
Vol.:(0123456789)

Optimization and Engineering (2023) 24:743–777
https://doi.org/10.1007/s11081-021-09705-0

1 3

RESEARCH ARTICLE

Minimizing oracle‑structured composite functions

Xinyue Shen1,2 · Alnur Ali1,3 · Stephen Boyd1

Received: 3 June 2021 / Revised: 27 November 2021 / Accepted: 27 November 2021 /
Published online: 11 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
We consider the problem of minimizing a composite convex function with two dif-
ferent access methods: an oracle, for which we can evaluate the value and gradient,
and a structured function, which we access only by solving a convex optimization
problem. We are motivated by two associated technological developments. For the
oracle, systems like PyTorch or TensorFlow can automatically and efficiently com-
pute gradients, given a computation graph description. For the structured function,
systems like CVXPY accept a high level domain specific language description of the
problem, and automatically translate it to a standard form for efficient solution. We
develop a method that makes minimal assumptions about the two functions, does not
require the tuning of algorithm parameters, and works well in practice across a vari-
ety of problems. Our algorithm combines a number of well-known ideas, including
a low-rank quasi-Newton approximation of curvature, piecewise affine lower bounds
from bundle-type methods, and two types of damping to ensure stability. We illus-
trate the method on stochastic optimization, utility maximization, and risk-averse
programming problems, showing that our method is more efficient than standard
solvers when the oracle function contains much data.

Keywords  Composite convex optimization · First-order oracles · Structured
optimization · Quasi-second-order methods · Tuning-free methods

The work was supported in part by the National Key R&D Program of China with grant No.
2018YFB1800800, by the Key Area R&D Program of Guangdong Province with grant No.
2018B030338001, by Shenzhen Outstanding Talents Training Fund, and by Guangdong Research
Project No. 2017ZT07X152. Stephen Boyd’s work was funded in part by the AI Chip Center for
Emerging Smart Systems (ACCESS).

 *	 Xinyue Shen
	 xinyues@stanford.edu

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-021-09705-0&domain=pdf

744	 X. Shen et al.

1 3

1  Introduction

Our story starts with a well studied problem, minimizing a convex function that is the
sum of two convex functions with different access methods, referred to as a composite
function (Nesterov 2013). The first function is smooth, and we can access it only by a
few methods, such as evaluating its value and gradient at a given point. The other func-
tion is not necessarily smooth, but is structured, and we can access it only by solving a
convex optimization problem that involves it. In the typical setting, the second function
is one for which we can efficiently compute its proximal operator, usually analytically.
Here we assume a bit more for the second function, specifically, that we can minimize
it plus a structured function of modest complexity.

Our goal is to minimize such functions automatically, with a method that works
well across a large variety of problem instances using its default parameters. We
leverage new technological developments: systems for automatic differentiation that
automatically and effficiently compute gradients given a computation graph descrip-
tion, and systems for solving convex optimization problems described in a domain
specific language for multiple parameter values.

1.1 � Oracle‑structured composite function

We seek to minimize h(x) = f (x) + g(x) over x ∈ �n . We assume that

–	 f ∶ � → � is convex and differentiable, where 𝛺 ⊆ �n is convex and open. We
assume that a point x0 ∈ � is known.

–	 g ∶ �n
→ � ∪ {+∞} is convex, with closed sublevel sets, and not necessarily

differentiable. Infinite values of g encode constraints on x.

Our method will access these two functions in very specific ways.

–	 We can evaluate f(x) and ∇f (x) at any x. For x ∉ � , our oracle returns the value
+∞ for f(x). (We will discuss a few other possible access methods for f in the
sequel.)

–	 We can minimize g(x) plus another structured function. Here we use the term
structured loosely, to mean in the sense of Nesterov, or as a practical matter, in a
disciplined convex programming (DCP) description. This is an extension of the
usual assumption in composite function minimization that the proximal operator
of g can be evaluated analytically.

We refer to f as the oracle part of the objective, g as the structured part of the objec-
tive, and h = f + g as an oracle-structured composite objective. We denote the opti-
mal value of the problem as

Assumptions. We assume that the sublevel sets of h are compact, and h⋆ < ∞ (so at
least some sublevel sets are nonempty). These assumptions imply that f (x) + g(x)

h⋆ = inf
x
(f (x) + g(x)).

745

1 3

Minimizing oracle‑structured composite functions﻿	

has a minimizer, i.e., a point x⋆ with h(x⋆) = h⋆ . Our convergence proofs make the
typical assumption that ∇f is Lipschitz continuous with constant L, but we stress
that this is not used in the algorithm itself.

Optimality condition. The optimality condition is

where �g(x) denotes the subdifferential of g at x. For x ∈ � and q ∈ �g(x) , we can
interpret ∇f (x) + q as a residual in the optimality condition. (We will use this in the
stopping criterion of our algorithm.) Our access to f directly gives us ∇f (x) ; we will
see that our access method to g indirectly produces a subgradient q ∈ �g(x).

1.2 � Practical considerations

We are motivated by two technological considerations related to our access methods
to f and g, which we mention briefly here.

Handling f. To handle f we can rely on automatic differentiation systems that have
been developed in recent years, such as PyTorch (Paszke et al. 2019), TensorFlow
(Abadi et al. 2015), and Zygote/Flux/Autograd (Innes et al. 2019, 2018; Maclaurin
et al. 2015). Automatic differentiation is an old topic (Adamson and Winant 1969;
Nolan 1953) (see Baydin et al. 2018 for a recent review), but these recent systems
go way beyond the basic algorithms for automatic differentiation, in terms of ease of
use and run-time efficiency, across multiple computation platforms. We describe f
(but not its gradient) using existing libraries and languages; thereafter, f(x) and ∇f (x)
can be evaluated very efficiently, on many computation platforms, ranging from
single CPU to multiple GPUs. These systems are widely used throughout machine
learning, mostly for fitting deep neural networks.

Handling g. To handle g we make use of domain specific languages (DSLs) for
convex optimization, such as CVX (Grant and Boyd 2014), CVXPY (Agrawal et al.
2018; Diamond and Boyd 2016), and Convex.jl (Udell et al. 2014). These systems
take a description of g in a special language based on disciplined convex program-
ming (DCP) (Grant et al. 2006). This description of g is then automatically trans-
formed into a standard form, such as a cone program, and then solved. Recently,
such systems have been enhanced to include parameters, which are constants in the
problem each time it is solved, but can be changed and the problem re-solved effi-
ciently, skipping the compilation process. These systems are reasonably good at pre-
serving structure in the problem during compilation, so the solve times can be quite
small when exploitable structure is present, which we will see is the case in our
method.

We mention that g can contain hidden additional variables. By this we mean that
g has the form g(x) = infz G(x, z) , where G is convex in (x, z). Roughly speaking,
z is the hidden variable that does not appear in f. Such functions are immediately
handled by structured systems, without any additional effort. In particular, we do not
need to work out an analytical form for g(x). In this case just evaluating g requires
solving an optimization problem (over z). Our method will avoid any evaluations of
g.

(1)∇f (x) + q = 0, q ∈ �g(x),

746	 X. Shen et al.

1 3

When to just use a structured solver. Finally, we mention that if f is simple enough
to be handled by a DCP-based system, then simply minimizing f + g using such a
system is the preferred method of solution. We are interested here in problems where
this is not the case. Typically this means that f is complex in the sense of involving
substantial data, for example, a sample average of some function with 106 or more
samples. (We will see this phenomenon in the numerical examples given in Sect. 5.)

Contribution. The method we propose in the next section is in the family of vari-
able metric bundle methods, and closely related to a number of other methods found
in the literature (we review related work in Sect. 2.9). As an algorithm, our method
is not particularly novel; we consider our contribution to be its careful design to
be compatible with our access methods, and the efficiency of the method compared
with standard solvers when the function f contains a large amount of data.

2 � Oracle‑structured minimization method

In this section we propose a generic method for solving the oracle-structured mini-
mization problem, which we call oracle-structured minimization method (OSMM).
OSMM combines several well known methods from optimization, including vari-
able metric or quasi-Newton curvature estimates to accelerate convergence, bundle
methods that build up a piecewise affine model, and two types of damping, based on
a trust penalty and a line search. These are chosen to be compatible with our access
methods.

We will denote the iterates with a superscript, so xk denotes the kth iterate of the
algorithm. We will let xk+1∕2 denote the tentative iterate at the (k + 1) st iteration,
before the line search. We will assume that x0 ∈ � , i.e., f (x0) < ∞ . Our algorithm
will guarantee that xk ∈ � for all k. It is a descent method, i.e., h(xk+1) < h(xk) .
While h(x0) = ∞ is possible, we will see that h(xk) < ∞ for k ≥ 1.

As with many other optimization algorithms, OSMM is based on forming an
approximation of the function f in each iteration.

2.1 � Approximation of the oracle function

In iteration k, we form a convex approximation of f, given by f̂k ∶ �n
→ � ∪ {∞} ,

based on information obtained from previous iterations and possibly prior knowl-
edge of f. The approximation has the specific form

Here Hk is positive semidefinite, and lk ∶ �n
→ � ∪ {∞} is a convex minorant of f,

i.e., lk(x) ≤ f (x) for all x.
Assumptions on Hk . The only assumption we make about Hk is that it is positive

semidefinite and bounded, i.e., there exists a C such that ‖Hk‖2 ≤ C for all k. In
practice, Hk accelerates convergence by serving as an estimate of the curvature of
f. The simplest choice, Hk = 0 , results in an algorithm that converges but does not
offer the practical benefit of convergence acceleration.

(2)f̂k(x) = lk(x) + (1∕2)(x − xk)THk(x − xk).

747

1 3

Minimizing oracle‑structured composite functions﻿	

Choice of Hk . There are many ways of choosing a positive semi-definite
Hk to approximate the curvature of f at xk . One obvious choice is the Hessian
Hk = ∇2f (xk) , but this requires that f be twice differentiable, and also violates our
assumption about how we access f. A lesser violation of the access method might use
an approximation of the Hessian based on evaluations of the mapping z ↦ ∇2f (xk)z
(i.e., Hessian-vector multiplication), which can be practical in many cases (Erdogdu
and Montanari 2015). A simple and effective choice is Hk = (ak∕n)I , where ak is
an approximation of ��∇2f (xk) , obtained for example by the Hutchinson method
(Hutchinson 1989; Meyer et al. 2021).

Quasi-Newton methods are a general class of curvature approximations that are
compatible with our assumptions on the access method for f. These methods, which
have a very long history, build up an approximation of Hk using only the current
and previously evaluated gradients (Broyden 1965; Byrd et al. 1994; Davidon 1959;
Dennis and Moré 1977; Fletcher and Powell 1963). When Hk is low rank, or diago-
nal plus low rank, the method is practical even for large values of n. (Such methods
are often called limited memory, since they do not require the storage of an n × n
matrix.) For OSMM we propose to use the low-rank quasi-Newton choice given in
(Fletcher 2005), described in detail in Sect. A.1. We can express Hk as

where Gk ∈ �n×r , and r is a chosen (maximum) rank for Hk.
As many others have observed, limited memory quasi-Newton methods deliver

most of their benefit for relatively small values of r, like r = 10 or r = 20 . These val-
ues allow the methods to be used even when n is very large (say, 105 ), since the stor-
age requirement (specifically, of Gk ) grows linearly with r, and the computational
cost of evaluating xk+1∕2 grows quadratically in r, and only linearly in n.

Assumptions on lk . We make the usual assumption on the minorant lk that it is
tight at xk , i.e., lk(xk) = f (xk) . It follows that f̂k(xk) = f (xk) . It also follows that lk is
differentiable at xk , and ∇lk(xk) = ∇f (xk) . To see this, we note that since lk is a mino-
rant of f, tight at xk , we have

The first inclusion can be seen since any affine lower bound on lk , tight at xk , is also
an affine lower bound on f, tight at xk , so its linear part is a subgradient of f at xk .
The right-hand equality holds since f is differentiable, so its subdifferential contains
only one element, its gradient. Finally, since �lk(xk) contains only ∇f (xk) , we con-
clude it is differentiable at xk , with gradient ∇f (xk).

In addition to the mathematical assumptions about lk described above, we will
assume that lk has a structured description. This implies that f̂k has a structured
description.

Minorants. The simplest minorant is the first order Taylor approximation

A more complex minorant is the piecewise affine minorant

(3)Hk = GkG
T
k
,

𝜕lk(x
k) ⊆ 𝜕f (xk) = {∇f (xk)}.

lk(x) = f (xk) + ∇f (xk)T (x − xk).

748	 X. Shen et al.

1 3

which uses all previously evaluated gradients of f.
For OSMM we propose the piecewise affine minorant

the pointwise maximum of the affine minorants from the previous M gradient evalu-
ations, where M is the memory. With memory M = 1 , this reduces to the Taylor
approximation.

The problem of choosing the memory M is very similar to the problem of choos-
ing r, the rank of the curvature approximation. The storage requirements grows lin-
early with M, and the computational cost of evaluating xk+1∕2 grows quadratically
with M. As with the choice of r, small values such as M = 10 or M = 20 seem to
work well in practice.

We mention a few additional useful minorants that use additional prior informa-
tion about f or its domain � . First, we can add to lk constraints that contain � . Sup-
pose we know that 𝛺̃ ⊃ 𝛺 , where 𝛺̃ has a structured description, e.g., a box. We can
then use the minorant

where I𝛺̃ is the indicator function of 𝛺̃ . In a similar way, if a (constant) lower bound
� on f is known, we can replace any minorant lk with max{lk(x),�}.

If it is known that f is �-strongly convex, we can strengthen the piecewise affine
minorant (4) to the piecewise quadratic minorant

(Each term in the maximum has the same quadratic part (�∕2)‖x‖2
2
 , so lk can be

expressed as a piecewise affine function plus (�∕2)‖x‖2
2
.)

Lower bound. We observe that

is a lower bound on the optimal value h⋆ . It can be computed using a system for
structured optimization. At iteration k we let Lk denote the best (largest) lower bound
found so far,

2.2 � Tentative update

At iteration k, our tentative next iterate xk+1∕2 is obtained by minimizing our approx-
imation of f, plus g and a trust penalty term:

lk(x) = max
i=1,…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
,

(4)lk(x) = max
i=max{0,k−M+1},…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
,

lk(x) = max
i=max{0,k−M+1},…,k

(
f (xi) + ∇f (xi)T (x − xi)

)
+ I𝛺̃(x),

lk(x) = max
i=max{0,k−M+1},…,k

�
f (xi) + ∇f (xi)T (x − xi) + (�∕2)‖x − xi‖2

2

�
.

�k = inf
x

(
lk(x) + g(x)

)

(5)Lk = max{�1,… ,�k}.

749

1 3

Minimizing oracle‑structured composite functions﻿	

The last term is a (Levenberg-Marquardt or proximal) trust penalty, which penalizes
deviation from xk ; the positive parameter �k scales the trust penalty. We assume that
xk+1∕2 in (6) can be computed using a system for structured optimization. (The mini-
mizer in (6) exists and is unique, so xk+1∕2 is well defined. To see this we observe
that the objective is finite for x = xk , and the function being minimized is strictly
convex.) We note that while f̂k(xk+1∕2) and g(xk+1∕2) are finite, f (xk+1∕2) = ∞ (and
therefore also h(xk+1∕2) = ∞ ) is possible.

The two quadratic terms in the objective in (6) can be combined to express the
tentative update as

which shows that the trust penalty term can be interpreted as a regularizer for the
curvature estimate Hk.

In the DCP description of the problem (7), using (3) we express the last term as

This keeps the problem (7) tractable when r ≪ n and n is large. In particular, there is
no need to form the n × n matrix Hk.

Tentative update optimality condition. For future reference, we note that the opti-
mality condition for the minimization in (7) that defines xk+1∕2 is

When lk is the piecewise affine minorant (4), its subdifferential �lk(xk+1∕2) has the
form

the convex hull of the gradients associated with the active terms in maximum defin-
ing lk . In the simplest case when lk is differentiable at xk+1∕2 , i.e., only one term is
active, this reduces to {∇lk(xk+1∕2)} = {∇f (xi)} , where i is the (unique) index for
which lk(xk+1∕2) = f (xi) + ∇f (xi)T (xk+1∕2 − xi).

Once xk+1∕2 is computed by solving problem (6), we can recover specific subgra-
dients in the subdifferentials �lk(xk+1∕2) and �g(xk+1∕2) that satisfy (8). As explained
in Sect. A.2, the subgradient in �lk(xk+1∕2) has the form

∑
i �i∇f (x

i) , where �i are
nonnegative and sum to one, and positive only for i associated with active terms in
the maximum that defines lk(xk+1∕2) . The specific subgradient in �g(xk+1∕2) is

which will be useful in a stopping criterion, as we shall see later in Sect. 2.6.

(6)xk+1∕2 = argminx

�
f̂k(x) + g(x) +

𝜆k

2
‖x − xk‖2

2

�
.

(7)xk+1∕2 = argminx

(
lk(x) + g(x) +

1

2
(x − xk)T (Hk + �kI)(x − xk)

)
,

1

2
(x − xk)T (Hk + �kI)(x − xk) =

1

2
‖GT

k
(x − xk)‖2

2
+

�k

2
‖x − xk‖2

2
.

(8)0 ∈ �lk(x
k+1∕2) + �g(xk+1∕2) + (Hk + �kI)(x

k+1∕2 − xk).

(9)�lk(x
k+1∕2) = ��{∇f (xi) ∣ lk(x

k+1∕2) = f (xi) + ∇f (xi)T (xk+1∕2 − xi)},

(10)qk+1 = −
∑
i

�i∇f (x
i) − (Hk + �kI)(x

k+1∕2 − xk) ∈ �g(xk+1∕2),

750	 X. Shen et al.

1 3

2.3 � Descent direction

If xk is a fixed point of the tentative update, i.e., xk+1∕2 = xk , then xk is optimal. To
see this, if xk+1∕2 = xk , from (8) we have

so xk is optimal. From the first inclusion in (11), we can also conclude that xk mini-
mizes lk(x) + g(x) , so Lk = lk(x

k) + g(xk) = f (xk) + g(xk) , i.e., the lower bound in (5)
is tight when xk+1∕2 = xk.

If xk+1∕2 ≠ xk , the tentative step

is a descent direction for h at xk , i.e., for small enough t > 0 we have
h(xk + tvk) < h(xk) . That is, the directional derivative h�(xk;vk) is negative.

To see this, we first observe that by (7),

since xk+1∕2 minimizes the left-hand side, and the right-hand side is the same expres-
sion, evaluated at xk . We also have

Combining these two inequalities we get

Finally, we observe that

since lk is differentiable at xk , with ∇lk(xk) = ∇f (xk) . So we have

which shows that vk is a descent direction for h at xk.

2.4 � Line search

The next iterate xk+1 is found as

(11)0 ∈ �lk(x
k) + �g(xk) = ∇f (xk) + �g(xk),

(12)vk = xk+1∕2 − xk

(13)lk(x
k+1∕2) + g(xk+1∕2) +

1

2
(vk)T (Hk + 𝜆kI)v

k < lk(x
k) + g(xk),

lk(x
k+1∕2) + g(xk+1∕2) ≥ lk(x

k) + g(xk) + (lk + g)�(xk;vk).

(lk + g)�(xk;vk) < −
1

2
(vk)T (Hk + 𝜆kI)v

k.

(lk + g)�(xk;vk) = (f + g)�(xk;vk) = h�(xk;vk),

(14)h�(xk;vk) < −
1

2
(vk)T (Hk + 𝜆kI)v

k,

(15)xk+1 = xk + tkv
k = xk + tk(x

k+1∕2 − xk),

751

1 3

Minimizing oracle‑structured composite functions﻿	

where tk ∈ (0, 1] is the step size. When tk = 1 , we say the step is un-damped. We will
choose tk using a variation on a traditional Armijo-type line search (Armijo 1966)
that avoids additional evaluations of g.

For t ∈ [0, 1] we define

Since the second and third terms are the chord above g, we have, for t ∈ [0, 1],

Evidently �k(0) = h(xk) , and �k is differentiable, with

Since ∇f (xk) = ∇lk(x
k) and lk is convex, we get

so we have

Combining this with (13), we obtain

Thus for t > 0 small,

Step length. Let �, � ∈ (0, 1) . We take tk = � j , where j is the smallest nonnegative
integer for which

holds. (The condition (20) holds for some j by (19).) A nice feature of this line
search is that it does not require any additional evaluations of the function g (which
can be expensive), since we already know g(xk) and g(xk+1∕2) . As has been noted by
many authors, the choice of the line search parameters � and � is not critical. Tradi-
tional default values such as

work well in practice.

(16)�k(t) = f (xk + tvk) + tg(xk+1∕2) + (1 − t)g(xk).

(17)�k(t) ≥ h(xk + tvk).

��
k
(0) = ∇f (xk)Tvk + g(xk+1∕2) − g(xk).

∇f (xk)Tvk = ∇lk(x
k)Tvk ≤ lk(x

k+1∕2) − lk(x
k),

��
k
(0) ≤ lk(x

k+1∕2) − lk(x
k) + g(xk+1∕2) − g(xk).

(18)𝜙�
k
(0) < −

1

2
(vk)T (Hk + 𝜆kI)v

k.

(19)𝜙k(t) = 𝜙k(0) + 𝜙k(0)
�t + o(t2) < h(xk) −

t

2
(vk)T (Hk + 𝜆kI)v

k + o(t2).

(20)�k(tk) ≤ h(xk) −
�tk

2
(vk)T (Hk + �kI)v

k

(21)� = 0.05, � = 0.5

752	 X. Shen et al.

1 3

2.5 � Adjusting the trust parameter

We have already observed that �k is a regularizer for Hk . A natural choice is to
choose the regularizer parameter roughly proportional to �k = ��Hk∕n , since �kI
is the minimum Frobenius norm approximation of Hk by a multiple of the iden-
tity. Thus we take

where �k gives the trust parameter relative to �k , and �min is a positive lower limit.
We update �k by decreasing it when the line search is undamped, i.e., tk = 1 ,

and increasing it when the line search is damped, i.e., tk < 1 . We do this with

where �min and �max are positive lower and upper limits for �k , �dec ∈ (0, 1) is the
factor by which we decrease �k , and �inc ∈ (1,∞) is the factor by which we increase
�k . The values

give good results for a wide range of problems. We can take �0 = 1.
We mention one initialization that is useful when f is twice differentiable and

we have the ability to evaluate z ↦ ∇2f (xk)z (i.e., Hessian-vector multiplication).
In this case we can replace �0 with an estimate of ��∇2f (x0)∕n obtained using the
Hutchinson method (Hutchinson 1989).

2.6 � Stopping criteria

We use two stopping criteria, one based on a gap between upper and lower bounds
on the optimal value, and the other based on an optimality condition residual. The
gap condition is simple:

where �gap
abs

 and �gap
rel

 are positive absolute and relative gap tolerances, respectively.
Evaluating Lk can be almost as expensive as evaluating xk+1∕2 , but it is used only in
the stopping criterion. To reduce this overhead, we evaluate Lk only every ten itera-
tions. Reasonable values for the gap tolerances are �gap

abs
= 10−4 and �gap

rel
= 10−3.

The residual based stopping criterion is tested whenever we take an undamped
step, i.e., tk = 1 . In this case xk+1 = xk+1∕2 , and we obtain qk+1 ∈ �g(xk+1) in (10),
so ∇f (xk+1) + qk+1 is a residual for the optimality condition (1). The stopping cri-
terion is

(22)�k = �k

(
�k + �min

)
,

(23)𝜇k+1 =

{
max{𝛾dec𝜇k,𝜇min} tk = 1

min{𝛾inc𝜇k,𝜇max} tk < 1,

(24)�min = 10−3, �dec = 0.8, �inc = 1.1, �min = 10−4, �max = 105

(25)h(xk) − Lk ≤ �
gap

abs
+ �

gap

rel
|h(xk)|,

753

1 3

Minimizing oracle‑structured composite functions﻿	

where �res
abs

 and �res
rel

 are relative and absolute residual tolerances. (Dividing the norm
expressions above by

√
n gives the root mean square or RMS values of the argu-

ment.) Reasonable values for these parameters are �res
abs

= 10−4 and �res
rel

= 10−3.

2.7 � Algorithm summary

We summarize OSMM in algorithm 2.1.

Algorithm 2.1 Oracle-structured minimization method.

given an initial point x0 ∈ Ω.
for k = 0, 1, . . . , kmax

1. Form a surrogate objective. Form lk and Hk.
2. Tentative step. Compute xk+1/2 by (6).
3. Line search and update. Set line search step size tk by (20) and xk+1 by (15).
4. Compute lower bound. If k is a multiple of 10, evaluate Lk.
5. Check stopping criterion. Quit if (25) or (26) holds.
6. Update trust penalty parameter. Update λk+1 by (22) and (23).

The algorithm parameters in OSMM are the memory of the minorant M, the rank
of the curvature estimate r, the line search parameters given in (21), the �k update
parameters given on (24), and the relative and absolute gap and residual tolerances,
given in Sect. 2.6. The practical performance of OSMM is not particularly sensi-
tive to the choice of these parameters; our implementation uses as default values the
ones described above, with memory M = 20 and rank r = 20.

2.8 � Implementation

We have implemented OSMM in an open-source Python package, available at
https://​github.​com/​cvxgrp/​osmm.

The user supplies a PyTorch description of the oracle function f, a CVXPY
description of the structured function g, and an initial point x0 ∈ � . The package
invokes PyTorch to evaluate f and its gradient ∇f  . The convex model f̂k is then
formed and handed off to CVXPY to efficiently compute the next tentative iterate.

2.9 � Related work

There is a lot of prior work related to the method proposed in this paper. The work
on variable metric bundle methods (van Ackooij et al. 2016; Bagirov et al. 2014; De
Oliveira and Solodov 2016; Frangioni 2002; Fukushima 1984; Kiwiel 1990, 2000;
Lemaréchal 1978; Lemaréchal et al. 1995; Lemaréchal and Sagastizábal 1997; Lukšan

(26)
1√
n
‖∇f (xk+1) + qk+1‖2 ≤ �res

abs
+ �res

rel

�
1√
n
‖∇f (xk+1)‖2 + 1√

n
‖qk+1‖2

�
,

https://github.com/cvxgrp/osmm

754	 X. Shen et al.

1 3

and Vlček 1998; Mifflin 1996; Mifflin et al. 1998; Noll 2013; de Oliveira et al. 2014;
Schramm and Zowe 1992; Teo et al. 2010; Van Ackooij and Frangioni 2018; Yu et al.
2010) and (inexact) proximal Newton-type methods (Asi and Duchi 2019; Becker et al.
2019; Becker and Fadili 2012; Ghanbari and Scheinberg 2018; Lee and Wright 2019;
Lee et al. 2014; Levitin and Polyak 1966; Li et al. 2017; Mordukhovich et al. 2020;
Scheinberg and Tang 2016; Schmidt et al. 2009; Sra et al. 2012; Yue et al. 2019) are
probably the most closely related, though our method differs in key ways arising from
our assumed access methods. Proximal Newton methods are similar in philosophy to
our approach, as both types of methods really shine when the structured part of the
objective can be minimized efficiently. However, on a purely technical level, proximal
Newton methods generally form the (usual) first-order model of the oracle part of the
objective, without a bundle term, which is of course different than the model we use,
and can affect the convergence speed.

A few variable metric bundle methods have been proposed over the years, but these
methods also differ from ours in subtle (but important) ways. In general, these meth-
ods are not geared towards solving composite minimization problems. Additionally,
our line search method is different, as ours is carefully designed to satisfy the access
conditions.

Finally, there has been a surge of interest in scalable quasi-Newton meth-
ods (Erdogdu and Montanari 2015; Gower et al. 2018; Huang et al. 2020; Ye et al.
2017) recently. The focus has been on developing low-rank, regularized, and sub-sam-
pled Newton-type methods. Of these, the family of low-rank approximations to the
Hessian are most related to the curvature estimate used in our method.

3 � Convergence

In this section we show the convergence of OSMM, and give a numerical example
to illustrate its typical performance, as the two most important algorithm parameters,
memory M and rank r, vary. (More examples will be given in Sect. 5.)

3.1 � Convergence

We demonstrate two types of convergence. First, we show the iterates xk converge
asymptotically in a certain sense, i.e., the sequence of tentative steps vk → 0 as k → ∞ .
Second, we show the objective values generated by OSMM converge to the optimal
value. Thus, any cluster point of the sequence of iterates xk is an optimal point. The
results additionally require the (standard) assumption that ∇f be Lipschitz continuous.

Convergence of iterates. To see that vk → 0 , we observe from (17) and (20) that

Since h(xk) is decreasing and bounded below by h⋆ , it converges, which implies that
the left-hand side of (27) converges to zero as k → ∞ . This in turn implies that

(27)h(xk+1) − h(xk) ≤ −
�tk

2
(vk)T (Hk + �kI)v

k ≤ 0.

755

1 3

Minimizing oracle‑structured composite functions﻿	

By construction �k is lower bounded by �min�min , and tk is also bounded away from
0, as will be proved later in Sect. A.3, so we get that vk → 0 , as claimed.

Convergence of objective values. We require the basic fact that there exists a sub-
sequence of iterates (k

�
) accepting unit step length, i.e., that tk

�
= 1 for all � . We give

a proof of this fact in Sect. A.3, assuming that ∇f is Lipschitz continuous.
Now, by convexity,

for some qk� ∈ �g(xk�) . Adding and subtracting any lk�+1
k
�

∈ �lk(x
k+1) , we get

From our assumptions on h, and because OSMM is a descent method, we see that
‖xk�+1 − x⋆‖2 is bounded. Moreover, because Hk and �k are uniformly bounded, we
get from (8) that

where we write a ≲ b to mean that a and b satisfy a ≤ Cb , for some C > 0 . Finally,
it can be shown (see Sect. A.4 for details) that the limited memory piecewise affine
minorant satisfies

Putting these together with (28), we obtain that

Earlier we showed that vk → 0 , so h(xk�+1) → h⋆ as � → ∞ . Because the sequence
of objective values h(xk) is convergent, we get h(xk) → h⋆ , as claimed.

3.2 � A numerical example

Next we investigate the convergence of OSMM numerically. Here and throughout
this paper, we use a Tesla V100-SXM2-32GB-LS GPU with 32 gigabytes of mem-
ory to evaluate f and ∇f via PyTorch, and an Intel Xeon E5-2698 v4 2.20 GHz CPU
to compute the tentative iterates via CVXPY and for any baselines.

Problem formulation. We consider an instance of the Kelly gambling prob-
lem (Boyd and Vandenberghe 2004, §4) (Kelly 2011; Busseti et al. 2016),

tk(v
k)T (Hk + �kI)v

k
→ 0 as k → ∞.

h(xk�+1) − h⋆ ≤ (∇f (xk�+1) + qk�+1)T (xk�+1 − x⋆),

(28)h(xk�+1) − h⋆ ≤ (
(∇f (xk�+1) − l

k
�
+1

k
�

) + (l
k
�
+1

k
�

+ qk�+1)
)T
(xk�+1 − x⋆).

‖lk�+1
k�

+ qk�+1‖2 ≤ ‖Hk
�
+ 𝜆k

�
I‖2‖vk�‖2 ≲ ‖vk�‖2,

(29)‖∇f (xk�+1) − l
k
�
+1

k
�

‖2 ≲ max
j=max{0,…,k

�
−M+1},…,k

�

‖vj‖2.

h(xk�+1) − h⋆ ≲ max
j=max{0,…,k

�
−M+1},…,k

‖vj‖2.

(30)maximize
∑N

i=1
�i log(r

T
i
x)

subject to x ≥ 0, �Tx = 1,

756	 X. Shen et al.

1 3

where x ∈ �n is the variable, and ri ∈ �n
+
 , i = 1,… ,N , � ∈ �N

+
 are the problem

data, with
∑N

i=1
�i = 1 . Details about the Kelly gambling problem and what the vari-

able and data represent can be found in Sect. 5.1. To put problem (30) into our ora-
cle-structured form, we take f to be the objective in (30), and g to be the indicator
function of the constraints, in this case the probability simplex.

Problem instance. Our problem instance has n = 100 bets and N = 1,000,000
possible outcomes. How the data were generated can also be found in Sect. 5.1.

25 50 75 100
Iterations

10−6

10−4

10−2

Su
bo

pt
im

al
it
y

M = 1
M = 20
M = 50

r = 0 r = 20 r = 50r = 50

0 1 2 3 4
Seconds

10−6

10−4

10−2

25 50 75 100
Iterations

10−4

10−3

10−2

10−1

G
ap

0 1 2 3 4
Seconds

10−4

10−3

10−2

10−1

25 50 75 100
Iterations

10−5

10−3

10−1

R
M
S
re
si
du

al

0 1 2 3 4
Seconds

10−5

10−3

10−1

Fig. 1   Suboptimality (top row), gap (middle row), and RMS residual (bottom row), versus iterations (left
column) and run-time in seconds (right column) for OSMM on the Kelly gambling problem for the nine
combinations of rank r and memory M 

757

1 3

Minimizing oracle‑structured composite functions﻿	

This problem instance requires 400 seconds to solve using MOSEK (ApS 2019),
a high performance commercial solver, with accuracy set to its lower value.

Results. We solve (30) by OSMM with rank r ∈ {0, 20, 50} and memory
M ∈ {1, 20, 50} , a total of nine choices of algorithm parameters. The choices
r = 0 and M = 1 correspond to using no estimate of curvature, and no memory,
respectively. OSMM is run for 100 iterations for each combination of r and M;
xk+1∕2 and Lk are computed using ECOS (Domahidi et al. 2013). Figure 1 shows
the convergence of OSMM, in terms of iterations (the left column) and elapsed
time (the right column). The top row shows the true suboptimality h(xk) − h⋆ ,
which of course we do not know when the algorithm is running, since we do not
know h⋆ . The middle row shows the gap h(xk) − Lk (which we do know as the
algorithm runs). The bottom row shows the RMS value of the optimality condi-
tion residual, i.e., the left-hand side of (26).

The timing results averaged from 10 repetitions are shown in Table 1. The total
solve time and iterations are based on achieving a high accuracy of 10−6 , which is
far more accurate than would be needed in practice. For our nine choices of algo-
rithm parameters, the total OSMM time ranges from around 0.87 to 1.4 seconds,
substantially faster than using MOSEK to solve the problem.

From the results in the figure and the table, as r increases the convergence
becomes faster in terms of iterations, but with a larger r the update of xk+1∕2 takes
more time, so each iteration becomes more expensive. A good trade-off value
is r = 20 . The memory M taking values 20 and 50 yields faster convergence in
iterations and smaller gaps than M taking value 0, but as M increases each itera-
tion also becomes more expensive, and the run-time efficiency is the best when
M = 20 . In summary, we see that rank value r = 20 and memory value M = 20
yield the fastest convergence in terms of run-time. We have observed this in other
problem instances as well, so these are the default values in OSMM.

Table 1   Times to evaluate
tentative update xk+1∕2 and
lower bound L

k
 , total solve

time and iterations to reach
10

−6 accuracy, and average
number of evaluations of f per
iteration, for OSMM with the
nine combinations of rank r and
memory M 

Rank and
memory

Compute times
(sec.)

Total solve time and iterations

r M x
k+1∕2 L

k
Time (sec.) Iterations f evals./iter.

0 1 0.016 0.0069 1.4 62 4.1
0 20 0.019 0.0093 1.2 49 3.5
0 50 0.023 0.015 1.3 49 3.4
20 1 0.019 0.0069 0.88 36 2.9
20 20 0.023 0.0093 0.87 33 2.9
20 50 0.029 0.014 0.90 33 2.9
50 1 0.021 0.0076 0.92 32 2.5
50 20 0.027 0.010 0.88 29 2.5
50 50 0.035 0.015 0.89 29 2.5

758	 X. Shen et al.

1 3

4 � Generic applications

In this section we describe some generic applications that reduce to our specific ora-
cle-structured composite function minimization problem. We focus on the function
f, which should be differentiable, but not so simple that it can be handled directly in
a structured optimization system. We will see that this generally occurs when there
is a lot of data required to specify f.

4.1 � Stochastic programming

Sample average approximation for stochastic programming. We start with the prob-
lem of minimizing �F(x,�) + g(x) , where F is convex in x for each value of the ran-
dom variable � . We will approximate the first objective term using a sample aver-
age. We generate N independent samples �1,… ,�N , and take

As a variation we can use importance sampling to get a lower variance estimate of
�F(x,�) . To do this we generate the samples from a proposal distribution with den-
sity q, and form the sample average estimate

where p is the density of �.
In both cases we can take N to be quite large, since we will only need to evaluate

f and its gradient, and current systems for this are very efficient. For example, the
gradients ∇F(x,�i) can be computed in parallel. As a practical matter, this happens
automatically, with no or very little directive from the user who specifies f.

Validation and stopping criterion tolerance. The functions f given in (31) and
(32) are only approximations of the true objective �F(x,�) , though we hope they
are good approximations when we take N large, as we can with OSMM. To under-
stand how accurate the sample average (31) is, we generate another set of independ-
ent samples 𝜔̃1,… , 𝜔̃N and define the validation function as

(and similarly if we use importance sampling). The magnitude of the difference
|f val(x) − f (x)| gives us a rough idea of the accuracy in approximating �F(x,�) .
(Better estimates of the accuracy can be obtained by repeating this multiple times,
but we are interested in only a crude estimate).

Solving the oracle-structured problem to an accuracy substantially better than
the Monte Carlo sampling accuracy does not make sense in practice. This justi-
fies replacing the absolute gap tolerance �gap

abs
 with the maximum of a fixed absolute

(31)f (x) =
1

N

N∑
i=1

F(x,�i).

(32)f (x) =
1

N

N∑
i=1

p(�i)

q(�i)
F(x,�i),

f val(x) =
1

N

N∑
i=1

F(x, 𝜔̃i)

759

1 3

Minimizing oracle‑structured composite functions﻿	

tolerance and the sampling error |f val(xk) − f (xk)| . (We can evaluate the sampling
error whenever we evaluate the gap, i.e., every 10 iterations.) Roughly speaking, we
stop when we know we have solved the problem to an accuracy that is better than
our approximation.

4.2 � Utility maximization

An important special case of stochastic optimization is utility maximization, where
we seek to maximize

where U ∶ � → � is a concave increasing utility function, and H is concave in x for
each � . The first term, the expected utility, is concave. This is equivalent to the sto-
chastic programming problem of minimizing

which is stochastic programming with F = −U◦H , which is convex in x. We can
replace the expectation with a sample average using (31), or an importance sampling
sample average using (32). Utility maximization is a common method for handling
the variance or uncertainty in a stochastic objective; it introduces risk aversion.

4.3 � Conditional and entropic value‑at‑risk programming

Another method to introduce risk aversion into a stochastic optimization problem is
to mimimize value-at-risk (VaR), or a specific quantile of F(x,�) , where F is convex
in x for each value of the random variable � . The value-at-risk is defined as

where � ∈ (0, 1) is a given quantile. With an additional structured convex function g
in the objective, we obtain the VaR problem

which, roughly speaking, is the problem of minimizing the �-quantile of the random
variable F(x,�) + g(x) . Aside from a few special cases, this problem is not convex.
(Recent work on VaR and methods for the closely related problem of handling prob-
ability constraints can be found in, e.g., Daníelsson et al. 2013, 2008.) We proceed
by replacing the nonconvex VaR term with a convex upper bound on VaR, such
as conditional value-at-risk (CVaR) (Rockafellar and Uryasev 2002; Uryasev and
Rockafellar 2001) or entropic value-at-risk (EVaR) (Ahmadi-Javid 2011). Beyond
resulting in tractable convex problems, these upper bounds possess a number of nice
properties, such as being coherent risk measures; see (Ahmadi-Javid 2011; Rockaf-
ellar and Uryasev 2002) for a discussion.

CVaR is given by

(33)�U(H(x,�)) − g(x),

�(−U(H(x,�)) + g(x),

��� (F(x,�); �) = inf{�|����(F(x,�) ≤ �) ≥ �},

(34)minimize ���(F(x,�);�)) + g(x),

760	 X. Shen et al.

1 3

where (z)+ = max{z, 0} , and EVaR is given by

Both of these are convex functions of x. We have, for any x,

(see, e.g., Ahmadi-Javid 2011). With CVaR, we obtain the convex problem

and similarly for EVaR.
We now show how the CVaR and EVaR problems can be approximated as ora-

cle-structured problems. We start with CVaR. We generate independent samples �i ,
i = 1,… ,N , and replace the expectation with the empirical mean,

with variables x and � . This function is jointly convex in x and � ; minimizing over
� gives ����(F(x,�);�) for the empirical distribution. We adjoin � to x to obtain
a problem in oracle-structured form, i.e., minimizing f (x, �) + g(x) , over x and � .
(That is, we take (x, �) as what we call x in our general form.) While f is not differen-
tiable in (x, �) , we have observed that our method still works very well.

For EVaR, we obtain

which is jointly convex in x and � . (To see convexity, we observe that f is the per-
spective function of the log-sum-exp function; see Boyd and Vandenberghe 2004,
Sect. 3.2.6.) As with CVaR, minimizing over � yields ����(F(x,�);�) for the
empirical distribution. Unlike our approximation with CVaR, this function is
differentiable.

4.4 � Generic exponential family density fitting

We consider fitting an exponential family of densities, given by

(35)����(F(x,�);�) = inf
�∈�

{
�(F(x,�) − �)+

1 − �
+ �

}
,

(36)����(F(x,𝜔);𝜂) = inf
𝛼>0

{
𝛼 log

(
� exp(F(x,𝜔)∕𝛼)

1 − 𝜂

)}
.

���(F(x,�);�) ≤ ����(F(x,�);�) ≤ ����(F(x,�);�)

minimize ����(F(x,�);�)) + g(x),

f (x, �) =
1

N

N∑
i=1

(F(x,�i) − �)+

1 − �
+ �,

f (x, �) = � log

(
1

N

N∑
i=1

exp(F(x,�i)∕�)

1 − �

)
,

(37)p�(z) = e−(�(z)
T�+A(�)),

761

1 3

Minimizing oracle‑structured composite functions﻿	

to samples z1,… , zm ∈ S . Here, S is the support of the density, � ∶ S → �n is the
sufficient statistic, and 𝜃 ∈ 𝛩 ⊆ �n is the canonical parameter (to be fitted). The
density normalizes via the log-partition (or cumulant generating) function

We assume � is convex, and additionally that it only contains parameters for which
the log-partition function is finite.

The negative log-likelihood, given samples z1,… , zm , is

where c =
∑m

i=1
�(zi) . So maximum likelihood estimation of � corresponds to solv-

ing the density fitting problem

with variable � . We can include a (potentially nonsmooth) convex regulariza-
tion term �r(�) in the objective, where � ≥ 0 is the regularization strength, and
r ∶ � → � is the regularizer. Since the log-partition function is convex (Wainwright
and Jordan 2008), the density fitting problem (38) is also convex.

The log-partition function is generally intractable except for a few special cases,
so we replace the integral in A(�) with a finite sum using importance sampling, i.e.,

where �i, i = 1,… ,N , are independent draws from the proposal distribution q.
The number of samples N can be very large, especially when the number of dimen-
sions n is moderate. When S is bounded and its dimension is small, we can sim-
ply use a Riemann sum, so that the samples �i are lattice points in S and we have
q(�i) = 1∕|S| . The problem (38) is clearly in oracle-structured form, once we take
A(�) (with its Monte Carlo approximation) to be f, and the rest of the objective plus
the indicator of � to be g.

A number of interesting regularizers are possible. The squared �2 norm, i.e.,
r(�) = ‖�‖2

2
 , is of course a natural choice. When S is bounded, a different option

is to use the squared L2 norm of the gradient of the log-density

This regularizer enforces a certain kind of smoothness: the regularized density
p� tends to the uniform distribution on S , as the regularization strength � grows.
Finally, observe that we can write

A(�) = log∫
S

e−�(z)
T� dz.

m∑
i=1

log p�(zi) = cT� + mA(�),

(38)
minimize

1

m
cT� + A(�) + �r(�)

subject to � ∈ �,

∫
S

e−�(z)
T� dz ≈

1

N

N∑
i=1

1(�i ∈ S)

q(�i)
e−�(�i)

T� ,

r(�) = ∫
S

‖∇ log p�(z)‖22 dz.

762	 X. Shen et al.

1 3

where D� is the Jacobian of sufficient statistic � . We can replace the integral with a
finite sum again, and obtain the regularizer

5 � Numerical examples

In this section we demonstrate the performance of OSMM through several numerical
examples, all taken from the generic applications described in the previous section. We
start by showing results for two different portfolio selection problems, the Kelly gam-
bling example (shown earlier in Sect. 3.2), and minimizing CVaR. We then show a den-
sity estimation example. After that we present results for a supply chain optimization
problem with entropic value-at-risk minimization. All of these examples are structured
stochastic optimization problems, and we use simple sample averages to approximate
expectations. OSMM is designed to handle the case when f is complex, which in the
case of sample averages means N is large. We will see that when N is small, OSMM is
actually slower than just solving the problem directly using a structured solver; when
N is large, it is much faster (and in many cases, directly using a structured solver fails).

We report the time needed for OSMM to reach high accuracy, i.e.,
h(xk) − h⋆ ≤ 10−6 . (This makes a fairer comparison with MOSEK,
SCS O’Donoghue et al. 2016, 2019, and ECOS.) We also indicate when practical
accuracy is reached, using our default parameters, and the sampling accuracy. We
use the default parameters in OSMM, and use ECOS as the solver in CVXPY to
compute the tentative iterate xk+1∕2 . We do not perform any parameter tuning for our
method.

5.1 � Kelly gambling

Problem formulation. In the Kelly gambling problem there are n bets we can wager
on, and N possible outcomes, with probabilities �i , i = 1,… ,N . The bet returns are
given by ri ∈ �n

+
 , where (ri)j is the return, i.e., the amount you win for each dollar

you put on bet j when outcome i occurs. We are to choose x ∈ �n , with �Tx = 1 ,
where xj is the fraction of our wealth we place on bet j. We seek to maximize the
average log return, which maximizes long-term wealth growth if we repeatedly bet.
This leads to the (convex) optimization problem

with variable x.

∫
S

‖∇ log p�(z)‖22 dz = ∫
S

‖D�(z)T�‖2
2
dz = �T

�
∫
S

D�(z)D�(z)T dz

�
�,

r(�) ≈ �T

(
1

N

N∑
i=1

1(�i ∈ S)

q(�i)
D�(�i)D�(�i)

T

)
�.

maximize
∑N

i=1
�i log(r

T
i
x)

subject to x ≥ 0, �Tx = 1,

763

1 3

Minimizing oracle‑structured composite functions﻿	

Problem instance. We consider n = 200 bets. The probabilities of the outcomes
�i are independent draws from a uniform distribution on [0, 1], normalized to sum
to one. The returns of the bets in each outcome are independently drawn from a log
normal distribution, i.e., exp(z) , z ∼ N(0, 1) , and then scaled so the expected return
of bet j is r̄j , i.e.,

∑N

i=1
𝜋i(ri)j = r̄j , where r̄j is drawn from a uniform distribution on

[0.9, 1.1]. For our problem instance, the solution has 57 nonzero entries ranging
from 0.001 to 0.04, and the optimal mean log return is 0.057.

Results. The run-times for OSMM, MOSEK, SCS, and ECOS are shown
in Table 2. When the number of Monte Carlo samples is small, e.g., N = 1,000 ,
MOSEK performs the fastest and takes less than a second to attain high accuracy.
OSMM also takes less than one second. ECOS takes about two seconds, and SCS
takes roughly six seconds. However, when N is larger (i.e., N = 10,000 , 100,000, or
1,000,000), OSMM is the fastest method, always taking less than a second to attain
the required 10−6 optimality gap. When N = 10,000 , MOSEK is still competitive,
but SCS and ECOS are two to four orders of magnitude slower than OSMM. When
N = 100,000 , MOSEK and ECOS are two to three orders of magnitude slower, and
when N = 1,000,000 , MOSEK and ECOS are three to five orders of magnitude
slower. SCS fails for both the two larger values of N. These findings suggest that
OSMM is useful when the number of samples is large, as it exhibits good scaling
with N.

OSMM spends 0.0013 and 0.0024 seconds to evaluate f and its gradient ∇f  ,
respectively, when N = 1,000,000 . Computing the tentative iterate xk+1∕2 and the
lower bound Lk from (5) takes 0.033 and 0.014 seconds, respectively. The line
search also turns out to be quite efficient here, as f is evaluated twice during the line
search on average.

Figure 2 shows the convergence of OSMM with N = 1,000,000 . In the top panel,
we can see that practical accuracy is reached after 14 iterations, and high accu-
racy is reached after 16 iterations, as shown by the dotted black and green lines,
respectively.

5.2 � CVaR portfolio optimization with derivatives

Problem formulation. We consider making investments in m stocks, and call and
put derivatives on them, with various strike prices. Our investment will be for one
period (of, say, one month). We let � ∈ �m

++
 denote the (fractional) change in prices

of the m underlying stocks, which we model as random with a log-normal distri-
bution, i.e., log� ∼ N(�,Σ) , where the log is elementwise. For simplicity we will

Table 2   Solve times in seconds
on the Kelly gambling problem.
A dash (“—”) means the solver
failed, either for numerical
reasons, or because it did
not reach the required 10−6
suboptimality in 24 hours

N OSMM MOSEK SCS ECOS

1,000 0.76 0.58 6.4 2.2
10,000 0.64 4.5 2100 50
100,000 0.62 62 – 910
1,000,000 0.64 890 – 20,000

764	 X. Shen et al.

1 3

assume there is one call and one put option available for each stock. Let pc ∈ �m
++

and sc ∈ �m

++
 be the call option prices (premia) and strike prices, normalized by the

current stock price, so, for example, (sc)i = 1.15 means the strike price is 1.15 times
the current stock price. Let pp ∈ �m

++
 and sp ∈ �m

++
 denote the corresponding quan-

tities for the m put options.
The amount we receive per dollar of investment in the underlying stocks is � , the

ratio of the current to final stock price. For every dollar invested in the call options
we receive (� − sc)+∕pc , where the division is elementwise, and (a)+ = max{a, 0} .
For the put options, the total we receive per dollar of investment is (sp − �)+∕pp.

We make investments in n = 3m different assets, the m underlying stocks and m
associated call and put options. We let x ∈ �n denote the fractions of our wealth that
we invest in the assets, so �Tx = 1 . We consider long and short positions, with xi < 0
denoting a short position. We consider a simple set of portfolio constraints, x ≥ xmin

10 20 30 40
Iterations

10−7

10−6

10−5

10−4

10−3

Suboptimality
Gap

10 20 30 40
Iterations

10−6

10−5

10−4

10−3

10−2
RMS residual

Fig. 2   Suboptimality, gap (top row), and RMS residual (bottom row) on the Kelly gambling problem
with N = 1,000,000 . The dotted green and black lines show when high accuracy and practical accuracy
are reached, respectively

765

1 3

Minimizing oracle‑structured composite functions﻿	

(e.g., xmin = −0.1 limits the maximum short position for any asset to not exceed
10% of the total portfolio value), and ‖x‖1 ≤ L , where L is a leverage limit. (Since
�Tx = 1 , this means that the total long position cannot exceed a multiple (L + 1)∕2
of total wealth, and the total short position cannot exceed a multiple (L − 1)∕2 of the
total wealth.) We partition x as x = (xu, xc, xp) , with each subvector in �m . Our port-
folio has total return

where r(�) ∈ �n is the total return of the n = 3m assets, i.e., stocks and options.
Our problem is to choose the portfolio so as to minimize the conditional value

at risk (described in (35)) of the negative total return, i.e.,

where � ∈ (0, 1) sets the risk aversion.
We use a sample average approximation of the expectation in CVaR to obtain

the problem

with variables x = (xu, xc, xp) ∈ �n and � ∈ � . The vectors �i ∈ �n
++

 , i = 1,… ,N ,
are independent samples of the price change �.

Problem instance. We take the number of stocks as m = 100 , so n = 300 . We
take the minimum position limit xmin = −0.1 and leverage limit L = 1.6 . We use
risk aversion parameter � = 0.8 , so we are attempting to minimize the 20th per-
centile of the portfolio loss. The price change covariance Σ is generated accord-
ing to Σ = �2(I + 0.2FFT) , where � = 1∕

√
2 , and the entries of F ∈ �m×5 are

independent draws from a standard normal distribution. We set the mean price
change according to �i = 0.03

√
Σii − 0.5Σii , i = 1,… ,m . For each call option, the

strike price is set as the 80th percentile of � , and for each put option it is the
20th percentile. The option prices are determined by the Black-Scholes formula
with zero discount. (These data are approximately consistent with an investment
period of one month for U.S. equities.)

When we solve this problem instance, the optimal portfolio return has mean
1.3%, standard deviation 5%, and loss probability 39%; annualized, these corre-
spond to a return of 16%, standard deviation 18%, and loss probability 20%. The
optimal portfolio contains as assets the underlying stocks as well as call and put
options.

Results. Table 3 shows the run-times for N ranging from 10,000 to 1,000,000.
We see again that for small values of N, it is more efficient to solve the problem
directly using a structured solver, whereas for large values, OSMM is far more effi-
cient. When N = 1,000,000 , OSMM (using PyTorch) takes 0.0021 seconds to evalu-
ate f and 0.0053 seconds to evaluate ∇f  ; OSMM takes 0.050 seconds to compute
the tentative iterate xk+1∕2 , and 0.021 seconds to evaluate the lower bound Lk (using

xT
u
� + xT

c
((sc − �)+∕pc) + xT

p
((sp − �)+∕pp) = r(�)Tx,

minimize ����(−r(�)Tx;�)

subject to x ≥ xmin, �
Tx = 1, ‖x‖1 ≤ L,

minimize
1

N

∑N

i=1

(−r(�i)
Tx−�)+

1−�
+ �

subject to x ≥ xmin, �
Tx = 1, ‖x‖1 ≤ L

766	 X. Shen et al.

1 3

CVXPY). Figure 3 shows the convergence of OSMM with N = 1,000,000 . Practical
accuracy are high accuracy are reached at the same time after 100 iterations.

Table 3   Solve times in seconds on the conditional value-at-risk problem. A dash (“—”) means the solver
failed, either for numerical reasons, or because it did not reach the required 10−6 suboptimality in 24
hours

N OSMM MOSEK SCS ECOS

10,000 11 6.0 250 18
100,000 6.5 64 2,900 310
1,000,000 6.3 1,900 30,000 5,200

20 40 60 80 100 120
Iterations

10−6

10−4

10−2

100
Suboptimality
Gap
Sampling accuracy

20 40 60 80 100 120
Iterations

10−3

10−2

10−1

100
RMS residual

Fig. 3   Suboptimality, gap, sampling accuracy (top row), and RMS residual (bottom row) on the condi-
tional value-at-risk problem with N = 1,000,000 . The dotted green and black lines coincide, indicating
that high accuracy and practical accuracy are reached at the same time

767

1 3

Minimizing oracle‑structured composite functions﻿	

5.3 � Exponential series density estimation

Problem formulation. We consider an instance of the generic exponential family density
fitting problem described in Sect. 4.4. We consider data z1,… , zm ∈ �2 , and wish to fit
a density p supported on S = [−1, 1]2 . We let the sufficient statistics �i, i = 1,… , n ,
be the Legendre polynomials up to degree four, so n = 14 . (This is known as an expo-
nential series density estimator Gao et al. 2015; Marsh 2007; Wu 2010.) We solve the
density estimation problem (38).

Problem instance. We take m data points sampled from a mixture of three Gauss-
ian densities, restricted to S , with means (1/3, 1/3), (1∕3,−1∕3) , and (−1∕3,−1∕3) ,
weights 0.4, 0.3, and 0.3, and common covariance (1/36)I. (So the data do not come
from the family of density we use to fit.) We form a Riemann sum using points in S
lying on a grid with side lengths

√
N . Recall that N, the number of samples, here refers

to our approximate evaluation of the integral that arises in the log-partition function,
and not the number of data samples, which is fixed at m = 2,000.

Results. Table 4 shows the run-times for the various methods. We see the usual
pattern where directly solving the problem can be efficient for small N, but OSMM
is much faster for large N. When N = 1,000,000 , it takes OSMM 0.001 and 0.0014
seconds to evaluate f and ∇f  , respectively, and 0.015 and 0.0097 seconds to compute
xk+1∕2 and Lk , respectively.

Figure 4 shows the convergence of OSMM for N = 1,000,000 . Practical accuracy
is reached after 39 iterations with suboptimality 10−5 , and after 42 iterations OSMM
reaches high accuracy. In this instance, our lower bound Lk = −∞ , so neither it nor the
gap are plotted in the figure.

5.4 � Vector news vendor with entropic value‑at‑risk

We consider a variant of the classic news vendor problem that involves entropic value-
at-risk programming (Ahmed et al. 2007).

Problem formulation. We choose quantities q ∈ �n
+
 of n products to produce, at total

cost �(q) , where � ∶ �n
+
→ �+ . We have constraints on the quantities we can produce,

q ≤ qmax , and on the total production cost, �(q) ≤ �max . We sell the amount min(q, d) ,
where d ∈ �n

+
 is the demand, and the min is taken elementwise, at market prices

p ∈ �n
+
 , so the total revenue is pT min(q, d) , and the profit is

P = pT min{q, d} − �(q).

Table 4   Solve times in seconds on the density estimation problem. A dash (“—”) means the solver
failed, either for numerical reasons, or because it did not reach the required 10−6 suboptimality in 24
hours

N OSMM MOSEK SCS ECOS

10,000 0.72 1.2 1,100 0.92
100,000 1.2 11 – 14
1,000,000 0.84 120 – 190

768	 X. Shen et al.

1 3

We assume that � = (d, p) ∈ �2n
+

 is a random variable with known distribution, so
P(q,�) is a random variable that depends on q.

We choose the quantities q to minimize the EVaR of the negative profit,

where � is a specified quantile.
As described in Sect. 4.3, we approximate this with Monte Carlo samples

(d1, p1),… , (dN , pN) to obtain the problem

minimize ����(−P(q,�);�)

subject to �(q) ≤ �max, q ≥ 0, q ≤ qmax,

minimize � log
�

1

(1−�)N

∑N

i=1
exp

�
−pT

i
min(q,di)+�(q)

�

��

subject to �(q) ≤ �max, q ≥ 0, q ≤ qmax, � ≥ 0,

10 20 30 40 50
Iterations

10−5

10−3

10−1

Suboptimality

10 20 30 40 50
Iterations

10−6

10−5

10−4

10−3

10−2
RMS residual

Fig. 4   Suboptimality (top row) and RMS residual (bottom row) on the exponential family density fitting
problem with N = 1,000,000 . The dotted green and black lines show when high accuracy and practical
accuracy are reached, respectively

769

1 3

Minimizing oracle‑structured composite functions﻿	

with variables q and � ∈ �+ . We denote the realizations of the demand d and prices
p on the ith Monte Carlo simulation by di, pi ∈ �n

+
, i = 1,… ,N , respectively.

Problem instance. We take n = 500 and risk aversion parameter � = 0.9 . We assume
the demand and market prices follow a joint log-normal distribution, i.e., (d, p) = exp z ,
z ∼ N(�,Σ) , and the exponential is elementwise. We draw the entries of � ∈ �2n inde-
pendently from a uniform distribution on [−0.2, 0] , and set Σ = 0.1FFT , where the
entries of F ∈ �2n×5 are independently drawn from a standard normal distribution. We
use a production cost which is separable and piecewise affine with one kink point for
each entry of q,

where the elements in a and b are both drawn uniformly at random from [0.2, 0.9]
and [0.01, 0.03], respectively. The maximum production quantities qmax is set as 5b,
and the maximum cost is �max = 1 . With these parameter values, the optimal profit
has mean 3.2 and standard deviation 0.98.

Results. The run-times for the various methods are in Table 5. In this instance,
OSMM is the fastest for all values of N ranging from 1,000 to 1,000,000, and the other
solvers fail for nearly all values of N. When N = 1,000,000 , OSMM takes 0.16 and
0.27 seconds to evaluate f and ∇f  , respectively; it takes 0.076 seconds to compute the
tentative iterate, and 0.036 seconds to compute the lower bound.

Figure 5 shows the convergence of OSMM with N = 1,000,000 . We can see that
practical accuracy is reached after 50 iterations with suboptimality on the order of 10−5 ,
while it takes 58 iterations to reach high accuracy.

A Appendix

A.1 Details of forming G
k

We form Gk in (3) by adopting a quasi-Newton update given in Fletcher (2005). The
main idea is to divide Gk into two matrices G(1)

k
 and G(2)

k
 , which are the first r1 and the

last r2 = r − r1 columns in Gk , respectively, and update them separately into G(1)

k+1
 and

G
(2)

k+1
 . Then Gk+1 is updated by

�(q) = aTq + 0.5aT (q − b)+,

Gk+1 =
[
G

(1)

k+1
G

(2)

k+1

]
.

Table 5   Solve times in seconds
on the vector news vendor
problem. A dash (“—”) means
the solver failed, either for
numerical reasons, or because it
did not reach the required 10−6
suboptimality in 24 hours

N OSMM MOSEK SCS ECOS

1,000 6.7 120 – –
10,000 11 7,400 – –
100,000 10 – – –
1,000,000 53 – – –

770	 X. Shen et al.

1 3

The detail is as follows. Let sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk) . From the
convexity of f, sT

k
yk ≥ 0 . Suppose that sT

k
yk is not too small such that

where constants 𝜀abs, 𝜀rel > 0 are given. Then r1 is chosen as the largest integer in
[0, r] such that G(1)

k
 satisfies

According to (39) the above holds at least for r1 = 0 , in which case G(1)

k
 degenerates

to 0.
Once r1 is obtained, we define w(1)

k
= (G

(1)

k
)Tsk and w(2)

k
= (G

(2)

k
)Tsk . Then

R
(1)

k
∈ �(r1+1)×(r1+1) is the upper triangular factor in the following R-Q decomposition

(39)sT
k
yk > max(𝜀abs, 𝜀rel‖sk‖2‖yk‖2),

sT
k
yk −

���(G
(1)

k
)Tsk

���
2

2
> 𝜀rel‖sk‖2���yk − G

(1)

k
(G

(1)

k
)Tsk

���2.

20 40 60 80
Iterations

10−5

10−3

10−1

Suboptimality
Gap
Sampling accuracy

20 40 60 80
Iterations

10−2

10−1

100

RMS residual

Fig. 5   Suboptimality, gap, sampling accuracy (top row), and RMS residual (bottom row) on the vector
news vendor problem with N = 1,000,000 . The dotted green and black lines show when high accuracy
and practical accuracy are reached, respectively

771

1 3

Minimizing oracle‑structured composite functions﻿	

and Q(2)

k
∈ �r2×(r2−1) is a set of orthonormal basis orthogonal to w(2)

k
 . The update is

There are some corner cases. If (39) holds and r1 = 0 , then G(1)

k+1
= yk∕

√
sT
k
yk . If

r1 = r − 1 or r1 = r , then G(2)

k+1
 vanishes, and Gk+1 takes the first r columns of G(1)

k+1
.

In cases where (39) does not hold, if ‖w(2)

k
‖2 > 𝜀abs , then we can still define G(2)

k+1

in the same way, and Gk+1 =
[
G

(2)

k+1
0n

]
. Otherwise, Gk+1 = Gk.

It can be easily checked that by the Gk defined as above, the trace of Hk is uni-
formly upper bounded in k.

The default values for the parameters are �abs = 10−8 and �rel = 10−3.

A.2 Details of computing an optimal subgradient of g

Here we show how to compute a subgradient qk+1 ∈ �g(xk+1∕2) satisfying the opti-
mality conditions in (8), which implies (10). This, in turn, is important because it
allows us to compute the stopping criteria described in sect. 2.6.

Since we know the third term on the right-hand side of (8), it suffices to find an
optimal subgradient lk+1∕2

k
∈ �lk(x

k+1∕2) , which is easier. We start by rewriting the
defining problem for xk+1∕2 in a more useful form. Putting (4) and (7) together, we
see that we can alternatively express xk+1∕2 as the solution to the convex problem

with variables x and z ∈ �.
The KKT conditions for problem (40), which are necessary and sufficient for the

points (xk+1∕2, zk+1∕2) and �i, i = max{0, k −M + 1},… , k , to be primal and dual
optimal, are

R
(1)

k
Q

(1)

k
=

⎡
⎢⎢⎢⎣

1√
sT
k
yk−‖w(1)

k
‖2
2

0T
r1

−1√
sT
k
yk−‖w(1)

k
‖2
2

w
(1)

k
Ir1

⎤
⎥⎥⎥⎦
∈ �

(r1+1)×(r1+1),

G
(1)

k+1
=
[
yk G

(1)

k

]
R
(1)

k
, G

(2)

k+1
= G

(2)

k
Q

(2)

k
.

(40)

minimize z + g(x) +
1

2
(x − xk)T (Hk + �kI)(x − xk)

subject to z ≥ f (xi) + ∇f (xi)T (x − xi), for i = max{0, k −M + 1},… , k,

(41)zk+1∕2 ≥ f (xi) + ∇f (xi)T (xk+1∕2 − xi), i = max{0, k −M + 1},… , k;

(42)
k∑

i=max{0,k−M+1}

�i = 1, �i ≥ 0, i = max{0, k −M + 1},… , k;

(43)
zk+1∕2 > f (xi) + ∇f (xi)T (xk+1∕2 − xi) ⟹ 𝛾i = 0, i ∈ max{0, k −M + 1},… , k;

772	 X. Shen et al.

1 3

Here we used the definition of vk to simplify the stationarity condition (44).
Now we claim that

To see this, note that (42) says the �i are nonnegative and sum to one, while (41) and
(43) together imply �i is positive as long as ∇f (xi) is active; this satisfies (9), which
says the subdifferential �lk(xk+1∕2) is the convex hull of the active gradients. There-
fore, re-arranging (44) gives

which shows (10).

A.3 Proof that undamped steps occur infinitely often

Assume that ∇f is Lipschitz continuous with constant L. Also, assume
𝜇max𝜏min > 2L∕(1 − 𝛼) . We show that for any number of iterations k0 , there is
some k ≥ k0 such that tk = 1 . This means that there exists a subsequence (k

�
)∞
�=1

such that tk

�
= 1.

To show the result, we first claim that the line search condition (20) is satisfied
as soon as

We prove the claim later. Taking the claim as a given for now, the main result fol-
lows by deriving a contradiction. To get a contradiction, suppose there exists some
number of iterations k0 such that tk < 1 for each k ≥ k0 . Then, because tk is the larg-
est number satisfying tk = � j ( j ∈ N0 ) and the line search condition, we get that the
line search condition does not hold with tk = 1 , and thus (45) does not hold with
tk = 1 , meaning that 𝜆k < 2L∕(1 − 𝛼) , for each k ≥ k0 . But from (23), we have
�k = min

{
�
k−k0
inc

�k0
,�max

}
 , since we assumed tk < 1 for every k ≥ k0 . Additionally,

from (22), we get �k ≥ �k�min . So, we now have two cases. Either we have
𝜆k ≥ 𝜇max𝜏min > 2L∕(1 − 𝛼) , which is a contradiction with 𝜆k < 2L∕(1 − 𝛼) . Or we
have �k ≥ �

k−k0
inc

�k0
�min , in which case �k−k0

inc
�k0

�min grows exponentially in k; this
means we must have �k ≥ 2L∕(1 − �) , for k sufficiently large, which is again a con-
tradiction. This finishes the proof of the main result.

Now we prove the claim. Observe that

(44)�g(xk+1∕2) + (Hk + �kI)v
k +

k∑
i=max{0,k−M+1}

�i∇f (x
i) ∋0.

l
k+1∕2

k
=

k∑
i=max{0,k−M+1}

�i∇f (x
i) ∈ �lk(x

k+1∕2).

qk+1 = −l
k+1∕2

k
− (Hk + �kI)v

k ∈ �g(xk+1∕2),

(45)tk ≤ 1 − �

2L
�k.

773

1 3

Minimizing oracle‑structured composite functions﻿	

where we used (45) to get the first inequality. We now use the following two facts:
∇f being L-Lipschitz continuous implies that (i) �k is convex in t, and (ii) �′

k
 is

L‖vk‖2-Lipschitz in t. By the first fact (convexity), we have

Adding and subtracting ��
k
(0) gives

The second fact (Lipschitz continuity) yields a bound on the third term on the right-
hand side,

Finally, using (18) and (46) to bound ��
k
(0) and Lt2

k
‖vk‖2

2
 in (47) yields (20), which

implies the line search condition (20) is satisfied, as claimed.
We note that the claim above also implies the following lower bound, which is

used in Sect. 3.1. Observe that if tk indeed satisfies the line search condition, then
we can express tk = � j , where j is the smallest integer such that (45) holds (see
Sect. 2.4). Now consider two cases. If 1 ≤ (1 − �)�k∕(2L) , then we can simply take
j = 0 , so that tk = 1 . On the other hand, if 1 > (1 − 𝛼)𝜆k∕(2L) , then a short calcu-
lation shows that j = ⌈log�((1 − �)�k∕(2L))⌉ , and so j < 1 + log𝛽((1 − 𝛼)𝜆k∕(2L)) ,
giving tk = 𝛽 j > 𝛽(1 − 𝛼)𝜆k∕(2L) . Therefore, to sum up, we have (45) implies that tk
satisfies the inequalities

where we also used the fact that �k ≥ �min�min.

A.4 Proof that the limited memory piecewise affine minorant is accurate enough

Assume that ∇f is Lipschitz continuous with constant L. For the rest of the proof, fix
any k such that tk = 1 . (From Sect. A.3, it is always possible to find at least one such
k.) We will show that for any such k, the limited memory piecewise affine minorant
(4) satisfies the bound (29); because our choice of k was arbitrary, the required result
will then follow.

For any lk+1
k

∈ �lk(x
k+1) , note that adding and subtracting ∇f (xk) in the left-hand

side of (29) easily gives

The Lipschitz continuity of ∇f  , in turn, immediately gives a bound for the first term
on the right-hand side of (49), i.e., we get

(46)Lt2
k
‖vk‖2 ≤ 1 − �

2
�ktk‖vk‖2 ≤ 1 − �

2
tk(v

k)T (Hk + �kI)v
k,

�k(tk) ≤ �k(0) + ��
k
(tk)tk.

�k(tk) ≤ �k(0) + ��
k
(0)tk + (��

k
(tk) − ��

k
(0))tk.

(47)�k(tk) ≤ �k(0) + ��
k
(0)tk + Lt2

k
‖vk‖2.

(48)tk > 𝛽min
{
1,

1 − 𝛼

2L
𝜆k

} ≥ 𝛽min
{
1,

1 − 𝛼

2L
𝜇min𝜏min

}
,

(49)‖∇f (xk+1) − lk+1
k

‖2 ≤ ‖∇f (xk+1) − ∇f (xk)‖2 + ‖∇f (xk) − lk+1
k

‖2.

774	 X. Shen et al.

1 3

using the definition of vk.
Therefore, we focus on the second term on the right-hand side of (49). For this

term, (9) tells us that for any lk+1
k

∈ �lk(x
k+1),

because the maximum of a convex function over a convex polytope is attained
at one of its vertices. The Lipschitz continuity of ∇f again shows that, for any
j ∈ {max{0, k −M + 1},… , k},

To get the third line, we used the fact that the sum on the second line telescopes, and
applied the triangle inequality. To get the fourth line, we used the fact that the aver-
age is less than the max. Putting this last inequality together with (51), we see that

for any lk+1
k

∈ �lk(x
k+1) . Combining (52) and (50) gives (29). This completes the

proof of the result.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M,
Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wat-
tenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on hetero-
geneous systems. https://​www.​tenso​rflow.​org/. Software available from tensorflow.org

Adamson DS, Winant CW (1969) A SLANG simulation of an initially strong shock wave downstream of
an infinite area change. In: Proceedings of the Conference on Applications of Continuous-System
Simulation Languages, pp 231–240

Agrawal A, Verschueren R, Diamond S, Boyd S (2018) A rewriting system for convex optimization prob-
lems. J Control Decision 5(1):42–60

Ahmadi-Javid A (2011) An information-theoretic approach to constructing coherent risk measures. In:
2011 IEEE International Symposium on Information Theory Proceedings, pp 2125–2127. IEEE

Ahmed S, Çakmak U, Shapiro A (2007) Coherent risk measures in inventory problems. Eur J Oper Res
182(1):226–238

ApS M (2019) MOSEK Optimizer API for Python 9.2.40. https://​docs.​mosek.​com/9.​2/​pytho​napi/​index.​
html

(50)
‖∇f (xk+1) − lk+1

k
‖2 ≤ L‖xk+1 − xk‖2 + ‖∇f (xk) − lk+1

k
‖2

≲ ‖vk‖2 + ‖∇f (xk) − lk+1
k

‖2,

(51)‖∇f (xk) − lk+1
k

‖2 ≤ max
j=max{0,k−M+1},…,k

‖∇f (xk) − ∇f (xj)‖2,

‖∇f (xk) − ∇f (xj)‖2 ≤ L‖xk − xj‖2
= L‖(xk − xk−1) + (xk−1 − xk−2) +⋯ + (xj+2 − xj+1) + (xj+1 − xj)‖2
≤ L

k−1�
𝓁=j

‖v𝓁‖2

≲ max
𝓁=j,…,k−1

‖v𝓁‖2.

(52)‖∇f (xk) − lk+1
k

‖2 ≲ max
j=max{0,k−M+1},…,k

‖vj‖2,

https://www.tensorflow.org/
https://docs.mosek.com/9.2/pythonapi/index.html
https://docs.mosek.com/9.2/pythonapi/index.html

775

1 3

Minimizing oracle‑structured composite functions﻿	

Armijo L (1966) Minimization of functions having Lipschitz continuous first partial derivatives. Pacific J
Math 16(1):1–3

Asi H, Duchi J (2019) Modeling simple structures and geometry for better stochastic optimization
algorithms. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp
2425–2434

Bagirov A, Karmitsa N, Mäkelä MM (2014) Bundle Methods. Introduction to Nonsmooth Optimization:
Theory, Practice and Software, pp 305–310. Springer International Publishing, Cham. https://​doi.​
org/​10.​1007/​978-3-​319-​08114-4_​12

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Automatic differentiation in machine learn-
ing: a survey. J Mach Learn Res 18(153):1-43

Becker S, Fadili J, Ochs P (2019) On quasi-Newton forward-backward splitting: proximal calculus and
convergence. SIAM J Optim 29(4):2445–2481

Becker S, Fadili MJ (2012) A quasi-Newton proximal splitting method. arXiv preprint arXiv:​1206.​1156
Boyd s, Vandenberghe l (2004) Convex Optimization. Cambridge University Press
Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput

19(92):577–593
Busseti E, Ryu EK, Boyd S (2016) Risk-constrained Kelly gambling. J Invest 25(3):118–134
Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-Newton matrices and their use in lim-

ited memory methods. Math Progr 63(1):129–156
Daníelsson J, Jorgensen BN, Samorodnitsky G, Sarma M, de Vries CG (2013) Fat tails, var and subad-

ditivity. J Econom 172(2):283–291
Daníelsson J, Jorgensen BN, de Vries CG, Yang X (2008) Optimal portfolio allocation under the proba-

bilistic var constraint and incentives for financial innovation. Ann Financ 4(3):345–367
Davidon WC (1959) Variable metric method for minimization. Tech. rep., Argonne National Lab., Lem-

ont, Ill
De Oliveira W, Solodov M (2016) A doubly stabilized bundle method for nonsmooth convex optimiza-

tion. Math Program 156(1–2):125–159
de Oliveira W, Sagastizábal C, Lemaréchal C (2014) Convex proximal bundle methods in depth: a unified

analysis for inexact oracles. Math Program 148(1):241–277
Dennis JE Jr, Moré JJ (1977) Quasi-Newton methods, motivation and theory. SIAM Rev 19(1):46–89
Diamond S, Boyd S (2016) CVXPY: A Python-embedded modeling language for convex optimization.

Journal of Machine Learning Research. http://​stanf​ord.​edu/​~boyd/​papers/​pdf/​cvxpy_​paper.​pdf
Domahidi A, Chu E, Boyd S (2013) ECOS: An SOCP solver for embedded systems. In: European Con-

trol Conference (ECC), pp 3071–3076
Erdogdu MA, Montanari A (2015) Convergence rates of sub-sampled Newton methods. Adv Neur Inf

Process Syst 28:3052–3060
Fletcher R (2005) A new low rank quasi-Newton update scheme for nonlinear programming. In: IFIP

Conference on System Modeling and Optimization, pp 275–293. Springer
Fletcher R, Powell M (1963) A rapidly convergent descent method for minimization. Comput J

6(2):163–168
Frangioni A (2002) Generalized bundle methods. SIAM J Optim 13(1):117–156
Fukushima M (1984) A descent algorithm for nonsmooth convex optimization. Math Program

30(2):163–175
Gao Y, Zhang YY, Wu X (2015) Penalized exponential series estimation of copula densities with an

application to intergenerational dependence of body mass index. Empir Econ 48(1):61–81
Ghanbari H, Scheinberg K (2018) Proximal quasi-Newton methods for regularized convex optimization

with linear and accelerated sublinear convergence rates. Comput Optim Appl 69(3):597–627
Gower R, Le Roux N, Bach F (2018) Tracking the gradients using the hessian: A new look at variance

reducing stochastic methods. In: International Conference on Artificial Intelligence and Statistics,
pp 707–715. PMLR

Grant M, Boyd S (2014) CVX: Matlab software for disciplined convex programming, version 2.1
Grant M, Boyd S, Ye Y (2006) Disciplined convex programming. In: L. Liberti, N. Maculan (eds.) Global

Optimization: From Theory to Implementation, Nonconvex Optimization and its Applications, pp
155–210. Springer

Huang X, Liang X, Liu Z, Li L, Yu Y, Li Y (2020) Span: a stochastic projected approximate newton
method. Proc AAAI Conf Artif Intell 34(02):1520–1527

Hutchinson MF (1989) A stochastic estimator of the trace of the influence matrix for Laplacian smooth-
ing splines. Commun Stat -Sim Comput 18(3):1059–1076

https://doi.org/10.1007/978-3-319-08114-4_12
https://doi.org/10.1007/978-3-319-08114-4_12
http://arxiv.org/abs/1206.1156
http://stanford.edu/%7eboyd/papers/pdf/cvxpy_paper.pdf

776	 X. Shen et al.

1 3

Innes M, Edelman A, Fischer K, Rackauckas C, Saba E, Shah VB, Tebbutt W (2019) A differentiable
programming system to bridge machine learning and scientific computing. arXiv preprint arXiv:​
1907.​07587

Innes M, Saba E, Fischer K, Gandhi D, Rudilosso MC, Joy NM, Karmali T, Pal A, Shah V (2018) Fash-
ionable modelling with Flux. CoRR abs/1811.01457. https://​arxiv.​org/​abs/​1811.​01457

Kelly Jr JL (2011) A new interpretation of information rate. In: The Kelly capital growth investment cri-
terion: theory and practice, pp 25–34. World Scientific

Kiwiel KC (1990) Proximity control in bundle methods for convex nondifferentiable minimization. Math
Program 46(1):105–122

Kiwiel KC (2000) Efficiency of proximal bundle methods. J Optim Theory Appl 104(3):589–603
Lee CP, Wright SJ (2019) Inexact successive quadratic approximation for regularized optimization. Com-

put Optim Appl 72(3):641–674
Lee JD, Sun Y, Saunders MA (2014) Proximal Newton-type methods for minimizing composite func-

tions. SIAM J Optim 24(3):1420–1443
Lemaréchal C (1978) Nonsmooth optimization and descent methods. RR-78-004
Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math Program

69(1):111–147
Lemaréchal C, Sagastizábal C (1997) Variable metric bundle methods: from conceptual to implementable

forms. Math Program 76(3):393–410
Levitin ES, Polyak BT (1966) Constrained minimization methods. USSR Comput Math Math Phys

6(5):1–50
Li J, Andersen MS, Vandenberghe L (2017) Inexact proximal Newton methods for self-concordant func-

tions. Math Methods Oper Res 85(1):19–41
Lukšan L, Vlček J (1998) A bundle-Newton method for nonsmooth unconstrained minimization. Math

Program 83(1):373–391
Maclaurin D, Duvenaud D, Adams RP (2015) Autograd: Effortless gradients in numpy. In: ICML 2015

AutoML Workshop, vol. 238, p. 5
Marsh P (2007) Goodness of fit tests via exponential series density estimation. Comput Stat & Data Anal

51(5):2428–2441
Meyer RA, Musco C, Musco C, Woodruff DP (2021) Hutch++: Optimal stochastic trace estimation. In:

Symposium on Simplicity in Algorithms (SOSA), pp 142–155. SIAM
Mifflin R (1996) A quasi-second-order proximal bundle algorithm. Math Program 73(1):51–72
Mifflin R, Sun D, Qi L (1998) Quasi-Newton bundle-type methods for nondifferentiable convex optimiza-

tion. SIAM J Optim 8(2):583–603
Mordukhovich BS, Yuan X, Zeng S, Zhang J (2020) A globally convergent proximal Newton-type

method in nonsmooth convex optimization. arXiv preprint arXiv:​2011.​08166
Nesterov Y (2013) Gradient methods for minimizing composite functions. Math Program 140(1):125–161
Nolan JF (1953) Analytical differentiation on a digital computer. Ph.D. thesis, Massachusetts Institute of

Technology
Noll D (2013) Bundle method for non-convex minimization with inexact subgradients and function val-

ues. In: Computational and analytical mathematics, pp 555–592. Springer
O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Conic optimization via operator splitting and homoge-

neous self-dual embedding. Journal of Optimization Theory and Applications 169(3):1042–1068.
http://​stanf​ord.​edu/​~boyd/​papers/​scs.​html

O’Donoghue B, Chu E, Parikh N, Boyd S (2019) SCS: Splitting conic solver, version 2.1.2. https://​
github.​com/​cvxgrp/​scs

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang
L, Bai J, Chintala S (2019) PyTorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems 32: pp. 8024–8035. http://​papers.​neuri​ps.​cc/​
paper/​9015-​pytor​ch-​an-​imper​ative-​style-​high-​perfo​rmance-​deep-​learn​ing-​libra​ry.​pdf

Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank &
Financ 26(7):1443–1471

Scheinberg K, Tang X (2016) Practical inexact proximal quasi-Newton method with global complexity
analysis. Math Program 160(1):495–529

Schmidt M, Berg E, Friedlander M, Murphy K (2009) Optimizing costly functions with simple con-
straints: A limited-memory projected quasi-Newton algorithm. In: Artificial Intelligence and Statis-
tics, pp 456–463. PMLR

http://arxiv.org/abs/1907.07587
http://arxiv.org/abs/1907.07587
https://arxiv.org/abs/1811.01457
http://arxiv.org/abs/2011.08166
http://stanford.edu/%7eboyd/papers/scs.html
https://github.com/cvxgrp/scs
https://github.com/cvxgrp/scs
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

777

1 3

Minimizing oracle‑structured composite functions﻿	

Schramm H, Zowe J (1992) A version of the bundle idea for minimizing a nonsmooth function: Concep-
tual idea, convergence analysis, numerical results. SIAM J Optim 2(1):121–152

Sra s, Nowozin S, Wright SJ (2012) Optimization for machine learning. MIT Press
Teo CH, Vishwanathan SVN, Smola A, Le QV (2010) Bundle methods for regularized risk minimization.

J Mach Learn Res 11(1):311–365
Udell M, Mohan K, Zeng D, Hong J, Diamond S, Boyd S (2014) Convex optimization in Julia. In: Pro-

ceedings of the Workshop for High Performance Technical Computing in Dynamic Languages, pp
18–28

Uryasev S, Rockafellar RT (2001) Conditional Value-at-Risk: Optimization Approach, pp 411–435.
Springer US, Boston, MA

Van Ackooij W, Frangioni A (2018) Incremental bundle methods using upper models. SIAM J Optim
28(1):379–410

van Ackooij W, Bello Cruz JY, de Oliveira W (2016) A strongly convergent proximal bundle method for
convex minimization in Hilbert spaces. Optimization 65(1):145–167

Wainwright M, Jordan M (2008) Graphical models, exponential families, and variational inference. Now
Publishers Inc

Wu X (2010) Exponential series estimator of multivariate densities. J Econom 156(2):354–366
Ye H, Luo L, Zhang Z (2017) Approximate Newton methods and their local convergence. In: D. Precup,

Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceed-
ings of Machine Learning Research, vol. 70, pp 3931–3939

Yu J, Vishwanathan SVN, Günter S, Schraudolph NN (2010) A quasi-Newton approach to nonsmooth
convex optimization problems in machine learning. J Mach Learn Res 11:1145–1200

Yue MC, Zhou Z, So AMC (2019) A family of inexact SQA methods for non-smooth convex minimi-
zation with provable convergence guarantees based on the Luo-Tseng error bound property. Math
Program 174(1):327–358

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Xinyue Shen1,2 · Alnur Ali1,3 · Stephen Boyd1

	 Alnur Ali
	 alnurali@stanford.edu

	 Stephen Boyd
	 boyd@stanford.edu

1	 Department of Electrical Engineering, Stanford University, Stanford, USA
2	 SRIBD and FNii, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
3	 Department of Statistics, Stanford University, Stanford, USA

	Minimizing oracle-structured composite functions
	Abstract
	1 Introduction
	1.1 Oracle-structured composite function
	1.2 Practical considerations

	2 Oracle-structured minimization method
	2.1 Approximation of the oracle function
	2.2 Tentative update
	2.3 Descent direction
	2.4 Line search
	2.5 Adjusting the trust parameter
	2.6 Stopping criteria
	2.7 Algorithm summary
	2.8 Implementation
	2.9 Related work

	3 Convergence
	3.1 Convergence
	3.2 A numerical example

	4 Generic applications
	4.1 Stochastic programming
	4.2 Utility maximization
	4.3 Conditional and entropic value-at-risk programming
	4.4 Generic exponential family density fitting

	5 Numerical examples
	5.1 Kelly gambling
	5.2 CVaR portfolio optimization with derivatives
	5.3 Exponential series density estimation
	5.4 Vector news vendor with entropic value-at-risk

	A Appendix
	A.1 Details of forming
	A.2 Details of computing an optimal subgradient of g
	A.3 Proof that undamped steps occur infinitely often
	A.4 Proof that the limited memory piecewise affine minorant is accurate enough

	References

