ORACLE Optimization with Recourse of Analog Circuits including Layout Extraction

Yang Xu, Lawrence T. Pileggi Carnegie Mellon University {yangx,pileggi}@ece.cmu.edu Stephen P. Boyd Stanford University boyd@stanford.edu

Analog/RF IC Cost Crisis

- Analog design risk makes application-specific costs unaffordable for many applications
 - Difficult to predict silicon realities w/o multiple silicon spins
- Regularity and reuse required for predictability and cost
- ORACLE: new optimization framework for creation of an application-domain-specific design fabric

ORACLE Methodology

- Optimization for configurable analog/RF circuits
 - Initial focus is on BEOL mask configurable fabrics
 - Note that configurations are not limited to original scenarios

Two-stage design process

Divide circuit design process into 2 stages

- 1. Optimize for representative set of applications based on chosen circuit topology and shared design variables
- 2. Given common design fabric based on shared variables, optimally map a circuit design for a specific application

Methodology relies on efficient optimization formulation

- Stage 1 requires exploring large design space for many design scenarios
- Importantly, modeling accuracy is not critical for stage 1 to define fabric
- Detailed models and characterizations req'd for stage 2

Geometric Program with Recourse (GPR)

GPR formulation is perfect approach for stage 1:

minimize
$$F_0(x, z_1, ..., z_S)$$

subject to $F_i(x, z_i) \le 1$, $i = 1, ..., m$,
 $G_i(x, z_i) = 1$, $i = 1, ..., p$,
 $x_i > 0$, $i = 1, ..., n$,
 $z_i > 0$, $i = 1, ..., q$.

Where $F_i(x,z)$ are posynomial and $G_i(x,z)$ are monomial

- GPR complexity grows linearly with number of scenarios
- Each individual design (scenario) is formulated and solved as a GP problem

SiGe Low Noise Amplifier Example

- Selection of circuit topology and shared design variables is key
- Shared variables:
 - Emitter length and width
 - Inductor outer dimension
 - Biasing BJT multipliers
 - Biasing Resistors
 - Decoupling caps
- Application-specific variables:
 - BJT multiplier
 - Inductor turns
 - Bias current and tuning caps

Frequency scalable LNA topology

- Individual GP formulations for each scenarios:
 - 12 design variables
 - 28 inequality constraints
 - Solved using MOSEKTM MATLAB toolbox
- Input and output center frequency tunable
- SiGe BJT minimal NF is frequency scalable:

 $NF_{min} \propto f$, when $f << f_T$

Center frequency configurable LNAs

- Consider center frequencies from 900MHz to 2.1GHz
 - 13 design scenarios (200Mhz increments)
 - 5+7×13 = 96 design variables
 - 28 ×13 = 364 design constraints
 - Objective: Noise Figure
- 13 custom designs produced as benchmark
- Performance comparable to custom designs with sufficient margin

Power and gain configurable example

- 128 design scenarios by varying power and gain specifications
 - Power spec: 12.5→20mW by 0.5mW
 - Gain spec: 10→24dB by 2dB
- Resulting GPR problem
 - 8×16=128 design scenarios
 - **■** 5+7×128 = 901 design variables
 - **■** 28 ×128 = 3584 design constraints
 - Objective: Noise Figure
- 128 custom designs produced as benchmark
- Efficiency
 - 1.5sec for 128 configurable design in 1.4GHz P4 machine

Configurable CMOS LNA example

- Vary center frequency from 1.5→5.5GHz by 500MHz
 - 9 design scenarios
- Objective: NF design surcharge
- NF's comparable to custom designs

Configurable RF front-end silicon validation

- 0.25μm 1P6M SiGe BiCMOS process (47GHz f_T NPN BJT)
- Targeted for 1.5GHz GPS, 2.1GHz WCDMA and 5GHz 802.11a applications
- Mapped to fabric via detailed simulation and extraction models

Regular Analog/RF IC Design Flow

- Includes silicon characterization into the design flow
- Offers reuse at the fabrics level
- Simplifies applicationspecific design cost and risk

Extracted
characterization
data from
implementation
fabric

Select design scenarios to cover a domain of applications

Formulate optimization problem in terms of shared and application-specific variables

Optimize all scenarios for shared variables for fabric construction

Refine original models to include extracted characterization data

Re-optimize for a specific scenario to find design specific variables for metal mask construction

Conclusions

- Configurable analog/RF circuits are required for many applications
 - Reduce design risk and manufacturing cost
- ORACLE proposed for optimization framework
 - Initial focus on mask configurable RF front-end circuits
 - Examples demonstrate promising possibilities
- Extending ORACLE to perform design centering to improve yield