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Abstract. We consider a linear system, such as an estimator or a con-
troller, in which several signals are transmitted over wireless commu-
nication channels. With the coding and medium access schemes of the
communication system fixed, the achievable bit rates are determined by
the allocation of communications resources such as transmit powers and
bandwidths, to different channels. Assuming conventional uniform quan-
tization and a standard white-noise model for quantization errors, we
consider two specific problems. In the first, we assume that the linear
system is fixed and address the problem of allocating communication re-
sources to optimize system performance. We observe that this problem
is often convex (at least, when we ignore the constraint that individual
quantizers have an integral number of bits), hence readily solved. We
describe a dual decomposition method for solving these problems that
exploits the problem structure. We briefly describe how the integer bit
constraints can be handled, and give a bound on how suboptimal these
heuristics can be. The second problem we consider is that of jointly allo-
cating communication resources and designing the linear system in order
to optimize system performance. This problem is in general not convex.
We present an iterative heuristic method based on alternating convex
optimization over subsets of variables, which appears to work well in
practice.

1 Introduction

We consider a linear system in which several signals are transmitted over wire-
less communication links, as shown in figure [l All signals are vector-valued: w
is a vector of exogenous signals (such as disturbances or noises acting on the
system); z is a vector of performance signals (including error signals and actu-
ator signals); and y and y, are the signals transmitted over the communication
network, and received, respectively. This general arrangement can represent a
variety of systems, for example a controller or estimator in which sensor, ac-
tuator, or command signals are sent over wireless links. It can also represent a
distributed controller or estimator, in which some signals (i.e., inter-process com-
munication) are communicated across a network. In this paper, we address the
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problem of optimizing the stationary performance of the linear system by jointly
allocating resources in the communication network and tuning the parameters
of the linear system.
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Fig. 1: System set-up (left) and uniform quantization model (right).

Many issues arise in the design of networked controllers and the associated
communication systems, including bit rate limitations [WB99, INEQQ, [TSM9]],
communication delays [NBW98|, data packet loss [XHHO0], transmission errors
[SSK99], and asynchronicity [Ozg89]. In this paper we consider only the first is-
sue, i.e., bit rate limitations. In other words, we assume that each communication
link has a fixed and known delay (which we model as part of the LTI system),
does not drop packets, transfers bits without error, and operates (at least for
purposes of analysis) synchronously with the discrete-time linear system.

The problem of control with bit-rate limitations has achieved a lot of atten-
tion recently. Much of the research has concentrated on joint design of con-
trol and coding to find the minimum bit rate required to stabilize a linear
system. For example, [WB99] and [NE9S8| established various closed-loop sta-
bility conditions involving the feedback data rate and eigenvalues of the open-
loop system, while [BM97) [TSM98| studied control with communication con-
straints within the classical linear quadratic Gaussian framework. Closely re-
lated is also the research on control with quantized feedback information, see
[Cur70], Del90l K94, [BLOO, EMO1].

Our focus is different. We assume that the source coding, channel coding
and medium access scheme of the communication system are fixed and concen-
trate on finding the allocation of communications resources (such as transmit
powers and bandwidths) and linear system parameters that yields the optimal
closed-loop performance. For a fixed sampling frequency of the linear system,
the limit on communication resources translates into a constraint on the num-
ber of bits that can be transmitted over each communication channel during
one sampling period. We assume that the individual signals y; are coded using
conventional memoryless uniform quantizers, as shown in figure [l This coding
scheme is certainly not optimal (see, e.g., [WB97, NE9S]), but it is conventional,
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easily implemented, and leads to a simple model of how the system performance
depends on the bit-rates. In particular, by imposing lower bounds on the number
of quantization bits, we ensure that data rates are high enough for stabilization
and that the white-noise model for quantization errors introduced by Widrow
(see [WKLI6| and the references therein) is valid. This approach has clear links
to the research in the signal processing literature on allocation of bits in linear
systems with quantizers. The main effort of that research has been to derive
analysis and design methods for fixed-point filter and controller implementa-
tions, (see [WilRH, WKRI| [SWA0]). However, joint optimization of communica-
tions resource allocation and linear system design, interacting through bit rate
limitations and quantization, has not been addressed in the literature before.
Even in the simplified setting under our assumptions, the joint optimization
problem is quite nontrivial and its solution requires concepts and techniques
from communication, control, and optimization.

We address to specific problems in this paper. First, we assume the linear
system is fixed and consider the problem of allocating communication resources
to optimize the overall system performance. We observe that this problem is
often convex, provided we ignore the constraint that the number of bits for each
quantizer is an integer. This means that these communication resource allocation
problems can be solved efficiently, using a variety of convex optimization tech-
niques. We describe a general approach for solving these problems based on dual
decomposition. The method results in very efficient procedures for solving for
many communication resource allocation problems, and reduces to well known
water-filling in simple cases. We also show several methods that can be used to
handle the integrality constraint. The simplest is to round down the number of
bits for each channel to the nearest integer. We show that this results in an allo-
cation of communication resources that is feasible, and at most a factor of two
suboptimal in terms of the RMS (root-mean-square) value of critical variable
z. We also describe a simple and effective heuristic that often achieves perfor-
mance close to the bound obtained by solving the convex problem, ignoring the
integrality constraints.

The second problem we consider is the problem of jointly allocating commu-
nication resources and designing the linear system in order to optimize perfor-
mance. Here we have two sets of design variables: the communication variables
(which indirectly determine the number of bits assigned to each quantizer), and
the controller variables (such as estimator or controller gains in the linear sys-
tem). Clearly the two are strongly coupled, since the effect of quantization errors
depends on the linear system, and similarly, the choice of linear system will affect
the choice of communication resource allocation. We show that this joint prob-
lem is in general not convex. We propose an alternating optimization method
that exploits problem structure and appears to work well in practice.

The paper is organized as follows. In 2] we describe the linear system and our
model for the effect of uniform quantization error on overall system performance.
In §3] we describe a generic convex model for the bit rate limitations imposed
by communication systems, and describe several examples. In 4l we formulate
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the communication resource allocation problem for fixed linear systems, describe
the dual decomposition method which exploits the separable structure, and give
a heuristic rounding method to deal with the integrality of bit allocations. In §5]
we demonstrate the nonconvexity of the joint design problem, and give a iterative
heuristic to solve such problems. Two examples, a networked linear estimator
and a LQG control system over communication networks, are used to illustrate
the optimization algorithms in §4 and §5. We conclude the paper in §6l

2 Linear System and Quantizer Model

2.1 Linear System Model

To simplify the presentation we assume a synchronous, single-rate discrete-time
system. The linear time-invariant (LTI) system can be described as

z=Gu(@)w+ Gy,  y=Galp)w+ Ga(p)y:, (1)

where G;; are LTI operators (i.e., convolution systems described by transfer
or impulse matrices). Here, ¢ € R? is the vector of design parameters in the
linear system that can be tuned or changed to optimize performance. To give
lighter notation, we suppress the dependence of G;; on ¢ except when necessary.
We assume that y(t), y.(t) € RM | i.e., the M scalar signals y1,...,ya are
transmitted over the network during each sampling period.

We assume that the signals sent (i.e., y) and received (i.e., y,.) over the
communication links are related by memoryless scalar quantization, which we
describe in detail in the next subsections. This means that all communication
delays are assumed constant and known, and included in the LTT system model.

2.2 Quantization Model

Unit Uniform Quantizer A unit range uniform b;-bit quantizer partitions
the range [—1,1] into 2% intervals of uniform width 2'=%. To each quantization
interval a codeword of b bits is assigned. Given a received codeword, the input
signal y; is approximated by (or reconstructed as) y,, the midpoint of the in-
terval. As long as the quantizer does not overflow (i.e., as long as |y;| < 1), the
relationship between original and reconstructed values can be expressed as

round (2%~ 1y;)
Qv (y:) = T

and the quantization error y,; — y; lies in the interval £27%.

The behavior of the quantizer when y; overflows (i.e., |y;| > 1) is not specified.
One approach is to introduce two more codewords, corresponding to negative and
positive overflow, respectively, and to extend @y, to saturate for |y;| > 1. The
details of the overflow behavior will not affect our analysis or design, since we
assume by appropriate scaling (described below) that overflow does not occur,
or occurs rarely enough to not affect overall system performance.
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Scaling To avoid overflow, each signal y;(t) is scaled by the factor s; 1> 0 prior
to encoding with a unit uniform b;-bit quantizer, and re-scaled by the factor s;
after decoding (figure B, so that

Yri(t) = 5:Qv, (yi(t) /1)
The associated quantization error is given by
qi(t) = yri(t) — yi(t) = sil, (yi(t)/s:),

which lies in the interval 4s5,27%  provided |y;(t)| < s;.

Fig. 2: Scaling before and after the quantizer.

To minimize quantization error while ensuring no overflow (or ensuring that
overflow is rare) the scale factors s; should be chosen as the maximum possible
value of |y;(t)|, or as a value that with very high probability is larger than |y;(t)|.
For example, we can use the so-called 3o-rule,

s; = 3rms(y;),

where rms(y;) denotes the root-mean-square value of y;,

. 1/2
rms(y;) = (tlggo Eyi(t)Q)

If y; has a Gaussian amplitude distribution, this choice of scaling ensures that
overflow occurs only about 0.3% of the time.

White-Noise Quantization Error Model We adopt the standard stochas-
tic quantization noise model introduced by Widrow (see, e.g., [FPW90, Chap-
ter 10]). Assuming that overflow is rare, we model the quantization errors g;(t)
as independent random variables, uniformly distributed on the interval

si[—270 270,

In other words, we model the effect of quantizing y;(t) as an additive white noise
source ¢;(t) with zero mean and variance E ¢;(t)? = (1/3)s2272% see figure Bl
When allocating bits to quantizers, we will impose a lower bound on each b;.
This value should be high enough for stabilizing the closed-loop system (cf.
[WB99| INE00O]) and make the white noise model a reasonable assumption in a
feedback control context (cf. [WKL96, FPWI0]).
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Fig. 3: LTI system with white noise quantization noise model.

2.3 Performance of the Closed-Loop System

We can express z and y in terms of the inputs w and ¢ as
2= Grpw + G4, Y = Gyow + Gyqq,

where G, G.q, Gy and G4 are the closed-loop transfer matrices from w and
q to z and y, respectively. From the expression for z, we see that it consists of
two terms: G, w, which is what z would be if the quantization were absent, and
G.qq, which is the component of z due to the quantization. The variance of z
induced by the quantization is given by

M
1 5. o
Vi =BlGaal? = 3 Gl (372 @)
i=1
where G4 is the ith column of the transfer matrix G4, and || - || denotes

the L? norm (see [BB91l §5.2.3]). We can use V, as a measure of the effect
of quantization on the overall system performance. If w is also modeled as a
stationary stochastic process, the overall variance of z is given by

V=E|* =V, +E|G.w|* (3)

The above expression shows how V;; depends on the allocation of quantizer bits
b1,...,ba, as well as the scalings s1,..., sy and LTI system (which affect the
a;’s). Note that while the formula (2) was derived assuming that b; are integers,
it makes sense for b; € R.

3 Communications Model and Assumptions

3.1 A Generic Model for Bit Rate Constraints

The capacity of communication channels depend on the media access scheme
and the selection of certain critical parameters, such as transmission powers and
bandwidths or time-slot fractions allocated to individual channels (or groups of
channels). We refer to these critical communication parameters collectively as
communication variables, and denote the vector of communication variables by 6.
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The communication variables are themselves limited by various resource con-
straints, such as limits on the total power or total bandwidth available. We will
assume that the medium access methods and coding and modulation schemes are
fixed, but that we can optimize over the underlying communication variables 6.

We let b € RM denote the vector of bits allocated to each quantized signal.
The associated communication rate r; (in bits per second) can be expressed as
b; = ar;, where the constant « has the form a = ¢,/ f;. Here f is the sample
frequency, and ¢, is the channel coding efficiency in source bits per transmission
bit. This relationship will allow us to express capacity constraints in terms of
bit allocations rather than communication rates.

We will use the following general model to relate the vector of bit allocations
b, and the vector of communication variables 6:

fi(b,e)go, i=1,...,mf
hf@gdi,izl,...,mh (4)

91'20, i=1,...,m9

by < bi<by,i=1,....M

We make the following assumptions about this generic model.

— The functions f; are convex functions of (b, ), monotone increasing in b and
monotone decreasing in 6. These inequalities describe capacity constraints
on the communication channels. We will show below that many classical
capacity formula satisfy these assumptions.

— The second set of constraints describes resource limitations, such as a total
available power or bandwidth for a group of channels. We assume the vectors
h; have nonnegative entries. We assume that d;, which represent resource
limits, are positive.

— The third constraint specifies that the communication resource variables
(which represent powers, bandwidths, time-slot fractions) are nonnegative.

— The last group of inequalities specify lower and upper bounds for each bit
allocation. We assume that b, and b; are (nonnegative) integers. The lower
bounds are imposed to ensure that the white noise model for quantization
errors is reasonable. The upper bounds can arise from hardware limitations.

This generic model will allow us to formulate the communication resource al-
location problem, i.e., the problem of choosing 6 to optimize overall system
performance, as a convex optimization problem.

There is also one more important constraint on b not included above:

b; is an integer, i=1..., M. (5)

For the moment, we ignore this constraint. We will return to it in §4:2

3.2 Capacity Constraints

In this section, we describe some simple channel models and show how they fit
the generic model (@) given above. More detailed descriptions of these channel
models, as well as derivations, can be found in, e.g., [CT91 [Gol99].
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Gaussian Channel We start by considering a single Gaussian channel. The
communication variables are the bandwidth W > 0 and transmission power
P > 0. Let N be the power spectral density of the additive white Gaussian noise
at the front-end of the receiver. The channel capacity is given by ([CT91])

r
R=W1I1 14+ ——
082 ( + NW)
(in bits per second). The achievable communication rate r is bounded by this
channel capacity, ¢.e., we must have r < R. Expressed in terms of b, we have

P
< — | .
b < aW log, <1 + NW) (6)

We can express this in the form

P
b,W,P)=b—aW1l 1+——]<0
f(7 ’ ) @ Og2(+NW)_a
which fits the generic form (H). To see that the function f is jointly convex in
the variables (b, W, P), we note that the function g(P) = —alog,(1+ P/N) is a
convex function of P and, therefore its perspective function (see [BV04])

P
P =— 1 14+ —
Wg(P/W) aW og2< + NW>
is a convex function of (P,WW). Adding the linear (hence convex) function b
establishes convexity of f. It is easily verified that f is monotone increasing in
b, and monotone decreasing in W and P.

Gaussian Broadcast Channel with FAMA In the Gaussian broadcast chan-
nel with frequency-domain multiple access (FDMA), a transmitter sends infor-
mation to n receivers over disjoint frequency bands with bandwidths W; > 0.
The communication parameters are the bandwidths W; and the transmit powers
P; > 0 for each individual channel. The communication variables are constrained
by a total power limit

P1++Pn gPtot

and a total available bandwidth limit
Wi+ -+ Wy < Wi,

which have the generic form for communication resource limits.

The receivers are subject to independent white Gaussian noises with power
spectral densities INV;. The transmitter assigns power P; and bandwidth W; to
the ith receiver. The achievable bit rates b are constrained by

P; .
b; < aW,;log, <1+NiWi), i=1,...,n. (7)

Again, the constraints relating b and 8 = (P, W) have the generic form (H).
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Gaussian Multiple Access Channel with FDMA In a Gaussian multiple
access channel with FDMA, n transmitters send information to a common re-
ceiver, each using a transmit power P; over a bandwidth W;. It has the same
set of constraints as for the broadcast channel, except that N; = N,i=1,...,n
(since they have a common receiver).

Variations and Extensions The capacity formulas for many other channel
models, including the Parallel Gaussian channel, Gaussian broadcast channel
with TDMA and the Gaussian broadcast channel with CDMA, are also concave
in communications variables and can be included in our framework. It is also
possible to combine the channel models above to model more complex commu-
nication systems. Finally, channels with time-varying gain variations (fading) as
well as rate constraints based on bit error rates (with or without coding) can be
formulated in a similar manner; see, e.g., [LGO1l [CGO1].

4 Optimal Resource Allocation for Fixed Linear System

In this section, we assume that the linear system is fixed and consider the prob-
lem of choosing the communication variables to optimize the system perfor-
mance. We take as the objective (to be minimized) the variance of the perfor-
mance signal z, given by (B)). Since this variance consists of a fixed term (related
to w) and the variance induced by the quantization, we can just as well minimize
the variance of z induced by the quantization error, i.e., the quantity V; defined
in @). This leads to the optimization problem

minimize Y ;272

subject to f;(b,8) <0, i=1,...,my
Rfo <d;, i=1,....,mp (8)
91'20, i:l,...,mg
b; <b;<by, i=1,....M

where a; = (1/3)]|G.4:]|?s?, and the optimization variables are 6 and b. For the
moment we ignore the constraint that b; must be integers.

Since the objective function, and each constraint function in the problem ()
is a convex function, this is a convex optimization problem. This means that it
can be solved globally and efficiently using a variety of methods, e.g., interior-
point methods (see, e.g., [BV04]). In many cases, we can solve the problem ()
more efficiently than by applying general convex optimization methods by ex-
ploiting its special structure. This is explained in the next subsection.

4.1 The Dual Decomposition Method

The objective function in the communication resource allocation problem (8] is
separable, i.e., a sum of functions of each b;. In addition, the constraint func-
tions fi (b, #) usually involve only one b;, and a few components of 6, since the
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channel capacity is determined by the bandwidth, power, or time-slot fraction,
for example, allocated to that channel. In other words, the resource allocation
problem (B) is almost separable; the small groups of variables (that relate to a
given link or channel) are coupled mostly through the resource limit constraints
hT6 < d;. These are the constraints that limit the total power, total bandwidth,
or total time-slot fractions.

This almost separable structure can be efficiently exploited using a technique
called dual decomposition (see, e.g., [BV04, Ber99]). We will explain the method
for a simple FDMA system to keep the notation simple, but the method applies to
any communication resource allocation problem with almost separable structure.
We consider an FDMA system with M channels, and variables P € RM and
W e RM7 with a total power and a total bandwidth constraint. We will also
impose lower and upper bounds on the bits. This leads to

e . M —2b;
minimize ) ", a;27°"
subject to b; < aW;logy(1 + P,/NW;), i=1,...,.M
P>0, i=1,....M
ZiAilPiSPtoc 9)
W,>0, i=1,...,M
Zylwi_gwtot

|
IA

Here N; is the receiver noise spectral density of the ith channel, and b; and b;
are the lower and upper bounds on the number of bits allocated to each channel.
Except for the total power and total bandwidth constraint, the constraints are
all local, i.e., involve only b;, P;, and W;.

We first form the Lagrange dual problem, by introducing Lagrange multipli-
ers but only for the two coupling constraints. The Lagrangian has the form

M M M
L(b,P,W,\, p) = Zaﬂ_%* + A <Za - Ptot> + 1 (Z W, — Wtot> .
=1 =1 =1

The dual function is defined as

M
= Zgl(Aa M) - )\Ptot - NWtot
1=1

where
gi(\, p) = inf {%27%1’ + AP + pW;
P >0, W; >0, by <b; <b;, b; < aW;logy(1+ Pi/NiWi)}-
Finally, the Lagrange dual problem associated with the communication re-
source allocation problem (@) is given by

maximize g(\, p)

subject to A >0, p>0. (10)
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This problem has only two variables, namely the variables A\ and p associated
with the total power and bandwidth limits, respectively. It is a convex optimiza-
tion problem, since g is a concave function (see [BV04]). Assuming that Slater’s
condition holds, the optimal value of the dual problem ([[0) and the primal prob-
lem (@) are equal. Moreover, from the optimal solution of the dual problem, we
can recover the optimal solution of the primal. Suppose (\*, u*) is the solution
to the dual problem (I0)), then the primal optimal solution is the minimizer
(b*, P*,WW*) when evaluating the dual function g(A\*,u*). In other words, we
can solve the original problem (@) by solving the dual problem (I).

The dual problem can be solved using a variety of methods, for example,
cutting-plane methods. To use these methods we need to be able to evaluate the
dual objective function, and also obtain a subgradient for it (see [BV04]), for
any given p > 0 and A > 0. To evaluate g(A, 1), we simply solve the M separate
problems,

minimize @;272% + \P; + pW;
subject to P, > 0, W; > 0,
by < b; < b,

each with three variables, which can be carried out separately or in parallel.
Many methods can be used to very quickly solve these small problems.

A subgradient of the concave function g at (A, u) is a vector h € R? such

that B

T - A=A

g R) < g(A, +hT|:~ ]

(A1) < g(A ) i

for all A and 1. To find such a vector, let the optimal solution to the subproblems

be denoted

bi(A ), PE(A ), WA ).

Then, a subgradient of the dual function g is readily given by

2%1 PZ-*(M w) — Prot
Zi=1 wr (>‘a ,U) — Wiot

This can be verified from the definition of the dual function.

Putting it all together, we find that we can solve the dual problem in time
linear in M, which is far better than the standard convex optimization methods
applied to the primal problem, which require time proportional to M?3.

The same method can be applied whenever there are relatively few coupling
constraints, and each link capacity is dependent on only a few communication
resource parameters. In fact, when there is only one coupling constraint, the sub-
problems that we must solve can be solved analytically, and the master problem
becomes an explicit convex optimization problem with only one variable. It is
easily solved by bisection, or any other one-parameter search method. This is
the famous water-filling algorithm (see, e.g., [CT91]).
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4.2 Integrality of Bit Allocations

We now come back to the requirement that the bit allocations must be integers.
The first thing we observe is that we can always round down the bit allocations
found by solving the convex problem to the nearest integers. Let b; denote the
optimal solution of the convex resource allocation problem (B), and define b; =
|bi]. Here, |b;] denotes the floor of b;, i.e., the largest integer smaller than or
equal to b;. First we claim that b is feasible. To see this, recall that fi and hy
are monotone decreasing in b, so since b is feasible and b< b, we have b feasible.

We can also obtain a crude performance bound for b. Clearly the objective
value obtained by ignoring the integer constraint, i.e.,

M

—2b;

vax: E ai2 )
=1

is a lower bound on the optimal objective value J,p of the problem with integer
constraints. The objective value of the rounded-down feasible bit allocation b is

M M
Jrnd = Zai272bi < Zai272(bi71) = 4vax S 4J0pta

i=1 i=1
using the fact that b; > b; — 1. Putting this together we have
Jopt § Jrnd § 4Jopt7

i.e., the performance of the suboptimal integer allocation obtained by rounding
down is never more than a factor of four worse than the optimal solution. In
terms of RMS, the rounded-down allocation is never more than a factor of two
suboptimal.

Variable Threshold Rounding Of course, far better heuristics can be used
to obtain better integer solutions. Here we give a simple method based on a
variable rounding threshold.

Let 0 < t <1 be a threshold parameter, and round b; as follows:

w [ bs),if by — [bi] <t
bi = { [b;], otherwise. (11)

Here, [b;] denotes the ceiling of b;, i.e., the smallest integer larger than or equal
to b;. In other words, we round b; down if its remainder is smaller than or equal
to the threshold ¢, and round up otherwise. When ¢ = 1/2, we have standard
rounding, with ties broken down. When ¢ = 1, all bits are rounded down, as
in the scheme described before. This gives a feasible integer solution, which we
showed above has a performance within a factor of four of optimal. For ¢ < 1
feasibility of the rounded bits b is not guaranteed, since bits can be rounded up.
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For a given fixed threshold ¢, we can round the b;’s as in (1), and then solve
a convex feasibility problem over the remaining continuous variables 6:

W7o < d, (12)
6; >0

The upper and lower bound constraints b; < l~)l < b; are automatically satisfied
because b; and b; are integers. If this problem is feasible, then the rounded b;’s
and the corresponding 6 are suboptimal solutions to the integer constrained bit
allocation problem.

Since f; is monotone increasing in b, hence in ¢, and monotone decreasing in 6,
there exists a t* such that ([I2)) is feasible if ¢ > ¢* and infeasible if ¢ < ¢*. In the
variable threshold rounding method, we find ¢*, the smallest ¢ which makes ([2)
feasible. This can be done by bisection over ¢: first try ¢ = 1/2. If the resulting
rounded bit allocation is feasible, we try t = 1/4; if not, we try t = 3/4, etc.

Roughly speaking, the threshold ¢ gives us a way to vary the conservativeness
of the rounding procedure. When ¢ is near one, almost all bits are rounded down,
and the allocation is likely to be feasible. When ¢ is small, we round many bits
up, and the bit allocation is unlikely to be feasible. But if it is, the performance
(judged by the objective) will be better than the bit allocation found using more
conservative rounding (i.e., with a larger ¢). A simple bisection procedure can
be used to find a rounding threshold close to the aggressive one that yields a
feasible allocation.

4.3 Example: Networked Linear Estimator

To illustrate the ideas of this section, we consider the problem of designing a
networked linear estimator with the structure shown in figure @l We want to
estimate an unknown point z € R?® using M = 200 linear sensors,

yi:ciT:EJrvi, i=1,...,M.

Each sensor uses b; bits to code its measurements and transmits the coded signal
to a central estimator over a Gaussian multiple access channel with FDMA.
The performance of the estimator is judged by the estimation error variance
Jrk = E||2 — x||?. We assume that ||z| < 1 and that the sensor noises v; are

l v
T Czx Xy | Multiple Access Yr
o) >

x
> C > » g1 Estimator ~ |——
Channel

Y
W
Y

Fig. 4: Networked linear estimator over a multiple access channel

1D with Ev; = 0, Ev? = 1075, In this example, the sensor coefficients ¢; are
uniformly distributed on [0, 5]. Since ||z|| < 1, we choose scaling factors s; = ||¢;]|.
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The noise power density of the Gaussian multiple access channel is N = 0.1,
the coding constant is a = 2, and the upper and lower bounds for bit allocations
areb = 5 and b = 12. The total available power is P = 300 and the total available
bandwidth is W = 200.

The estimator is a linear unbiased estimator

= Kyra
where KC = I, with C = [cy,...,ca]T. In particular, the minimum variance
estimator is given by
K = (CT(R, + Ry)™'C) "' CT(R, + Ry) ™! (13)

where R, and R, are the covariance matrices for the sensor noises and quan-
tization noises, respectively. (Note that the estimator gain depends on the bit
allocations.) The associated estimation error variance is

1 M

Jk (b) = 3 > sPllkil*27% + Tr (KR, K™)
=1

where k; is the ith column of the matrix K. Clearly, Jx(b) is on the form (@)
and will serve as the objective function for the resource allocation problem (8).

First we allocate power and bandwidth evenly to all sensors, which results
in b; = 8 for each sensor. Based on this allocation, we compute the quantiza-
tion noise variances E ¢? = (1/3)s2272% and design a least-squares estimator as
in ([3). The resulting RMS estimation error is 3.676 x 1073. Then we fix the
estimator gain K, and solve the relaxed optimization problem (&) to find the
resource allocation that minimizes the estimation error variance. The resulting
RMS value is 3.1438 x 10~3. Finally, we perform a variable threshold rounding
with ¢* = 0.4211. Figure Bl shows the distribution of rounded bit allocation. The
resulting RMS estimation error is 3.2916 x 1072, Thus, the allocation obtained
from optimization and variable threshold rounding gives a 10% improved perfor-
mance compared to the unirform resource allocation, which is not very far from
the performance bound given by the relaxed convex optimization problem.

We can see that the allocation obtained from optimization and variable
threshold rounding give a 10% improved performance compared to the uniform
resource allocation, and is not very far from the performance bound given by
the relaxed convex optimization problem.

Note that with the new bit allocations, the quantization covariance changes
— it is not the one that was used to design K. We will address this issue of the
coupling between the choice of the communication variables and the estimator.

5 Joint Design of Communication and Linear Systems

We have seen that when the linear system is fixed, the problem of optimally
allocating communication resources is convex (when we ignore integrality of bit
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Fig. 5: Bit allocation for networked least-squares estimator.

allocations), and can be efficiently solved. In order to achieve the optimal system
performance, however, one should optimize the parameters of the linear system
and the communication system jointly. Unfortunately, this joint design problem
is in general not convex. In some cases, however, the joint design problem is
bi-convex: for fixed resource allocation the controller design problem is convex,
and for fixed controller design and scalings the resource allocation problem is
convex. This special structure can be exploited to develop a heuristic method
for the joint design problem, that appears to work well in practice.

5.1 Nonconvexity of the Joint Design Problem

To illustrate that the joint design problem is nonconvex, we consider the problem
of designing a simple networked least-squares estimator for an example small
enough that we can solve the joint problem globally.

An unknown scalar parameter x € R is measured using two sensors that are
subject to measurement noises:

Y1 = x + v, Y2 = X + V2.

We assume that v, and v, are independent zero-mean Gaussian random variables
with variances Ev} = Ev3 = 0.001. The sensor measurements are coded and
sent over a communication channel with a constraint on the total bit rate. With
a total of byot bits available we allocate by bits to the first sensor and the by =
biot — b1 remaining bits to the second sensor. For a given bit allocation, the
minimum-variance unbiased estimate can be found by solving a weighted least-
squares problem. Figure[6l shows the optimal performance as function of by when
biot = 8 and byt = 12. The relationship is clearly not convex.

These figures, and the optimal solutions, make perfect sense. When by = 8,
the quantization noise is the dominant noise source, so one should allocate all 8
bits to one sensor and disregard the other. When b,y = 12, the quantization
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Fig. 6: Estimator performance for b1 + b2 = 8 (top) and b1 + b2 = 12 (bottom).

noises are negligible in comparison with the sensor noise. It is then advantageous
to use both sensors (i.e., assign each one 6 bits), since it allows us to average
out the effect of the measurement noises.

5.2 Alternating Optimization for Joint Design

The fact that the joint problem is convex in certain subsets of the variables
while others are fixed can be exploited. For example (and ignoring the integral-
ity constraints) the globally optimal communication variables can be computed
very efficiently, sometimes even semi-analytically, when the linear system is fixed.
Similarly, when the communication variables are fixed, we can (sometimes) com-
pute the globally optimal variables for the linear system. Finally, when the linear
system variables and the communication variables are fixed, it is straightforward
to compute the quantizer scalings using the 3o-rule. This makes it natural to
apply an approach where we sequentially fix one set of variables and optimize
over the others:

given initial linear system variables ¢(°), communication variables (°), and
scaling factors s(9).
k=0
repeat
1. Fix ¢, s() and optimize over 6. Let 0*T1) be the optimal value.
2. Fix 05+ () and optimize over ¢. Let ¢*t1 be the optimal value.
3. Fix ¢+ g+ Tet sk+1) be appropriate scaling factors.
k:=k+1

until convergence
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Many variations on this basic heuristic method are possible. We can, for ex-
ample, add trust region constraints to each of the optimization steps, to limit
the variables changes in each step. Another variation is to convexify (by, for
example, linearizing) the jointly nonconvex problem, and solve in each step us-
ing linearized versions for the constraints and objective terms in the remaining
variables; see, e.g., [HHB99] and the references therein. . We have already seen
how the optimization over 6 can be carried out efficiently. In many cases, the
optimization over ¢ can also be carried efficiently, using, e.g., LQG or some other
controller or estimator design technique.

Since the joint problem is not convex, there is no guarantee that this heuris-
tic converges to the global optimum. On the other hand the heuristic method
appears to work well in practice.

5.3 Example: Networked Linear Estimator

To demonstrate the heuristic method for joint optimization described above,
we apply it to the networked linear estimator described in §431 The design of
the linear system and the communication system couple through the weighting
matrix @ in (I3). The alternating procedure for this problem becomes

given initial estimator gain K (®) and resource allocations (P, W) p(0)),
k:=0
repeat

1. Fix estimator gain K*) and solve the problem (@) to obtain resource
allocation (P*+1) Jy(k+1) pk+1)y,

2. Update the covariance matrix R((Zkﬂ) and compute new estimator gain
K*+1) ag in ([3) using weight matrix QU+ = (R, + RYTH)~1,
k:=k+1

until bit allocation converges.

Note that the scaling factors are fixed in this example, since neither the bit
allocations nor the estimator gain affect the signals that are quantized, hence
the scaling factors.

When we apply the alternating optimization procedure to the example given
in §4.3] the algorithm converges in six iterations, and we obtain very different re-
source allocation results from before. Figure [[lshows the distribution of rounded
bit allocation. This result is intuitive: try to assign as much resources as possible
to the best sensors, and the bad sensors only get minimum number of bits. The
RMS estimation error of the joint design is reduced significantly, 80%, as shown
in Table [ In this table, rms(e) is the total RMS error, rms(e,) is the RMS
error induced by quantization noise, and rms(e,) is the RMS error induced by
sensor noise.

We can see that joint optimization reduces the estimation errors due to both
quantization and sensor noise. In the case of equal resource allocation, the RMS
error due to quantization is much larger than that due to sensor noise. After
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RMS values|equal allocation|joint optimization|variable threshold rounding
rms(e;) | 3.5193 x 107° | 0.3471 x 10~° 0.3494 x 1077
rms(e,) | 1.0617 x 1072 | 0.6319 x 1073 0.6319 x 1073
rms(e) | 3.6760 x 1072 | 0.7210 x 1073 0.7221 x 1073

Table 1: RMS estimation errors of the networked LS estimator.

the final iteration of the alternating convex optimization, the RMS error due
to quantization is at the same level as that due to sensor noise. Also, because
the in the relaxed problem, most bits are integers (either b = 5 or b = 12; see
Figurel7), variable threshold rounding (which gives t* = 0.6797) does not change
the solution, or the performance, much.
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Fig. 7: Joint optimization of bit allocation and least-squares estimator

5.4 Example: LQG Control over Communication Networks

We now give a more complex example than the simple static, open-loop estimator
described above. The situation is more complicated when the linear system is
dynamic and involves feedback loops closed over the communication links. In
this case, the RMS values of both control signals and output signals change
when we re-allocate communication resources or adjust the controller. Hence,
the alternating optimization procedure needs to include the step that modifies
the scalings.

Basic System Setup First we consider the system setup in figure Bl where no
communication links are included. The linear system has a state-space model

x(t+1) = Ax(t) + B (u(t) + w(t))
y(t) = Cx(t) + v(t)
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Fig. 8: Closed-loop control system without communication links.

where u(t) € RM* and y(t) € RMv. Here w(t) is the process noise and v(t) is
the sensor noise. Assume that w(t) and v(t) are independent zero-mean white
noises with covariance matrices R,, and R, respectively.

Our goal is to design the controller that minimizes the RMS value of z = Cz,
subject to some upper bound constraints on the RMS values of the control
signals:

minimize rms(z)

subject to rms(u;) < B;, i=1,..., M, (14)

The limitations on the RMS values of the control signals are added to avoid
actuator saturation.

It can be shown that the optimal controller for this problem has the standard
estimated state feedback form,

B(t+ 1[t) = AZ(t|t — 1) + Bu(t) + L (y(t) — CZ(t|t — 1))
u(t) = —Kz(tt — 1)

where K is the state feedback control gain and L is the estimator gain, found by
solving the algebraic Riccati equations associated with an appropriately weighted
LQG problem. Finding the appropriate weights, for which the LQG controller
solves the problem (I4)), can be done via the dual problem; see, e.g., [TM89]
BBI1].

Communications Setup We now describe the communications setup for the
example. The sensors send their measurements to a central controller through a
Gaussian multiple access channel, and the controller sends control signals to the
actuators through a Gaussian broadcast channel, as shown in figure @

The linear system can be described as

o(t +1) = Az(t) + B (u(t) + w(t) + p(t))
yr(t) = Ca(t) +o(t) +q(1),

where p and ¢ are quantization noises due to the bit rate limitations of the
communication channels. Since these are modeled as white noises, we can include
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the quantization noises in the process and measurement noises, by introducing
the equivalent process noise and measurement noise

w(t) =w(t) +p(t),  o(t) =v(t)+q(),

with covariance matrices

s2 s2
. 1o— M, o—
R~= R, + diag %2 a0 9=2bany |

3
p o (15)
R~ = R, + diag (%12%“, cee —5’3 Y 22bSvMy> .

Here b, and b, are number of bits allocated to the actuators and sensors.

The scaling factors can be found from the 3o-rule, by computing the variance
of the sensor and actuator signals. Hence, given the signal ranges and numbers
of quantization bits, we can calculate R~ and R, and then design a controller
by solving ([[4). Notice that the signal ranges are determined by the RMS values,
which in turn depend on the controller design. This intertwined relationship will
show up in the iterative design procedures.

w
—> LTI System
Up
Sa
A
Broadcast Multiple Access
Channel Channel
A
Y
St Ss
A "
Controller - Yr

Fig. 9: Closed-loop control system over communication networks.

Iterative Procedure to Design a Controller with Uniform Bit Alloca-
tion First we allocate an equal number of bits to each actuator and sensor. This
means that we assign power and bandwidth (in the case of FDMA) uniformly
across all channels. We design a controller for such uniform resource allocation
via the following iterative procedure (iterate on the scaling factors and the con-
troller):
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given 3; = rms(u;) and estimated rms(z;).
repeat
1. Let sq; = 3rms(u;) and s, ; = 3rms(z;), and compute R~ and Ry as
in (I5)
2. Solve problem (I4) and compute rms(u;) and rms(z;) of the closed-
loop system.
until stopping criterion is satisfied.

If the procedure converges, the resulting controller variables K and L of this
iterative design procedure will satisfy the constraints on the control signals.

The Alternating Optimization Procedure Our goal here is to do joint
optimization of bit allocation and controller design. This involves an iteration
procedure over controller design, scaling matrices update and bit allocation. The
controller and scaling matrices designed for uniform bit allocation by the above
iteration procedure can serve as a good starting point. Here is the alternating
optimization procedure:

given Ry, R,, §; = rms(u;) and rms(z;) from the above iteration design
procedure.
repeat
1. Allocate bit rates b, ;, bs; and communication resources by solving a
convex optimization problem of the form (&).
2. Compute R~ and R as in (I3), and find controller variables K and L
by solving (I4]).
3. Compute closed-loop system RMS values rms(u;) and rms(z;), then
determine the signal ranges s,,; and s, ; by the 30 rule.
until the RMS values rms(z;) and bit allocation converges.

The convex optimization problem to be solved in step 1 depends on the commu-
nication system setup and resource constraints.

Numerical Example: Control of a Mass-Spring System Now we consider
the specific example shown in figure [0l The position sensors on each mass send
measurements y; = x; +v;, where v; is the sensor noise, to the controller through
a Gaussian multiple access channel using FDMA. The controller receives data
Yri = T;+v;+q;, where ¢; is the quantization error due to bit rate limitation of the
multiple access channel. The controller sends control signals u; to actuators on
each mass through a Gaussian broadcast channel using FDMA. The actual force
acting on each mass is u,; = u; +w; +p;, where w; is the exogenous disturbance
force, and p; is the quantization disturbance due to bit rate limitation of the
broadcast channel. The mechanical system parameters are

mi = 10, mo = 5, m3 = 20, my = 2, ms = 15, k=1

The discrete-time system dynamics is obtained using a sampling frequency which
is 5 times faster than the fastest mode of the continuous-time dynamics. The
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Fig. 10: Series-connected mass-spring system controlled over network.

independent zero mean noises w and v have covariance matrices R,, = 1077
and R, = 10797 respectively. The actuators impose RMS constraints on the
control signals:

rms(u;) <1, i=1,...,5.

For the Gaussian multiple access channel, the noise power density is N = 0.1,
and the total power available is Ppactot = 7.5. For the Gaussian broadcast
channel, the noise power density at each user is N; = 0.1 for all i’s, and the
total power available for all users is Ppctor = 7.5. All users of the multiple
access channel and the broadcast channel share a total bandwidth of W = 10.
The proportionality coefficient « in the capacity formula is set to 2. Finally, we
impose a lower bound b = 5 and an upper bound b = 12 on the number of bits
allocated to each quantizerEl

First we allocate power and bandwidth evenly to all sensors and actuators,
which results in a uniform allocation of 8 bits for each channel. We then designed
a controller using the first iteration procedure based on this uniform resource
allocation. This controller yields rms(u;) = 1 for all 4’s, and the RMS-values of
the output signal z are listed in Table[2]

Finally, we used the second iteration procedure to do joint optimization of
bit allocation and controller design. The resulting resource allocation after four
iterations is shown in figure [l It can be seen that more bandwidth, and hence
more bits are allocated to the broadcast channel than to the multiple access

! To motivate our choice of lower bound on the bit allocations, note that our system
is critically stable and that the lower bound for stabilization given in [WB99, NE00),
MTSMOS] is zero. In general, if we discretize an open-loop unstable continuous-time
linear system using a sampling rate which is at least twice the largest magnitude of
the eigenvalues (a traditional rule-of-thumb in the design of digital control systems
[EPWO0]), then the lower bound given in [WB99| INEQOQ, [TSM98] is less than one bit.

The analysis in [WKL96|] shows that b; > 3 or 5 is usually high enough for assuming
the white noise model for quantization errors.
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RMS values|equal allocation|joint optimization|variable threshold rounding
rms(z1) 0.1487 0.0424 0.0438
rms(z2) 0.2602 0.0538 0.0535
rms(z3) 0.0824 0.0367 0.0447
rms(z4) 0.4396 0.0761 0.0880
rms(zs) 0.1089 0.0389 0.0346
rms(z) 0.5493 0.1155 0.1258

Table 2: RMS-values of the output signal.

the broadcast channel the multiple access channel
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Fig. 11: Joint optimization of bit rates and linear control system.

channel. This means that the closed-loop performance is more sensitive to the
equivalent process noises than to the equivalent sensor noises. The joint opti-
mization resulted in rms(u;) = 1 for all i’s, and the RMS-values of the output
signal z are listed in Table B. At each step of the variable threshold rounding, we
check the feasibility of the resource allocation problem. The optimal threshold
found is t* = 0.6150. Then we fix the integer bit allocation obtained with this
threshold, and used the first iteration procedure to design the controller. We see
a 77% reduction in RMS value over the result for uniform bit allocation, and
the performance obtained by variable threshold rounding is quite close to that
of the relaxed non-integer joint optimization.

6 Conclusions

We have addressed the problem of jointly optimizing the parameters of a linear
system and allocating resources in the communication system that is used for
transmitting sensor and actuator information. We considered a scenario where
the coding and medium access scheme of the communication system is fixed,
but the available communications resources, such as transmit powers and band-
widths, can be allocated to different channels in order to influence the achievable
communication rates. To model the effect of limited communication rates on the
performance of the linear system, we assumed conventional uniform quantization
and used a simple white-noise model for quantization errors. We demonstrated
that the problem of allocating communications resources to optimize the sta-
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tionary performance of a fixed linear system (ignoring the integrality constraint)
is often convex, hence readily solved. Moreover, for many important channel
models, the communication resource allocation problem is separable except for
a small number of constraints on the total communication resources. We il-
lustrated how dual decomposition can be used to solve this class of problems
efficiently, and suggested a variable threshold rounding method to deal with the
integrality of bit allocations. The problem of jointly allocating communication
resources and designing the linear system is in general not convex, but is often
convex in subsets of variables while others are fixed. We suggested an iterative
heuristic for the joint design problem that exploits this special structure, and
demonstrated its effectiveness on the two examples: the design of a networked
linear estimator, and the design of a multivariable networked LQG controller.
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