) + tg(xk+1∕2) + (1 − t)g(xk).

(17)�k(t) ≥ h(xk + tvk).

��
k
(0) = ∇f (xk)Tvk + g(xk+1∕2) − g(xk).

∇f (xk)Tvk = ∇lk(x
k)Tvk ≤ lk(x

k+1∕2) − lk(x
k),

��
k
(0) ≤ lk(x

k+1∕2) − lk(x
k) + g(xk+1∕2) − g(xk).

(18)𝜙�
k
(0) < −

1

2
(vk)T (Hk + 𝜆kI)v

k.

(19)𝜙k(t) = 𝜙k(0) + 𝜙k(0)
�t + o(t2) < h(xk) −

t

2
(vk)T (Hk + 𝜆kI)v

k + o(t2).

(20)�k(tk) ≤ h(xk) −
�tk

2
(vk)T (Hk + �kI)v

k

(21)� = 0.05, � = 0.5
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2.5 � Adjusting the trust parameter

We have already observed that �k is a regularizer for Hk . A natural choice is to 
choose the regularizer parameter roughly proportional to �k = ��Hk∕n , since �kI 
is the minimum Frobenius norm approximation of Hk by a multiple of the iden-
tity. Thus we take

where �k gives the trust parameter relative to �k , and �min is a positive lower limit.
We update �k by decreasing it when the line search is undamped, i.e., tk = 1 , 

and increasing it when the line search is damped, i.e., tk < 1 . We do this with

where �min and �max are positive lower and upper limits for �k , �dec ∈ (0, 1) is the 
factor by which we decrease �k , and �inc ∈ (1,∞) is the factor by which we increase 
�k . The values

give good results for a wide range of problems. We can take �0 = 1.
We mention one initialization that is useful when f is twice differentiable and 

we have the ability to evaluate z ↦ ∇2f (xk)z (i.e., Hessian-vector multiplication). 
In this case we can replace �0 with an estimate of ��∇2f (x0)∕n obtained using the 
Hutchinson method (Hutchinson 1989).

2.6 � Stopping criteria

We use two stopping criteria, one based on a gap between upper and lower bounds 
on the optimal value, and the other based on an optimality condition residual. The 
gap condition is simple:

where �gap
abs

 and �gap
rel

 are positive absolute and relative gap tolerances, respectively. 
Evaluating Lk can be almost as expensive as evaluating xk+1∕2 , but it is used only in 
the stopping criterion. To reduce this overhead, we evaluate Lk only every ten itera-
tions. Reasonable values for the gap tolerances are �gap

abs
= 10−4 and �gap

rel
= 10−3.

The residual based stopping criterion is tested whenever we take an undamped 
step, i.e., tk = 1 . In this case xk+1 = xk+1∕2 , and we obtain qk+1 ∈ �g(xk+1) in (10), 
so ∇f (xk+1) + qk+1 is a residual for the optimality condition (1). The stopping cri-
terion is

(22)�k = �k

(
�k + �min

)
,

(23)𝜇k+1 =

{
max{𝛾dec𝜇k,𝜇min} tk = 1

min{𝛾inc𝜇k,𝜇max} tk < 1,

(24)�min = 10−3, �dec = 0.8, �inc = 1.1, �min = 10−4, �max = 105

(25)h(xk) − Lk ≤ �
gap

abs
+ �

gap

rel
|h(xk)|,
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where �res
abs

 and �res
rel

 are relative and absolute residual tolerances. (Dividing the norm 
expressions above by 

√
n gives the root mean square or RMS values of the argu-

ment.) Reasonable values for these parameters are �res
abs

= 10−4 and �res
rel

= 10−3.

2.7 � Algorithm summary

We summarize OSMM in algorithm 2.1. 

Algorithm 2.1 Oracle-structured minimization method.

given an initial point x0 ∈ Ω.
for k = 0, 1, . . . , kmax

1. Form a surrogate objective. Form lk and Hk.
2. Tentative step. Compute xk+1/2 by (6).
3. Line search and update. Set line search step size tk by (20) and xk+1 by (15).
4. Compute lower bound. If k is a multiple of 10, evaluate Lk.
5. Check stopping criterion. Quit if (25) or (26) holds.
6. Update trust penalty parameter. Update λk+1 by (22) and (23).

The algorithm parameters in OSMM are the memory of the minorant M, the rank 
of the curvature estimate r, the line search parameters given in (21), the �k update 
parameters given on (24), and the relative and absolute gap and residual tolerances, 
given in Sect.  2.6. The practical performance of OSMM is not particularly sensi-
tive to the choice of these parameters; our implementation uses as default values the 
ones described above, with memory M = 20 and rank r = 20.

2.8 � Implementation

We have implemented OSMM in an open-source Python package, available at 
https://​github.​com/​cvxgrp/​osmm.

The user supplies a PyTorch description of the oracle function f, a CVXPY 
description of the structured function g, and an initial point x0 ∈ � . The package 
invokes PyTorch to evaluate f and its gradient ∇f  . The convex model f̂k is then 
formed and handed off to CVXPY to efficiently compute the next tentative iterate.

2.9 � Related work

There is a lot of prior work related to the method proposed in this paper. The work 
on variable metric bundle methods (van Ackooij et al. 2016; Bagirov et al. 2014; De 
Oliveira and Solodov 2016; Frangioni 2002; Fukushima 1984; Kiwiel 1990, 2000; 
Lemaréchal 1978; Lemaréchal et al. 1995; Lemaréchal and Sagastizábal 1997; Lukšan 

(26)
1√
n
‖∇f (xk+1) + qk+1‖2 ≤ �res

abs
+ �res

rel

�
1√
n
‖∇f (xk+1)‖2 + 1√

n
‖qk+1‖2

�
,

https://github.com/cvxgrp/osmm
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and Vlček 1998; Mifflin 1996; Mifflin et al. 1998; Noll 2013; de Oliveira et al. 2014; 
Schramm and Zowe 1992; Teo et al. 2010; Van Ackooij and Frangioni 2018; Yu et al. 
2010) and (inexact) proximal Newton-type methods (Asi and Duchi 2019; Becker et al. 
2019; Becker and Fadili 2012; Ghanbari and Scheinberg 2018; Lee and Wright 2019; 
Lee et al. 2014; Levitin and Polyak 1966; Li et al. 2017; Mordukhovich et al. 2020; 
Scheinberg and Tang 2016; Schmidt et al. 2009; Sra et al. 2012; Yue et al. 2019) are 
probably the most closely related, though our method differs in key ways arising from 
our assumed access methods. Proximal Newton methods are similar in philosophy to 
our approach, as both types of methods really shine when the structured part of the 
objective can be minimized efficiently. However, on a purely technical level, proximal 
Newton methods generally form the (usual) first-order model of the oracle part of the 
objective, without a bundle term, which is of course different than the model we use, 
and can affect the convergence speed.

A few variable metric bundle methods have been proposed over the years, but these 
methods also differ from ours in subtle (but important) ways. In general, these meth-
ods are not geared towards solving composite minimization problems. Additionally, 
our line search method is different, as ours is carefully designed to satisfy the access 
conditions.

Finally, there has been a surge of interest in scalable quasi-Newton meth-
ods  (Erdogdu and Montanari 2015; Gower et  al. 2018; Huang et  al. 2020; Ye et  al. 
2017) recently. The focus has been on developing low-rank, regularized, and sub-sam-
pled Newton-type methods. Of these, the family of low-rank approximations to the 
Hessian are most related to the curvature estimate used in our method.

3 � Convergence

In this section we show the convergence of OSMM, and give a numerical example 
to illustrate its typical performance, as the two most important algorithm parameters, 
memory M and rank r, vary. (More examples will be given in Sect. 5.)

3.1 � Convergence

We demonstrate two types of convergence. First, we show the iterates xk converge 
asymptotically in a certain sense, i.e., the sequence of tentative steps vk → 0 as k → ∞ . 
Second, we show the objective values generated by OSMM converge to the optimal 
value. Thus, any cluster point of the sequence of iterates xk is an optimal point. The 
results additionally require the (standard) assumption that ∇f  be Lipschitz continuous.

Convergence of iterates. To see that vk → 0 , we observe from (17) and (20) that

Since h(xk) is decreasing and bounded below by h⋆ , it converges, which implies that 
the left-hand side of (27) converges to zero as k → ∞ . This in turn implies that

(27)h(xk+1) − h(xk) ≤ −
�tk

2
(vk)T (Hk + �kI)v

k ≤ 0.
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By construction �k is lower bounded by �min�min , and tk is also bounded away from 
0, as will be proved later in Sect. A.3, so we get that vk → 0 , as claimed.

Convergence of objective values. We require the basic fact that there exists a sub-
sequence of iterates (k

�
) accepting unit step length, i.e., that tk

�
= 1 for all � . We give 

a proof of this fact in Sect. A.3, assuming that ∇f  is Lipschitz continuous.
Now, by convexity,

for some qk� ∈ �g(xk� ) . Adding and subtracting any lk�+1
k
�

∈ �lk(x
k+1) , we get

From our assumptions on h, and because OSMM is a descent method, we see that 
‖xk�+1 − x⋆‖2 is bounded. Moreover, because Hk and �k are uniformly bounded, we 
get from (8) that

where we write a ≲ b to mean that a and b satisfy a ≤ Cb , for some C > 0 . Finally, 
it can be shown (see Sect. A.4 for details) that the limited memory piecewise affine 
minorant satisfies

Putting these together with (28), we obtain that

Earlier we showed that vk → 0 , so h(xk�+1) → h⋆ as � → ∞ . Because the sequence 
of objective values h(xk) is convergent, we get h(xk) → h⋆ , as claimed.

3.2 � A numerical example

Next we investigate the convergence of OSMM numerically. Here and throughout 
this paper, we use a Tesla V100-SXM2-32GB-LS GPU with 32 gigabytes of mem-
ory to evaluate f and ∇f  via PyTorch, and an Intel Xeon E5-2698 v4 2.20 GHz CPU 
to compute the tentative iterates via CVXPY and for any baselines.

Problem formulation. We consider an instance of the Kelly gambling prob-
lem (Boyd and Vandenberghe 2004, §4) (Kelly 2011; Busseti et al. 2016),

tk(v
k)T (Hk + �kI)v

k
→ 0 as k → ∞.

h(xk�+1) − h⋆ ≤ (∇f (xk�+1) + qk�+1)T (xk�+1 − x⋆),

(28)h(xk�+1) − h⋆ ≤ (
(∇f (xk�+1) − l

k
�
+1

k
�

) + (l
k
�
+1

k
�

+ qk�+1)
)T
(xk�+1 − x⋆).

‖lk�+1
k�

+ qk�+1‖2 ≤ ‖Hk
�
+ 𝜆k

�
I‖2‖vk�‖2 ≲ ‖vk�‖2,

(29)‖∇f (xk�+1) − l
k
�
+1

k
�

‖2 ≲ max
j=max{0,…,k

�
−M+1},…,k

�

‖vj‖2.

h(xk�+1) − h⋆ ≲ max
j=max{0,…,k

�
−M+1},…,k

‖vj‖2.

(30)maximize
∑N

i=1
�i log(r

T
i
x)

subject to x ≥ 0, �Tx = 1,
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where x ∈ �n is the variable, and ri ∈ �n
+
 , i = 1,… ,N , � ∈ �N

+
 are the problem 

data, with 
∑N

i=1
�i = 1 . Details about the Kelly gambling problem and what the vari-

able and data represent can be found in Sect. 5.1. To put problem (30) into our ora-
cle-structured form, we take f to be the objective in (30), and g to be the indicator 
function of the constraints, in this case the probability simplex.

Problem instance. Our problem instance has n = 100 bets and N = 1,000,000 
possible outcomes. How the data were generated can also be found in Sect. 5.1. 
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Fig. 1   Suboptimality (top row), gap (middle row), and RMS residual (bottom row), versus iterations (left 
column) and run-time in seconds (right column) for OSMM on the Kelly gambling problem for the nine 
combinations of rank r and memory M 



757

1 3

Minimizing oracle‑structured composite functions﻿	

This problem instance requires 400 seconds to solve using MOSEK (ApS 2019), 
a high performance commercial solver, with accuracy set to its lower value.

Results. We solve  (30) by OSMM with rank r ∈ {0, 20, 50} and memory 
M ∈ {1, 20, 50} , a total of nine choices of algorithm parameters. The choices 
r = 0 and M = 1 correspond to using no estimate of curvature, and no memory, 
respectively. OSMM is run for 100 iterations for each combination of r and M; 
xk+1∕2 and Lk are computed using ECOS (Domahidi et al. 2013). Figure 1 shows 
the convergence of OSMM, in terms of iterations (the left column) and elapsed 
time (the right column). The top row shows the true suboptimality h(xk) − h⋆ , 
which of course we do not know when the algorithm is running, since we do not 
know h⋆ . The middle row shows the gap h(xk) − Lk (which we do know as the 
algorithm runs). The bottom row shows the RMS value of the optimality condi-
tion residual, i.e., the left-hand side of (26).

The timing results averaged from 10 repetitions are shown in Table 1. The total 
solve time and iterations are based on achieving a high accuracy of 10−6 , which is 
far more accurate than would be needed in practice. For our nine choices of algo-
rithm parameters, the total OSMM time ranges from around 0.87 to 1.4 seconds, 
substantially faster than using MOSEK to solve the problem.

From the results in the figure and the table, as r increases the convergence 
becomes faster in terms of iterations, but with a larger r the update of xk+1∕2 takes 
more time, so each iteration becomes more expensive. A good trade-off value 
is r = 20 . The memory M taking values 20 and 50 yields faster convergence in 
iterations and smaller gaps than M taking value 0, but as M increases each itera-
tion also becomes more expensive, and the run-time efficiency is the best when 
M = 20 . In summary, we see that rank value r = 20 and memory value M = 20 
yield the fastest convergence in terms of run-time. We have observed this in other 
problem instances as well, so these are the default values in OSMM.

Table 1   Times to evaluate 
tentative update xk+1∕2 and 
lower bound L

k
 , total solve 

time and iterations to reach 
10

−6 accuracy, and average 
number of evaluations of f per 
iteration, for OSMM with the 
nine combinations of rank r and 
memory M 

Rank and 
memory

Compute times 
(sec.)

Total solve time and iterations

r M x
k+1∕2 L

k
Time (sec.) Iterations f evals./iter.

0 1 0.016 0.0069 1.4 62 4.1
0 20 0.019 0.0093 1.2 49 3.5
0 50 0.023 0.015 1.3 49 3.4
20 1 0.019 0.0069 0.88 36 2.9
20 20 0.023 0.0093 0.87 33 2.9
20 50 0.029 0.014 0.90 33 2.9
50 1 0.021 0.0076 0.92 32 2.5
50 20 0.027 0.010 0.88 29 2.5
50 50 0.035 0.015 0.89 29 2.5
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4 � Generic applications

In this section we describe some generic applications that reduce to our specific ora-
cle-structured composite function minimization problem. We focus on the function 
f, which should be differentiable, but not so simple that it can be handled directly in 
a structured optimization system. We will see that this generally occurs when there 
is a lot of data required to specify f.

4.1 � Stochastic programming

Sample average approximation for stochastic programming. We start with the prob-
lem of minimizing �F(x,�) + g(x) , where F is convex in x for each value of the ran-
dom variable � . We will approximate the first objective term using a sample aver-
age. We generate N independent samples �1,… ,�N , and take

As a variation we can use importance sampling to get a lower variance estimate of 
�F(x,�) . To do this we generate the samples from a proposal distribution with den-
sity q, and form the sample average estimate

where p is the density of �.
In both cases we can take N to be quite large, since we will only need to evaluate 

f and its gradient, and current systems for this are very efficient. For example, the 
gradients ∇F(x,�i) can be computed in parallel. As a practical matter, this happens 
automatically, with no or very little directive from the user who specifies f.

Validation and stopping criterion tolerance. The functions f given in (31) and 
(32) are only approximations of the true objective �F(x,�) , though we hope they 
are good approximations when we take N large, as we can with OSMM. To under-
stand how accurate the sample average (31) is, we generate another set of independ-
ent samples 𝜔̃1,… , 𝜔̃N and define the validation function as

(and similarly if we use importance sampling). The magnitude of the difference 
|f val(x) − f (x)| gives us a rough idea of the accuracy in approximating �F(x,�) . 
(Better estimates of the accuracy can be obtained by repeating this multiple times, 
but we are interested in only a crude estimate).

Solving the oracle-structured problem to an accuracy substantially better than 
the Monte Carlo sampling accuracy does not make sense in practice. This justi-
fies replacing the absolute gap tolerance �gap

abs
 with the maximum of a fixed absolute 

(31)f (x) =
1

N

N∑
i=1

F(x,�i).

(32)f (x) =
1

N

N∑
i=1

p(�i)

q(�i)
F(x,�i),

f val(x) =
1

N

N∑
i=1

F(x, 𝜔̃i)
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tolerance and the sampling error |f val(xk) − f (xk)| . (We can evaluate the sampling 
error whenever we evaluate the gap, i.e., every 10 iterations.) Roughly speaking, we 
stop when we know we have solved the problem to an accuracy that is better than 
our approximation.

4.2 � Utility maximization

An important special case of stochastic optimization is utility maximization, where 
we seek to maximize

where U ∶ � → � is a concave increasing utility function, and H is concave in x for 
each � . The first term, the expected utility, is concave. This is equivalent to the sto-
chastic programming problem of minimizing

which is stochastic programming with F = −U◦H , which is convex in x. We can 
replace the expectation with a sample average using (31), or an importance sampling 
sample average using (32). Utility maximization is a common method for handling 
the variance or uncertainty in a stochastic objective; it introduces risk aversion.

4.3 � Conditional and entropic value‑at‑risk programming

Another method to introduce risk aversion into a stochastic optimization problem is 
to mimimize value-at-risk (VaR), or a specific quantile of F(x,�) , where F is convex 
in x for each value of the random variable � . The value-at-risk is defined as

where � ∈ (0, 1) is a given quantile. With an additional structured convex function g 
in the objective, we obtain the VaR problem

which, roughly speaking, is the problem of minimizing the �-quantile of the random 
variable F(x,�) + g(x) . Aside from a few special cases, this problem is not convex. 
(Recent work on VaR and methods for the closely related problem of handling prob-
ability constraints can be found in, e.g., Daníelsson et al. 2013, 2008.) We proceed 
by replacing the nonconvex VaR term with a convex upper bound on VaR, such 
as conditional value-at-risk (CVaR) (Rockafellar and Uryasev 2002; Uryasev and 
Rockafellar 2001) or entropic value-at-risk (EVaR) (Ahmadi-Javid 2011). Beyond 
resulting in tractable convex problems, these upper bounds possess a number of nice 
properties, such as being coherent risk measures; see (Ahmadi-Javid 2011; Rockaf-
ellar and Uryasev 2002) for a discussion.

CVaR is given by

(33)�U(H(x,�)) − g(x),

�(−U(H(x,�)) + g(x),

��� (F(x,�); �) = inf{�|����(F(x,�) ≤ �) ≥ �},

(34)minimize ���(F(x,�);�)) + g(x),
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where (z)+ = max{z, 0} , and EVaR is given by

Both of these are convex functions of x. We have, for any x,

(see, e.g., Ahmadi-Javid 2011). With CVaR, we obtain the convex problem

and similarly for EVaR.
We now show how the CVaR and EVaR problems can be approximated as ora-

cle-structured problems. We start with CVaR. We generate independent samples �i , 
i = 1,… ,N , and replace the expectation with the empirical mean,

with variables x and � . This function is jointly convex in x and � ; minimizing over 
� gives ����(F(x,�);�) for the empirical distribution. We adjoin � to x to obtain 
a problem in oracle-structured form, i.e., minimizing f (x, �) + g(x) , over x and � . 
(That is, we take (x, �) as what we call x in our general form.) While f is not differen-
tiable in (x, �) , we have observed that our method still works very well.

For EVaR, we obtain

which is jointly convex in x and � . (To see convexity, we observe that f is the per-
spective function of the log-sum-exp function; see Boyd and Vandenberghe 2004, 
Sect.  3.2.6.) As with CVaR, minimizing over � yields ����(F(x,�);�) for the 
empirical distribution. Unlike our approximation with CVaR, this function is 
differentiable.

4.4 � Generic exponential family density fitting

We consider fitting an exponential family of densities, given by

(35)����(F(x,�);�) = inf
�∈�

{
�(F(x,�) − �)+

1 − �
+ �

}
,

(36)����(F(x,𝜔);𝜂) = inf
𝛼>0

{
𝛼 log

(
� exp(F(x,𝜔)∕𝛼)

1 − 𝜂

)}
.

���(F(x,�);�) ≤ ����(F(x,�);�) ≤ ����(F(x,�);�)

minimize ����(F(x,�);�)) + g(x),

f (x, �) =
1

N

N∑
i=1

(F(x,�i) − �)+

1 − �
+ �,

f (x, �) = � log

(
1

N

N∑
i=1

exp(F(x,�i)∕�)

1 − �

)
,

(37)p�(z) = e−(�(z)
T�+A(�)),
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to samples z1,… , zm ∈ S . Here, S is the support of the density, � ∶ S → �n is the 
sufficient statistic, and 𝜃 ∈ 𝛩 ⊆ �n is the canonical parameter (to be fitted). The 
density normalizes via the log-partition (or cumulant generating) function

We assume � is convex, and additionally that it only contains parameters for which 
the log-partition function is finite.

The negative log-likelihood, given samples z1,… , zm , is

where c =
∑m

i=1
�(zi) . So maximum likelihood estimation of � corresponds to solv-

ing the density fitting problem

with variable � . We can include a (potentially nonsmooth) convex regulariza-
tion term �r(�) in the objective, where � ≥ 0 is the regularization strength, and 
r ∶ � → � is the regularizer. Since the log-partition function is convex (Wainwright 
and Jordan 2008), the density fitting problem (38) is also convex.

The log-partition function is generally intractable except for a few special cases, 
so we replace the integral in A(�) with a finite sum using importance sampling, i.e.,

where �i, i = 1,… ,N , are independent draws from the proposal distribution q. 
The number of samples N can be very large, especially when the number of dimen-
sions n is moderate. When S is bounded and its dimension is small, we can sim-
ply use a Riemann sum, so that the samples �i are lattice points in S and we have 
q(�i) = 1∕|S| . The problem (38) is clearly in oracle-structured form, once we take 
A(�) (with its Monte Carlo approximation) to be f, and the rest of the objective plus 
the indicator of � to be g.

A number of interesting regularizers are possible. The squared �2 norm, i.e., 
r(�) = ‖�‖2

2
 , is of course a natural choice. When S is bounded, a different option 

is to use the squared L2 norm of the gradient of the log-density

This regularizer enforces a certain kind of smoothness: the regularized density 
p� tends to the uniform distribution on S , as the regularization strength � grows. 
Finally, observe that we can write

A(�) = log∫
S

e−�(z)
T� dz.

m∑
i=1

log p�(zi) = cT� + mA(�),

(38)
minimize

1

m
cT� + A(�) + �r(�)

subject to � ∈ �,

∫
S

e−�(z)
T� dz ≈

1

N

N∑
i=1

1(�i ∈ S)

q(�i)
e−�(�i)

T� ,

r(�) = ∫
S

‖∇ log p�(z)‖22 dz.
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where D� is the Jacobian of sufficient statistic � . We can replace the integral with a 
finite sum again, and obtain the regularizer

5 � Numerical examples

In this section we demonstrate the performance of OSMM through several numerical 
examples, all taken from the generic applications described in the previous section. We 
start by showing results for two different portfolio selection problems, the Kelly gam-
bling example (shown earlier in Sect. 3.2), and minimizing CVaR. We then show a den-
sity estimation example. After that we present results for a supply chain optimization 
problem with entropic value-at-risk minimization. All of these examples are structured 
stochastic optimization problems, and we use simple sample averages to approximate 
expectations. OSMM is designed to handle the case when f is complex, which in the 
case of sample averages means N is large. We will see that when N is small, OSMM is 
actually slower than just solving the problem directly using a structured solver; when 
N is large, it is much faster (and in many cases, directly using a structured solver fails).

We report the time needed for OSMM to reach high accuracy, i.e., 
h(xk) − h⋆ ≤ 10−6 . (This makes a fairer comparison with MOSEK, 
SCS O’Donoghue et al. 2016, 2019, and ECOS.) We also indicate when practical 
accuracy is reached, using our default parameters, and the sampling accuracy. We 
use the default parameters in OSMM, and use ECOS as the solver in CVXPY to 
compute the tentative iterate xk+1∕2 . We do not perform any parameter tuning for our 
method.

5.1 � Kelly gambling

Problem formulation. In the Kelly gambling problem there are n bets we can wager 
on, and N possible outcomes, with probabilities �i , i = 1,… ,N . The bet returns are 
given by ri ∈ �n

+
 , where (ri)j is the return, i.e., the amount you win for each dollar 

you put on bet j when outcome i occurs. We are to choose x ∈ �n , with �Tx = 1 , 
where xj is the fraction of our wealth we place on bet j. We seek to maximize the 
average log return, which maximizes long-term wealth growth if we repeatedly bet. 
This leads to the (convex) optimization problem

with variable x.

∫
S

‖∇ log p�(z)‖22 dz = ∫
S

‖D�(z)T�‖2
2
dz = �T

�
∫
S

D�(z)D�(z)T dz

�
�,

r(�) ≈ �T

(
1

N

N∑
i=1

1(�i ∈ S)

q(�i)
D�(�i)D�(�i)

T

)
�.

maximize
∑N

i=1
�i log(r

T
i
x)

subject to x ≥ 0, �Tx = 1,
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Problem instance. We consider n = 200 bets. The probabilities of the outcomes 
�i are independent draws from a uniform distribution on [0, 1], normalized to sum 
to one. The returns of the bets in each outcome are independently drawn from a log 
normal distribution, i.e., exp(z) , z ∼ N(0, 1) , and then scaled so the expected return 
of bet j is r̄j , i.e., 

∑N

i=1
𝜋i(ri)j = r̄j , where r̄j is drawn from a uniform distribution on 

[0.9,  1.1]. For our problem instance, the solution has 57 nonzero entries ranging 
from 0.001 to 0.04, and the optimal mean log return is 0.057.

Results. The run-times for OSMM, MOSEK, SCS, and ECOS are shown 
in Table  2. When the number of Monte Carlo samples is small, e.g., N = 1,000 , 
MOSEK performs the fastest and takes less than a second to attain high accuracy. 
OSMM also takes less than one second. ECOS takes about two seconds, and SCS 
takes roughly six seconds. However, when N is larger (i.e., N = 10,000 , 100,000, or 
1,000,000), OSMM is the fastest method, always taking less than a second to attain 
the required 10−6 optimality gap. When N = 10,000 , MOSEK is still competitive, 
but SCS and ECOS are two to four orders of magnitude slower than OSMM. When 
N = 100,000 , MOSEK and ECOS are two to three orders of magnitude slower, and 
when N = 1,000,000 , MOSEK and ECOS are three to five orders of magnitude 
slower. SCS fails for both the two larger values of N. These findings suggest that 
OSMM is useful when the number of samples is large, as it exhibits good scaling 
with N.

OSMM spends 0.0013 and 0.0024 seconds to evaluate f and its gradient ∇f  , 
respectively, when N = 1,000,000 . Computing the tentative iterate xk+1∕2 and the 
lower bound Lk from  (5) takes 0.033 and 0.014 seconds, respectively. The line 
search also turns out to be quite efficient here, as f is evaluated twice during the line 
search on average.

Figure 2 shows the convergence of OSMM with N = 1,000,000 . In the top panel, 
we can see that practical accuracy is reached after 14 iterations, and high accu-
racy is reached after 16 iterations, as shown by the dotted black and green lines, 
respectively.

5.2 � CVaR portfolio optimization with derivatives

Problem formulation. We consider making investments in m stocks, and call and 
put derivatives on them, with various strike prices. Our investment will be for one 
period (of, say, one month). We let � ∈ �m

++
 denote the (fractional) change in prices 

of the m underlying stocks, which we model as random with a log-normal distri-
bution, i.e., log� ∼ N(�,Σ) , where the log is elementwise. For simplicity we will 

Table 2   Solve times in seconds 
on the Kelly gambling problem. 
A dash (“—”) means the solver 
failed, either for numerical 
reasons, or because it did 
not reach the required 10−6 
suboptimality in 24 hours

N OSMM MOSEK SCS ECOS

1,000 0.76 0.58 6.4 2.2
10,000 0.64 4.5 2100 50
100,000 0.62 62 – 910
1,000,000 0.64 890 – 20,000
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assume there is one call and one put option available for each stock. Let pc ∈ �m
++

 
and sc ∈ �m

++
 be the call option prices (premia) and strike prices, normalized by the 

current stock price, so, for example, (sc)i = 1.15 means the strike price is 1.15 times 
the current stock price. Let pp ∈ �m

++
 and sp ∈ �m

++
 denote the corresponding quan-

tities for the m put options.
The amount we receive per dollar of investment in the underlying stocks is � , the 

ratio of the current to final stock price. For every dollar invested in the call options 
we receive (� − sc)+∕pc , where the division is elementwise, and (a)+ = max{a, 0} . 
For the put options, the total we receive per dollar of investment is (sp − �)+∕pp.

We make investments in n = 3m different assets, the m underlying stocks and m 
associated call and put options. We let x ∈ �n denote the fractions of our wealth that 
we invest in the assets, so �Tx = 1 . We consider long and short positions, with xi < 0 
denoting a short position. We consider a simple set of portfolio constraints, x ≥ xmin 

10 20 30 40
Iterations

10−7

10−6

10−5

10−4

10−3

Suboptimality
Gap

10 20 30 40
Iterations

10−6

10−5

10−4

10−3

10−2
RMS residual

Fig. 2   Suboptimality, gap (top row), and RMS residual (bottom row) on the Kelly gambling problem 
with N = 1,000,000 . The dotted green and black lines show when high accuracy and practical accuracy 
are reached, respectively
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(e.g., xmin = −0.1 limits the maximum short position for any asset to not exceed 
10% of the total portfolio value), and ‖x‖1 ≤ L , where L is a leverage limit. (Since 
�Tx = 1 , this means that the total long position cannot exceed a multiple (L + 1)∕2 
of total wealth, and the total short position cannot exceed a multiple (L − 1)∕2 of the 
total wealth.) We partition x as x = (xu, xc, xp) , with each subvector in �m . Our port-
folio has total return

where r(�) ∈ �n is the total return of the n = 3m assets, i.e., stocks and options.
Our problem is to choose the portfolio so as to minimize the conditional value 

at risk (described in (35)) of the negative total return, i.e.,

where � ∈ (0, 1) sets the risk aversion.
We use a sample average approximation of the expectation in CVaR to obtain 

the problem

with variables x = (xu, xc, xp) ∈ �n and � ∈ � . The vectors �i ∈ �n
++

 , i = 1,… ,N , 
are independent samples of the price change �.

Problem instance. We take the number of stocks as m = 100 , so n = 300 . We 
take the minimum position limit xmin = −0.1 and leverage limit L = 1.6 . We use 
risk aversion parameter � = 0.8 , so we are attempting to minimize the 20th per-
centile of the portfolio loss. The price change covariance Σ is generated accord-
ing to Σ = �2(I + 0.2FFT ) , where � = 1∕

√
2 , and the entries of F ∈ �m×5 are 

independent draws from a standard normal distribution. We set the mean price 
change according to �i = 0.03

√
Σii − 0.5Σii , i = 1,… ,m . For each call option, the 

strike price is set as the 80th percentile of � , and for each put option it is the 
20th percentile. The option prices are determined by the Black-Scholes formula 
with zero discount. (These data are approximately consistent with an investment 
period of one month for U.S. equities.)

When we solve this problem instance, the optimal portfolio return has mean 
1.3%, standard deviation 5%, and loss probability 39%; annualized, these corre-
spond to a return of 16%, standard deviation 18%, and loss probability 20%. The 
optimal portfolio contains as assets the underlying stocks as well as call and put 
options.

Results. Table  3 shows the run-times for N ranging from 10,000 to 1,000,000. 
We see again that for small values of N, it is more efficient to solve the problem 
directly using a structured solver, whereas for large values, OSMM is far more effi-
cient. When N = 1,000,000 , OSMM (using PyTorch) takes 0.0021 seconds to evalu-
ate f and 0.0053 seconds to evaluate ∇f  ; OSMM takes 0.050 seconds to compute 
the tentative iterate xk+1∕2 , and 0.021 seconds to evaluate the lower bound Lk (using 

xT
u
� + xT

c
((sc − �)+∕pc) + xT

p
((sp − �)+∕pp) = r(�)Tx,

minimize ����(−r(�)Tx;�)

subject to x ≥ xmin, �
Tx = 1, ‖x‖1 ≤ L,

minimize
1

N

∑N

i=1

(−r(�i)
Tx−�)+

1−�
+ �

subject to x ≥ xmin, �
Tx = 1, ‖x‖1 ≤ L
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CVXPY). Figure 3 shows the convergence of OSMM with N = 1,000,000 . Practical 
accuracy are high accuracy are reached at the same time after 100 iterations.

Table 3   Solve times in seconds on the conditional value-at-risk problem. A dash (“—”) means the solver 
failed, either for numerical reasons, or because it did not reach the required 10−6 suboptimality in 24 
hours

N OSMM MOSEK SCS ECOS

10,000 11 6.0 250 18
100,000 6.5 64 2,900 310
1,000,000 6.3 1,900 30,000 5,200

20 40 60 80 100 120
Iterations

10−6

10−4

10−2

100
Suboptimality
Gap
Sampling accuracy

20 40 60 80 100 120
Iterations

10−3

10−2

10−1

100
RMS residual

Fig. 3   Suboptimality, gap, sampling accuracy (top row), and RMS residual (bottom row) on the condi-
tional value-at-risk problem with N = 1,000,000 . The dotted green and black lines coincide, indicating 
that high accuracy and practical accuracy are reached at the same time
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5.3 � Exponential series density estimation

Problem formulation. We consider an instance of the generic exponential family density 
fitting problem described in Sect. 4.4. We consider data z1,… , zm ∈ �2 , and wish to fit 
a density p supported on S = [−1, 1]2 . We let the sufficient statistics �i, i = 1,… , n , 
be the Legendre polynomials up to degree four, so n = 14 . (This is known as an expo-
nential series density estimator Gao et al. 2015; Marsh 2007; Wu 2010.) We solve the 
density estimation problem (38).

Problem instance. We take m data points sampled from a mixture of three Gauss-
ian densities, restricted to S , with means (1/3, 1/3), (1∕3,−1∕3) , and (−1∕3,−1∕3) , 
weights 0.4, 0.3, and 0.3, and common covariance (1/36)I. (So the data do not come 
from the family of density we use to fit.) We form a Riemann sum using points in S 
lying on a grid with side lengths 

√
N . Recall that N, the number of samples, here refers 

to our approximate evaluation of the integral that arises in the log-partition function, 
and not the number of data samples, which is fixed at m = 2,000.

Results. Table  4 shows the run-times for the various methods. We see the usual 
pattern where directly solving the problem can be efficient for small N, but OSMM 
is much faster for large N. When N = 1,000,000 , it takes OSMM 0.001 and 0.0014 
seconds to evaluate f and ∇f  , respectively, and 0.015 and 0.0097 seconds to compute 
xk+1∕2 and Lk , respectively.

Figure 4 shows the convergence of OSMM for N = 1,000,000 . Practical accuracy 
is reached after 39 iterations with suboptimality 10−5 , and after 42 iterations OSMM 
reaches high accuracy. In this instance, our lower bound Lk = −∞ , so neither it nor the 
gap are plotted in the figure.

5.4 � Vector news vendor with entropic value‑at‑risk

We consider a variant of the classic news vendor problem that involves entropic value-
at-risk programming (Ahmed et al. 2007).

Problem formulation. We choose quantities q ∈ �n
+
 of n products to produce, at total 

cost �(q) , where � ∶ �n
+
→ �+ . We have constraints on the quantities we can produce, 

q ≤ qmax , and on the total production cost, �(q) ≤ �max . We sell the amount min(q, d) , 
where d ∈ �n

+
 is the demand, and the min is taken elementwise, at market prices 

p ∈ �n
+
 , so the total revenue is pT min(q, d) , and the profit is

P = pT min{q, d} − �(q).

Table 4   Solve times in seconds on the density estimation problem. A dash (“—”) means the solver 
failed, either for numerical reasons, or because it did not reach the required 10−6 suboptimality in 24 
hours

N OSMM MOSEK SCS ECOS

10,000 0.72 1.2 1,100 0.92
100,000 1.2 11 – 14
1,000,000 0.84 120 – 190
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We assume that � = (d, p) ∈ �2n
+

 is a random variable with known distribution, so 
P(q,�) is a random variable that depends on q.

We choose the quantities q to minimize the EVaR of the negative profit,

where � is a specified quantile.
As described in Sect.  4.3, we approximate this with Monte Carlo samples 

(d1, p1),… , (dN , pN) to obtain the problem

minimize ����(−P(q,�);�)

subject to �(q) ≤ �max, q ≥ 0, q ≤ qmax,

minimize � log
�

1

(1−�)N

∑N

i=1
exp

�
−pT

i
min(q,di)+�(q)

�

��

subject to �(q) ≤ �max, q ≥ 0, q ≤ qmax, � ≥ 0,

10 20 30 40 50
Iterations

10−5

10−3

10−1

Suboptimality

10 20 30 40 50
Iterations

10−6

10−5

10−4

10−3

10−2
RMS residual

Fig. 4   Suboptimality (top row) and RMS residual (bottom row) on the exponential family density fitting 
problem with N = 1,000,000 . The dotted green and black lines show when high accuracy and practical 
accuracy are reached, respectively
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with variables q and � ∈ �+ . We denote the realizations of the demand d and prices 
p on the ith Monte Carlo simulation by di, pi ∈ �n

+
, i = 1,… ,N , respectively.

Problem instance. We take n = 500 and risk aversion parameter � = 0.9 . We assume 
the demand and market prices follow a joint log-normal distribution, i.e., (d, p) = exp z , 
z ∼ N(�,Σ) , and the exponential is elementwise. We draw the entries of � ∈ �2n inde-
pendently from a uniform distribution on [−0.2, 0] , and set Σ = 0.1FFT , where the 
entries of F ∈ �2n×5 are independently drawn from a standard normal distribution. We 
use a production cost which is separable and piecewise affine with one kink point for 
each entry of q,

where the elements in a and b are both drawn uniformly at random from [0.2, 0.9] 
and [0.01, 0.03], respectively. The maximum production quantities qmax is set as 5b, 
and the maximum cost is �max = 1 . With these parameter values, the optimal profit 
has mean 3.2 and standard deviation 0.98.

Results. The run-times for the various methods are in Table  5. In this instance, 
OSMM is the fastest for all values of N ranging from 1,000 to 1,000,000, and the other 
solvers fail for nearly all values of N. When N = 1,000,000 , OSMM takes 0.16 and 
0.27 seconds to evaluate f and ∇f  , respectively; it takes 0.076 seconds to compute the 
tentative iterate, and 0.036 seconds to compute the lower bound.

Figure 5 shows the convergence of OSMM with N = 1,000,000 . We can see that 
practical accuracy is reached after 50 iterations with suboptimality on the order of 10−5 , 
while it takes 58 iterations to reach high accuracy.

A Appendix

A.1 Details of forming G
k

We form Gk in (3) by adopting a quasi-Newton update given in Fletcher (2005). The 
main idea is to divide Gk into two matrices G(1)

k
 and G(2)

k
 , which are the first r1 and the 

last r2 = r − r1 columns in Gk , respectively, and update them separately into G(1)

k+1
 and 

G
(2)

k+1
 . Then Gk+1 is updated by

�(q) = aTq + 0.5aT (q − b)+,

Gk+1 =
[
G

(1)

k+1
G

(2)

k+1

]
.

Table 5   Solve times in seconds 
on the vector news vendor 
problem. A dash (“—”) means 
the solver failed, either for 
numerical reasons, or because it 
did not reach the required 10−6 
suboptimality in 24 hours

N OSMM MOSEK SCS ECOS

1,000 6.7 120 – –
10,000 11 7,400 – –
100,000 10 – – –
1,000,000 53 – – –
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The detail is as follows. Let sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk) . From the 
convexity of f, sT

k
yk ≥ 0 . Suppose that sT

k
yk is not too small such that

where constants 𝜀abs, 𝜀rel > 0 are given. Then r1 is chosen as the largest integer in 
[0, r] such that G(1)

k
 satisfies

According to (39) the above holds at least for r1 = 0 , in which case G(1)

k
 degenerates 

to 0.
Once r1 is obtained, we define w(1)

k
= (G

(1)

k
)Tsk and w(2)

k
= (G

(2)

k
)Tsk . Then 

R
(1)

k
∈ �(r1+1)×(r1+1) is the upper triangular factor in the following R-Q decomposition

(39)sT
k
yk > max(𝜀abs, 𝜀rel‖sk‖2‖yk‖2),

sT
k
yk −

���(G
(1)

k
)Tsk

���
2

2
> 𝜀rel‖sk‖2���yk − G

(1)

k
(G

(1)

k
)Tsk

���2.
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Fig. 5   Suboptimality, gap, sampling accuracy (top row), and RMS residual (bottom row) on the vector 
news vendor problem with N = 1,000,000 . The dotted green and black lines show when high accuracy 
and practical accuracy are reached, respectively
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and Q(2)

k
∈ �r2×(r2−1) is a set of orthonormal basis orthogonal to w(2)

k
 . The update is

There are some corner cases. If (39) holds and r1 = 0 , then G(1)

k+1
= yk∕

√
sT
k
yk . If 

r1 = r − 1 or r1 = r , then G(2)

k+1
 vanishes, and Gk+1 takes the first r columns of G(1)

k+1
.

In cases where (39) does not hold, if ‖w(2)

k
‖2 > 𝜀abs , then we can still define G(2)

k+1
 

in the same way, and Gk+1 =
[
G

(2)

k+1
0n

]
. Otherwise, Gk+1 = Gk.

It can be easily checked that by the Gk defined as above, the trace of Hk is uni-
formly upper bounded in k.

The default values for the parameters are �abs = 10−8 and �rel = 10−3.

A.2 Details of computing an optimal subgradient of g

Here we show how to compute a subgradient qk+1 ∈ �g(xk+1∕2) satisfying the opti-
mality conditions in (8), which implies (10). This, in turn, is important because it 
allows us to compute the stopping criteria described in sect. 2.6.

Since we know the third term on the right-hand side of (8), it suffices to find an 
optimal subgradient lk+1∕2

k
∈ �lk(x

k+1∕2) , which is easier. We start by rewriting the 
defining problem for xk+1∕2 in a more useful form. Putting (4) and (7) together, we 
see that we can alternatively express xk+1∕2 as the solution to the convex problem

with variables x and z ∈ �.
The KKT conditions for problem (40), which are necessary and sufficient for the 

points (xk+1∕2, zk+1∕2) and �i, i = max{0, k −M + 1},… , k , to be primal and dual 
optimal, are

R
(1)

k
Q

(1)

k
=

⎡
⎢⎢⎢⎣

1√
sT
k
yk−‖w(1)

k
‖2
2

0T
r1

−1√
sT
k
yk−‖w(1)

k
‖2
2

w
(1)

k
Ir1

⎤
⎥⎥⎥⎦
∈ �

(r1+1)×(r1+1),

G
(1)

k+1
=
[
yk G

(1)

k

]
R
(1)

k
, G

(2)

k+1
= G

(2)

k
Q

(2)

k
.

(40)

minimize z + g(x) +
1

2
(x − xk)T (Hk + �kI)(x − xk)

subject to z ≥ f (xi) + ∇f (xi)T (x − xi), for i = max{0, k −M + 1},… , k,

(41)zk+1∕2 ≥ f (xi) + ∇f (xi)T (xk+1∕2 − xi), i = max{0, k −M + 1},… , k;

(42)
k∑

i=max{0,k−M+1}

�i = 1, �i ≥ 0, i = max{0, k −M + 1},… , k;

(43)
zk+1∕2 > f (xi) + ∇f (xi)T (xk+1∕2 − xi) ⟹ 𝛾i = 0, i ∈ max{0, k −M + 1},… , k;
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Here we used the definition of vk to simplify the stationarity condition (44).
Now we claim that

To see this, note that (42) says the �i are nonnegative and sum to one, while (41) and 
(43) together imply �i is positive as long as ∇f (xi) is active; this satisfies (9), which 
says the subdifferential �lk(xk+1∕2) is the convex hull of the active gradients. There-
fore, re-arranging (44) gives

which shows (10).

A.3 Proof that undamped steps occur infinitely often

Assume that ∇f  is Lipschitz continuous with constant L. Also, assume 
𝜇max𝜏min > 2L∕(1 − 𝛼) . We show that for any number of iterations k0 , there is 
some k ≥ k0 such that tk = 1 . This means that there exists a subsequence (k

�
)∞
�=1

 
such that tk

�
= 1.

To show the result, we first claim that the line search condition (20) is satisfied 
as soon as

We prove the claim later. Taking the claim as a given for now, the main result fol-
lows by deriving a contradiction. To get a contradiction, suppose there exists some 
number of iterations k0 such that tk < 1 for each k ≥ k0 . Then, because tk is the larg-
est number satisfying tk = � j ( j ∈ N0 ) and the line search condition, we get that the 
line search condition does not hold with tk = 1 , and thus (45) does not hold with 
tk = 1 , meaning that 𝜆k < 2L∕(1 − 𝛼) , for each k ≥ k0 . But from (23), we have 
�k = min

{
�
k−k0
inc

�k0
,�max

}
 , since we assumed tk < 1 for every k ≥ k0 . Additionally, 

from (22), we get �k ≥ �k�min . So, we now have two cases. Either we have 
𝜆k ≥ 𝜇max𝜏min > 2L∕(1 − 𝛼) , which is a contradiction with 𝜆k < 2L∕(1 − 𝛼) . Or we 
have �k ≥ �

k−k0
inc

�k0
�min , in which case �k−k0

inc
�k0

�min grows exponentially in k; this 
means we must have �k ≥ 2L∕(1 − �) , for k sufficiently large, which is again a con-
tradiction. This finishes the proof of the main result.

Now we prove the claim. Observe that

(44)�g(xk+1∕2) + (Hk + �kI)v
k +

k∑
i=max{0,k−M+1}

�i∇f (x
i) ∋0.

l
k+1∕2

k
=

k∑
i=max{0,k−M+1}

�i∇f (x
i) ∈ �lk(x

k+1∕2).

qk+1 = −l
k+1∕2

k
− (Hk + �kI)v

k ∈ �g(xk+1∕2),

(45)tk ≤ 1 − �

2L
�k.
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where we used (45) to get the first inequality. We now use the following two facts: 
∇f  being L-Lipschitz continuous implies that (i) �k is convex in t, and (ii) �′

k
 is 

L‖vk‖2-Lipschitz in t. By the first fact (convexity), we have

Adding and subtracting ��
k
(0) gives

The second fact (Lipschitz continuity) yields a bound on the third term on the right-
hand side,

Finally, using (18) and (46) to bound ��
k
(0) and Lt2

k
‖vk‖2

2
 in (47) yields (20), which 

implies the line search condition (20) is satisfied, as claimed.
We note that the claim above also implies the following lower bound, which is 

used in Sect. 3.1. Observe that if tk indeed satisfies the line search condition, then 
we can express tk = � j , where j is the smallest integer such that (45) holds (see 
Sect. 2.4). Now consider two cases. If 1 ≤ (1 − �)�k∕(2L) , then we can simply take 
j = 0 , so that tk = 1 . On the other hand, if 1 > (1 − 𝛼)𝜆k∕(2L) , then a short calcu-
lation shows that j = ⌈log�((1 − �)�k∕(2L))⌉ , and so j < 1 + log𝛽((1 − 𝛼)𝜆k∕(2L)) , 
giving tk = 𝛽 j > 𝛽(1 − 𝛼)𝜆k∕(2L) . Therefore, to sum up, we have (45) implies that tk 
satisfies the inequalities

where we also used the fact that �k ≥ �min�min.

A.4 Proof that the limited memory piecewise affine minorant is accurate enough

Assume that ∇f  is Lipschitz continuous with constant L. For the rest of the proof, fix 
any k such that tk = 1 . (From Sect. A.3, it is always possible to find at least one such 
k.) We will show that for any such k, the limited memory piecewise affine minorant 
(4) satisfies the bound (29); because our choice of k was arbitrary, the required result 
will then follow.

For any lk+1
k

∈ �lk(x
k+1) , note that adding and subtracting ∇f (xk) in the left-hand 

side of (29) easily gives

The Lipschitz continuity of ∇f  , in turn, immediately gives a bound for the first term 
on the right-hand side of (49), i.e., we get

(46)Lt2
k
‖vk‖2 ≤ 1 − �

2
�ktk‖vk‖2 ≤ 1 − �

2
tk(v

k)T (Hk + �kI)v
k,

�k(tk) ≤ �k(0) + ��
k
(tk)tk.

�k(tk) ≤ �k(0) + ��
k
(0)tk + (��

k
(tk) − ��

k
(0))tk.

(47)�k(tk) ≤ �k(0) + ��
k
(0)tk + Lt2

k
‖vk‖2.

(48)tk > 𝛽min
{
1,

1 − 𝛼

2L
𝜆k

} ≥ 𝛽min
{
1,

1 − 𝛼

2L
𝜇min𝜏min

}
,

(49)‖∇f (xk+1) − lk+1
k

‖2 ≤ ‖∇f (xk+1) − ∇f (xk)‖2 + ‖∇f (xk) − lk+1
k

‖2.
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using the definition of vk.
Therefore, we focus on the second term on the right-hand side of (49). For this 

term, (9) tells us that for any lk+1
k

∈ �lk(x
k+1),

because the maximum of a convex function over a convex polytope is attained 
at one of its vertices. The Lipschitz continuity of ∇f  again shows that, for any 
j ∈ {max{0, k −M + 1},… , k},

To get the third line, we used the fact that the sum on the second line telescopes, and 
applied the triangle inequality. To get the fourth line, we used the fact that the aver-
age is less than the max. Putting this last inequality together with (51), we see that

for any lk+1
k

∈ �lk(x
k+1) . Combining (52) and (50) gives (29). This completes the 

proof of the result.
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