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Abstract— Future ad hoc and multi-hop networks
will simultaneously support many different types of
traffic such as streaming video, voice, and data. This
is particularly true for emerging 802.11, bluetooth,
and other wireless technologies expected to support
ubiquitous internet access. Supporting different traf-
fic types requires the network to find the best set
of routes from sources to sinks, individual link data
rates and individual link transmitter powers, all
subject to QoS constraints.

The paper address this problem. The approach,
based on Perron Frobenius matrix theory, yields
Pareto optimal values for these system variables and
offers a new view of system capacity and cost in
terms of associated eigenvalues. Performance metrics
can be utility functions or other protocol perfor-
mance measures. A simple method of solution, the
DSM algorithm, is presented. The DSM is iterative
and adaptive, responding to changes in the wireless
environment by automatically seeking a new set of
optimal system variables. Mathematical program-
ming/optimization

Index Terms— Mathematical program-
ming/optimization, ad hoc networks, multihop
networks, power control, routing, Perron Frobenius,
utility functions, congestion control.

I. INTRODUCTION

TO fulfill the promise of ubiquitous communi-
cation, future ad hoc networks will need to

simultaneously support several different types of
traffic such as streaming video, voice, and data.
Supporting a wide array of traffic types will require
the network to find the best set of routes from
sources to sinks and the associated data rates along
these paths. QoS constraints on individual flows,
such as minimum rate and average queueing delay

must also be supported. In a variable rate/variable
power system the network must translate these
characteristics into a set of supporting link rates and
transmitter powers while accounting for inter-link
interference. Collectively the set of network source
rates, paths, link rates, and link transmitter powers
selected by the network is termed the operating
point of the system.

This paper addresses the problem of finding
the optimal operating point for a multi-hop or
ad hoc network simultaneously conveying different
types of traffic, and subject to limits on network
congestion and other QoS constraints . Optimality
is measured from a utility function or protocol
performance metric point of view. The results,
based on Perron Frobenius matrix theory, are Pareto
optimal; performance can not be improved for one
source with out decreasing it for some other source.
The underlying analysis expresses network capacity
in terms of the Perron Frobenius eigenvalue with
implications for network pricing. The DSM method
of solution is adaptive and responds to changes by
seeking a new optimum.

The problem of finding optimal transmitter pow-
ers for a given set of link rates and link interfer-
ence gains has been extensively discussed in the
literature [1] [2] [3]. More recently, methods to
jointly find the best set of link rates for a mix of
different types of traffic over a single hop network
have been described [4]. Likewise different methods
for routing packets in ad-hoc networks have been
investigated [5], [6], [7]. This paper combines these
objectives by jointly finding the best set of link
rates, data source rates, transmitter powers, and
routes through the network. It extends our work
in [4], which uses Perron Frobenius theory to find
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the best set of rates and powers from single hop to
multi-hop networks.

The paper divides the problem into three phases.
In the first phase the network is abstracted to a
feasible rate region, and optimal transfer rates and
routes are found for a particular mix of traffic
types. Different traffic types can have different
performance metrics or protocols. QoS constraints
on congestion or minimum link or path rates can
be included as can a variety of other convex con-
straints. In the second phase this abstraction is used
to determine the optimal link transmitter rates and
powers that meet QoS requirements. In the third
phase an iterative method is described that adapts
to changes in the ad-hoc network.

The paper is organized into several sections. Sec-
tions II and III define an ad-hoc network, notation,
the transmission model used and set of feasible
routes. Section IV defines the rate region, and
shows it is convex. Section V defines performance
metrics for the network. These metrics can be
different for different flows or protocols. Methods
to control congestion are also discussed. Sections
VI through VIII analyze the problem and Section
IX presents a method of solution. The method is in-
tuitive and adaptive. Section X presents simulation
results that illustrate the approach.

II. NOTATION

The following is a list of network variables used
in this paper.

l : Wireless links numbered l = 1, · · · , L.
Rl : Physical data rate on link l.
s : Data sources numbered s = 1, · · · , S.

Each source is associated with a single
sink.

k: Path index for source s, k = 1, · · · , Ks.
r(s,k) : Transfer rate from source s along path k.
rs : Vector of transfer rates for source s, rs =

[r(s,1)r(s,2) · · · r(s,Ks)]
T .

r : Vector of transfer rates, r =
[rT

1 rT
2 · · · rT

S ]T .
θ(s, k) :Set of links used by source s on its kth

path from source to destination.
φ(l) : Set of source-path pairs, (s, k) traversing

link l.
Λ(s) : Set of paths from source s to its destina-

tion.

A : Routing matrix describing global set of
routes.

ρl : Signal to Interference ratio of lth link.
Gij : Gain from transmitter on link j to receiver

in link i.
pl : Transmitter power on lth link.
B : Path aggregation matrix linking source

rates to transfer rates.

III. AD-HOC WIRELESS NETWORK
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Fig. 1. Schematic of ad-hoc network with L links and S data
sources. Solid lines are forward links and dashed lines reverse
links.
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Fig. 2. Path of transfer rates. Source 1 can send packets at
rate r(1,1) over path (1, 1) and at rate r(1,2) over path (1, 2).
Source 2 can send only over the single path shown and at rate
r(2,1)

An ad-hoc wireless network is composed of L
unidirectional links and S sources. Figure 1 depicts
such a network. Solid lines are forward links and
dashed lines reverse links. All links share a com-
mon bandwidth and utilize variable rate and vari-
able power CDMA technology. The transmission
rate on link l is Rl > 0. Each data source s ∈ S
injects packets into the network at aggregate rate
1T rs termed the source rate. These packets traverse
the network along one or more paths defined by the
set Λ(s) at rate r(s,k) ≥ 0, where

∑

k r(s,k) = 1T rs.
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Each path is composed of one or more links or
hops. Thus a packet may cross several links along
a path when travelling from source to sink . The
r(s,k) are termed transfer rates, since this is the rate
that source s transfers packets along a particular
path (s, k) ∈ Λ(s).

Figure 2 illustrates the flow of packets. Source
1 can send packets at rate r(1,1) over path (1, 1)
and at rate r(1,2) over path (1, 2). Source 2 can
only send packets over the single path shown at rate
r(2,1). Traffic from both sources are routed across a
single link and share the link’s capacity. The link’s
data rate R3 must be greater than the rate at which
the data sources send traffic over the link r(1,2) +
r(2,1) ≤ R3. Two or more paths associated with
a single source can also traverse a single link. In
this case the paths diverge at some point between
source to sink.

The link rates Rl are assumed to be functions of
the Signal to Interference Ratio. The link SIR , ρl,
is defined as

ρl =
Gllpl

∑

j 6=l Gljpj
. (1)

Gll represents the effective gain between the trans-
mitter and receiver on link l and includes the multi-
plicative spreading gain, antenna gain, coding gain,
and other gain factors. Likewise Glj represents the
effective gain from the interfering transmitter on
link j to the receiver on link l. The gains Gij > 0
are assumed to be positive.

The wireless network is assumed to be inter-
ference limited and therefore receiver noise can
be neglected to a first approximation. Link SIR,
ρl, is consequently invariant to power scalings. By
choosing 1T p = 1 the pl can be interpreted as the
relative transmitter powers or equivalently as the
percent of total transmitted power in the system.

An empirically based link rate model for M-
QAM and M-PSK modulation is [8]

Rl = α log(1 + Kρl), (2)

where K = (−1.5)/(ln(5BER)) and BER is the
target average bit error rate. The constant α is
a scaling constant and represents the base of the
logarithm used and several other system constants.

This is similar in form to the information theo-
retic capacity model,

Cl = W log(1 + ρl). (3)

For reasons that will become clear later, the link
rate model used in this paper is a simplified version
of equation 2:

Rl = log(ρl). (4)

The constant K is absorbed into Gll, and α is taken
as equal to 1, since this constant has the effect of
scaling all rates equally. The assumption ρl ≥ 1 is
necessary to prevent negative rates. In most systems
ρl � 1 since it represents the effective SIR after
spreading gain, antenna gain, and coding gain.

The traffic intensity carried over link l, is neces-
sarily smaller than the link rate

∑

(s,k)∈φ(l)

r(s,k) ≤ Rl (5)

where φ(l) is the set of source-path pairs (s, k) that
traverse a link. This can be rewritten as aT

l r ≤ Rl

where a is a binary vector. A one in the (s, k)th
place corresponds to source-path pair (s, k) trav-
elling over link l. For example in a network with
two sources each with two possible paths, the vector
aT

1 = [1 1 0 1] corresponds to source 1 using link
1 on its (1, 1) and (1, 2) paths from source to sink
and source 2 using link 1 only on path (2, 2) The
remaining source-path (2, 1) does not use this link.
In matrix form a set of transfer rates are feasible
for the system if

Ar ≤ R (6)

where

A =











aT
1

aT
2
...

aT
L











(7)

is the routing matrix for the system and inequality
is taken element-wise. Transfer rates violating this
constraint can’t be supported by the network. The
columns of A, ã, likewise describe the set of links
traversed by a by source s along its kth path.

Combining equations 4 and 6 yields

Ar ≤ R ⇔ pl ≥
eaT

l
rl

Gll

∑

j 6=l Gljpj

⇔ p ≥ D(Ar)G̃p
(8)
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where D
∆
= diag

(

eaT
l

rl

Gll

)

and

G̃ij =

{

Gij , i 6= j
0, i = j.

(9)

IV. AD-HOC NETWORK RATE REGION

In an Ad-hoc network a vector of transfer rates
r is feasible if it is possible for the system to
simultaneously support all of these rates. The rate
region is the set of feasible transfer rates and
can change with changing topologies or routing.
Formally the rate region is

R = {r ∈ Rn
+|Ar ≤ R(p) for some p}, (10)

where Ar ≤ R is taken as component-wise, i.e.
aT

l r ≤ Rl for all l.
Theorem 1: The rate region R is convex.

Proof: The set of feasible transfer rates and
power pairs, M, is the set of (r, p) such that aT

l r ≤
log(ρl) for all links l. Analytically,

M = {(r, p) ∈ R2n
+ |aT

l r ≤ log(ρl), ∀l}
=

⋂

l{(r, p) ∈ R2n
+ |aT

l r ≤ log(ρl)}
=

⋂

l Ml.
(11)

The Ml = {(r, p) ∈ R2n
+ |aT

l r ≤ log(ρl)} are
convex. This can be seen by the change of variables
xl = log pl and rewriting the set qualifier as
follows:

aT
l r ≤ log(ρl) ⇔ e−aT

l r ≥ ρ−1
l

(12)

⇔ e−aT
l r ≥

∑

j 6=l Glje
xjG−1

ll e−xl

⇔ 1 ≥
∑

j 6=l Glje
xjG−1

ll e−xle−aT
l r

⇔ 0 ≥ log(
∑

j 6=l Glje
xjG−1

ll e−xle−aT
l r).

(13)
It is known [9] that the function log(

∑

αle
yl), for

αl ∈ R+ and yl ∈ R, is convex in y. Composition
with an affine function preserves convexity. Sub-
level sets of convex functions always define convex
sets, so equation 12 defines a convex set in the
variables log pl and rl. Since the intersection of
convex sets is convex, M must also be convex.

The rate-region R is the projection of M onto
the transfer rate space. Linear projection also con-
serves convexity so the rate region is convex. An
example of the rate region is shown in Figure 3.
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Fig. 3. Ad-hoc Network Rate Region

V. PERFORMANCE METRICS

System performance is modelled by a perfor-
mance metric or utility function U . The utility
function is assumed to be a function of the total
source rates but not the individual transfer rates,

U = U(Br) (14)

where B is the path aggregation matrix. The matrix
B aggregates the set of source-path flows for each
source to yield an overall source rate. This formu-
lation measures the ad-hoc network’s performance
at its input/output ports. This is the performance
as seen by users of the system or by end to end
network protocols. The routes or paths taken by
packets from source s to its sink are treated as
internal network decisions that do not directly effect
performance as measured at the input/output ports.
Similarly, transmitter link powers are treated as
network parameters to be adjusted by the system,
but which in and of themselves, do not measure
system performance. Indirectly, both path selection
and power control effect the performance of the
system through the feasible transfer rates, and thus
effect U through r. By assumption, a higher data
rate is valued at least as much as a lower data
rate, so U is a non-decreasing function of r. Also,
by assumption, there is a diminishing return to
additional data rate, so let U be a concave function
of r. The performance metric can be expanded to
directly include measures of routing and transmitter
powers, although this is not done in this paper due
to space limitations.
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In many situations U can be treated as a separa-
ble function,

U(Br) =
S

∑

s=1

Us(1
T rs) (15)

where each logical link in the network has a
performance metric Us(1

T rs). In this view the
performance measured by one logical link is not
directly affected by the performance on another
logical link. Each Us(1

T rs) can represent the utility
a user derives from using the system at a particular
rate, or can be implied by data protocols, service
rate agreements, or other system level metrics [10],
[11], [12].

A single voice link might have a protocol that
requires a minimum rs but is indifferent to rates
above this rate. An appropriate function is the
following:

Us(1
T rs) =

{

−∞, 1T rs < Rmini

c, 1T rs ≥ Rmini
.

(16)

A wireless Internet user might benefit from an
increased rj and be willing to pay more for this
service. A possible link metric is then Uj(rj) =
αrj , where implicitly the user pays more for more
bandwidth.

A. QoS

QoS requirements involving r can be addressed
in several ways. The simplest is to embed them in
U . For example, a minimum rate requirement for
user s can be closely approximated by rewriting the
performance metric for s as

U(rs)new = U(rs) + γ ln(1T rs − rth) (17)

where rth is the rate threshold and γ << 1 is
a constant chosen to control the tightness of the
threshold. A second example is video, where a user
has a required rate to ensure a minimum level of
picture quality, but where higher rates are valued
according to his personal utility function. Assuming
a logarithmic utility function

Us(rs) =

{

−∞, rs < Rmini

α log(rs) + b, rs ≥ Rmini
.

(18)

A second more general approach is to express
the QoS requirements as a modified rate region.
Complex inter-link requirements can be handled in
this way.

B. Congestion control

Congestion is an important parameter in QoS.
This is particularly true for delay sensitive data such
as video or real time information. Unfortunately
analytically modelling the congestion in a network
is difficult, and Markovian approximations are often
used.

This convention is followed here. Arrivals to the
network are assumed to be Poisson(λ) and transmis-
sion times across links (service times) are assumed
to be distributed exponentially(u). By Jackson’s
Theorem [13] the number of packets waiting or in
transmission is

E[N ] =
λ

u − λ
(19)

where λ and u are the arrival and service rates and
N is the number of packets in the system.

A bound d on congestion can then be expressed
as

E[N ] ≤ d ⇔ λ
u−λ

≤ d

⇔ 1+d
d

λ ≤ u
⇔ Dλ ≤ u,

(20)

where D = (1 + d)/d.
The associated queue’s arrival rate λl is the sum

of the transfer rates aT
l r traversing a link, λl = aT

l r.
Similarly, the service rate ul is the link rate Rl,
u = Rl. Thus a QoS bound on average congestion
is

diag(Dl)Ar ≤ R

Ãr ≤ R.
(21)

Equation 21 is identical in form to equation 6 and
the subsequent analysis remains valid. The interpre-
tations of the rate region R, however, do change.
The rate region R becomes the Congestion Limited
Rate Region; the set of feasible rates that meet the
congestion bound for the system. Figure 4 shows
a Congestion Limited Rate Region corresponding
to Figure 3. As intuition suggests the rate region
is smaller. This is because transfer rates must be
restricted to ensure average delay bounds can be
met.

VI. PROBLEM FORMULATION

The goal is to find the best set of paths from
source to sink, transfer rates and transmitter powers
such that system performance is maximized. The
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Fig. 4. Ad-hoc Network Congestion Constrained Rate Region.
QoS constraints reshape the feasible rate region.

optimal transfer rates are the rates along each path
from each source to its destination. A zero transfer
rate corresponds to an unused path. A nonzero rate
selects the associated path. At optimum a source
may utilize one or more paths through the network
depending on system typology, interference, and
path choices. Formally this can be expressed as

maximizer U(Br)
subject to r ∈ R.

(22)

This is a convex optimization problem in the
variable r since the constraint set is convex and
the objective is concave. The vector of transmitter
powers p is not explicitly used in this formulation.
The inter-link interference is captured in the shape
of the rate region, as are QoS constraints on trans-
mitter power. As will be subsequently shown, the
optimal transmitter powers can be calculated from
the optimal transfer rates.

The optimal system operating point will change
with changing A, B, or G. Section IX describes
a method which adapts to these changes by con-
tinuously seeking the best r and p. The method is
based on the Perron Frobenius theory of positive
matrices.

VII. ANALYSIS

A. Perron Frobenius

For a square matrix M the notation M > 0
means M is an element-wise positive matrix. The
eigenvalue of M with greatest magnitude is the
Perron-Frobenius eigenvalue λpf(M). If the matrix

M > 0 is regular, meaning that (Mk)ij > 0
for all i, j and some positive integer k, then λpf

is strictly positive and unique, and the associated
right and left eigenvectors p > 0 and q > 0 are
strictly positive. If λpf(M) is the Perron-Frobenius
eigenvalue for regular M > 0, then the inequality
βp ≥ Mp has a feasible p > 0 if and only if
λpf(M) ≤ β. Finally, for any positive matrix, the
monotone property states if Mij ≤ Nij for all
i, j with strict inequality for at least one i, j then
λpf(M) < λpf(N).

Since D is a function of r, in what follows the
Perron Frobenius eigenvalue associated with the
network is written as λpf(D(Ar)G̃).

In addition, the following facts are used in what
follows.

Theorem 2: The Perron Frobenius eigenvalue of
the matrix M > 0 is differentiable in mij and can
be found from

∂λ(M)

∂mij
= qT ∂M

∂mij
p (23)

where q and p are the left and right eigenvectors
associated with λpf and qT p = 1 . The proof is an
application of Gerschgorin’s Theorem [14].

By assumption G > 0 and consequently
D(Ar)G̃ is irreducible and λpf(D(Ar)G̃) is
unique, so the Theorem applies.

Theorem 3: The Perron Frobenius eigenvalue
λpf(D(Ar)G̃) is convex in r. The proof can be
found in [4].

B. Pareto Surface

A point r ∈ R is Pareto optimal for the rate-
region R if there does not exist another point r′ ∈
R that dominates r. A point r′ ∈ R dominates
r if r′i ≥ ri for all i, and r′j > rj for some j.
The notation r′ �d r means r′ dominates r. The
Pareto surface is defined as the set of Pareto optimal
points,

P = {r ∈ R|∃/r′ ∈ R s.t. r′ �d r}. (24)

Theorem 4: An optimal operating point r for the
system always lies on P .

Proof: The proof is by construction. Assume
there exists an optimal operating point r∗ /∈ P ,
then there exists a feasible r′ ∈ P with r′i ≥
r∗i ∀i. So by the non-decreasing property of U ,
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U(r′) ≥ U(r∗). By optimality of r∗, U(r∗) ≥ U(r)
∀ feasible r, so U(r′) = U(r∗) and r′ ∈ P is also
optimal.

Theorem 5: At optimality p = D(Ar)G̃p.
Proof: The proof is by contradiction. Assume

p ≥ D(Ar)G̃p at optimality. Then ∃ an l such that

aT
l r < Rl

= ln( Gllpl
∑

j 6=l
Gljpj

).
(25)

Thus the power on the lth link pl could be decreased
with out effecting feasibility. But decreasing pl

would increase ρi for some i 6= l, since G > 0.
Thereby finding a new set of transfer rates ŕ > r∗,
contradicting the optimality assumption.

Transfer rates r lying in P can be expressed as
the following:

P = {r|p = DG̃p} = {r|λpf(D(Ar)G̃) = 1},
(26)

where λpf(D(Ar)G̃) = 1 is the surface of the rate
region. Note, λpf(D(Ar)G̃) > 1 corresponds to a
point outside of the rate region, i.e. that can not be
achieved by the system for any set of powers, and
λpf(D(Ar)G̃) < 1 corresponds to a point inside
the rate region, i.e. that can be achieved but are no
better than those on P .

C. Normal to the Pareto surface

Equation 26 describes the Pareto surface as
a level set of the Perron Frobenius eigenvalue,
λpf(D(Ar)G̃) = 1. The normal M(r) to the Pareto
surface is then

M(r) = ∇rλpf(D(Ar)G̃)

= AT∇xλpf(D(x)G̃)
∣

∣

∣

x=Ar
.

(27)

The gradient of λpf can be found from Theorem
2. For the (s, k)th component

∂λpf(D(Ar)G̃)

∂r(s,k)
=qT ∂D(Ar)G̃

∂r(s,k)
p

=qT ∂diag(eaT
1 r/G11, . . .)G̃

∂r(s,k)
p

=
∑

l∈θ(s,k)

qle
aT

l r Il

Gll

. (28)

where Il = G̃p is the vector of interference values
for the system. At optimality p = D(Ar)G̃p, or

equivalently eaT
l r = eRl = ρl so

∂λpf(D(Ar)G̃)
∂r(sk)

=
∑

i∈θ(s,k) qipi. (29)

In matrix form the normal M(r) can be rewritten
as

M(r) = ∇rλpf(D(Ar)G̃)
= AT [q1p1, . . . qLpL]T

= AT N(r)T .

(30)

The interference term I is missing in equation 30.
The effect of interference is instead captured by the
left eigenvalue q, qi < 1. The components of the left
eigenvector ql scale the associated link transmitter
powers pl, similar to the way interference scales
transmitter power in the SIR term ρl. The product
plql can be thought of as a normalized equivalent
transmitter power.

The constraint λpf(D(Ar)G̃) ≤ 1 can be inter-
preted as a measure of system capacity utilization.
When λpf(D(Ar)G̃) = 1, the system is operating
at 100 percent capacity; no transfer rate ri can be
increased without decreasing some other transfer
rate rj , i 6= j. When λpf(D(Ar)G̃) is less than one,
additional capacity is available in the system. This
might happen for example if the system is operated
at a set of Pareto suboptimal fixed rates. A multi-
hop network dominated by one fixed, high rate user
and many slower users is an obvious example. As
modelled here, because the utility function U is
concave and increasing the system will always be
driven to full capacity.

The constraint λpf ≤ 1 can be thought of as a
kind of “capacity constraint” on the network. The
network pays for a small increase in transfer rates in
λpf dollars. The system is free to spend up to λpf =
1, 100% of its capacity, but no more. The term plql

is the marginal cost in system capacity associated
with increasing a transfer rate traversing the link.
From this point of view equation 30 is intuitively
appealing. The marginal cost of increasing source
transfer rate rs,k is the sum of the marginal costs
associated with all links the flow crosses.

cs,k =
∑

l∈θ(s,k) qlpl (31)

Thus a flow pays a marginal ”toll” of qlpl when
crossing link l. This holds irrespectively of the
source or destination of a flow, or the sequence of
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links a flow traverses. If rsk is increased, the cost
in capacity is

∆λpf(D(Ar)G̃) = cs,k∆rsk. (32)

VIII. OPTIMALITY CRITERION

Because the optimal values of r lie on the Pareto
surface P the network optimization problem can be
restated as

maximizer U(r)

subject to λpf(D(Ar)G̃) = 1
r > 0.

(33)

By Lagrange’s Theorem[15], at optimality

∇rU(Br) = K∇rλpf(D(Ar)G̃) (34)

where K is a constant of proportionality. In words,
the vectors ∇U and ∇λpf must be parallel at the
optimal rates. This is depicted in Figure 5. The
gradient ∇U is normal to the level sets of U and
N(r) = ∇λpf is normal to the rate surface. At
optimality these normals align and the level set
surface for the performance metric is tangent to the
rate region.

PSfrag replacements
∇U

∇λpf

P

r1

r2

∇U

Rate Region

Fig. 5. Optimality condition is ∇λpf is parallel to ∇U(r).

The proportionality constant K can be shown to
be the ratio of marginal performance to marginal
capacity, a measure of system efficiency.

K = 1
T∇U(Br)
AT N(r)T

=
Total marginal performance gain

Total marginal capacity cost
(35)

IX. OPTIMAL OPERATING POINT

This section describes the Direct Step Method,
DSM, for finding the optimal operating point for
the system [4]. In so doing the approach calculates
the optimal paths from each source to its associated
sink, optimal transfer rates, and optimal transmitter
powers. Some of the transfer rates are typically
zero. The transmitter powers are calculated from
p = D(Ar)G̃p. An alternative is the method
proposed by G. Foschini and Z. Miljanic [1]. The
method is adaptive and continuously seeks the best
r for the system.

DSM operates on the Pareto surface P . From an
initial point rt ∈ P the method calculates a nearby
point rt+1 that improves system performance. The
process is repeated until an optimal operating point
r∗τ is achieved. The method continues to iterate with
rt = rτ t ≥ τ . Since the feasible operating region is
convex and the performance metric concave, a lo-
cally optimal r will also be globally optimal. If the
system is subsequently disturbed, then the system
adapts by again seeking a locally better operating
point r and the process continues. Figure 6 depicts
the process.

A. Feasible ascent direction

The Direct Step Method is shown in Figure
IX Let M(r)⊥ =

{

r′|(r − r′)T N(r) = 0
}

be the
hyper-plane that is tangent to the Pareto surface
at rc. Since the rate-region R is convex, M(r)⊥

is a supporting hyper-plane and lies outside of R,
except at the point rc. The supporting hyper-plane
M(r)⊥ is a good approximation of P for small
changes in r. For this reason a direction δr is
defined to be feasible if it lies along N(r)⊥, or
equivalently δrT N(r) = 0.

A small change δr is defined as an ascent direc-
tion if U(r+αδr) increases for small α > 0. Thus,
δr is an ascent direction if and only if ∇U(r)T δr >
0. A point that is both feasible and an ascent
direction is termed a feasible ascent direction.

B. DSM

The DSM is a two phase feasible ascent method.
First, in the predictor phase a small feasible change
or step δr is calculated. Next, in the corrector phase
this point is corrected to lie along P . The method
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can be described as a simple two step algorithm.
Given the current operating point rc(t)

Algorithm 1: • Calculate a feasible ascent di-
rection /deltar and predict a new operating
point rp(t + 1) = rc(t) + βδr.

• Correct this estimate by scaling it onto P ,
rc(t + 1) = αrp(t + 1). Repeat.

End Algorithm
1) DSM: Predictor: The DSM constructs a δr

on M(r)⊥ from a measure of the sub-optimality of
the system. The error estimate is defined as

e =

(

AT N(r)

1T AT N(r)
−

∇U

1T∇U

)

(36)

and compares the normal to the rate region to the
normal to the performance metric. At optimality
e = 0 and the operating point r remains fixed.

Because U is concave and λpf is convex, a rate
change δri causes the performance metric normal
and rate region normal to respond in opposite ways;
an increase δrds,sk > 0 causes the (s, k)th com-
ponent of ∇U

1T∇U
to decrease and the comparable

component of ∇λpf to increase. Consequently, the
decision to increase the (s, k)th component of δrds

can be made by comparing the two normals. If
∇U

1T∇U
is greater than ∇λpf , then the associated

rate should be increased. Specifically, for small rate
adjustments δrds should have the same sign as −e.
The direct step method uses this information to
find a δrds that is an ascent direction but which is
also feasible by construction, that is lies on N(r)⊥.
Specifically,

δrds = −diag( 1
∑

l∈θ(s,k) qlpl
, . . .)e

= −diag( 1
ãT
(s,k)N(r)

)e
(37)

where ã(s,k) are the columns of A.
Substituting e yields

δrds,(sk) = −
(

1
ãT
(s,k)N(r)

)

(

AT N(r)
1T AT N(r) −

∇U
1T∇U

)

(s,k)
.

(38)

That δrds lies on the supporting hyper-plane can
be seen from

M(r)T δrds =
∑

ãT
(s,k)

(

e(s,k)

ãT
(s,k)

)

=
∑

e(s,k)

= 1T e

= 1T M(r)
1T M(r) − 1T ∇U

1T∇U

= 0

(39)

A new rate is calculated as rp(t + 1) = rc(t) +
βδrds, where β << 1. This rate lies along the
supporting hyper-plane M(r)⊥, but, unless this is
the optimal operating point, is not on P .

2) DSM: Corrector: The estimated rate r(t+1)
is corrected to lie on P using a scaling method. The
scaling method scales each element in the estimated
rate vector by a constant αa. As shown in Figure 7,
this represents a movement on a ray from the origin.PSfrag replacements

∇U
∇λpf

P

r1

r2

∇U

Rate Region

δr
M(r)⊥

∇U
1T∇U

Fig. 6. DSM predictor phase. The optimality error e is used
to predict a change rates δr that improves ad-hoc network
performance.

The scaling method multiplies each element in
the rate vector rp by a fixed scalar rc = αprp,
αp > 0 to find a rate vector rc ∈ P . Increasing α
increases all rates rc = αrp, and in turn increases
the elements of D(rc)G̃. By the monotone property
for the Perron Frobenius eigenvalue, λpf(D(αrp)G̃)
also increases and is monotonic in α. This leads to
a bisection algorithm to find αp.

The bisection algorithm increases α linearly until
λpf(D(αrp)G̃) ≥ 1, so αp lies between zero and α.
Next λpf(D(1

2αrp)G̃) is computed and compared
with one; if it is greater than one then αp ∈ [0, α/2]
while if it is less than one then αp ∈ [α/2, α].
If αp ∈ [α/2, α], then λpf(D(3

4α)G̃) is computed
and compared with one to again reduce the range
containing αp by half. The segment that αp lies in
is reduced through repeated bisections until αp is
known to the desired number of decimal points.

C. Adaptation

The DSM can adapt to changes in system pa-
rameters G, the number of sources, and the routing
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Fig. 7. DSM Corrector Phase: Moving to the rate surface.

matrix A. If a disturbance changes the system and
the current operating point is no longer optimal, the
error vector e will shift from zero. This in turn will
cause the DSM to seek a new updated operating
point.

X. SIMULATION

In this section an equation based simulation is
presented. Figure 8 shows the system model used.
The network is composed of 8 unidirectional links
drawn as solid arrows and 3 sources. Each source
sends packets to its sink, which is co-located with
the other sinks in the diagram. Each sink is assumed
to use a different spreading code. Each source
can send packets along several different paths to
its source. Source 1 can send packets along three
different paths and sources 2 and 3, two paths and
a single path respectively. All paths are shown as
dashed lines. Time is discrete and can be interpreted
as either packet time or as the DSM iteration index.

The data used in the simulation are as follows.
The performance metric is given as

U(r) =
∑S

s=1 Us(1
T rs)

=
∑3

s=1 ξs ln(1 + 1T rs)
(40)

where ξ are weights associated with the priority
given the sources. Equal weighting is used in this
example. The gain matrix G was selected at ran-
dom, and due to space limitations is not presented
here. The routing matrix A and the flow matrix B
can be inferred from the diagram.

Sink

Source 3

Source 2

Source 1
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Fig. 8. Simulated ad-hoc network. Each sources has one or
more paths to its sink.
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Fig. 9. Links and paths selected by DSM.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

time

r (s
,k

)

PSfrag replacements

∇U
∇λpf

P
r1

r2

∇U
Rate Region

δr
M(r)⊥

∇U
1T∇U

rp

rc = αarp

Fig. 10. Ad-hoc network source-path transfer rates.
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Fig. 11. Network link rates. Shown are the link rates for the
links shown in Figure 9 Link rates for the remaining links are
zero.
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Fig. 12. Performance of Ad-hoc network. The upper curve is
total performance and the lower three curves the performance
of the three sources

Figure 9 depicts the links and paths selected by
DSM. All links other than those shown have a link
rate of zero. Each source follows a single path to
the co-located sinks. The paths are disjoint in this
simple example. System performance is shown in
Figure 12. Because the system metric is concave,
U not unexpectedly improves monotonically to its
globally optimal value. The three lower curves
show the performance evolution of each individual
source. The trade-off between source 1, the falling
curve, and sources 2 and 3, the rising curves, is a re-
sult of the shift in transfer rates shown in Figure 10.
The transfer rate of source 1 is initially too high
and is reduced by DSM allowing more traffic to
be sent by the remaining sources. Figure 11 shows
the evolution of the link rates. Link rates not used
by the selected paths are assigned a zero rate. The
close similarity between Figures 10 and 11 is a
result of the simplicity of the simulation and will
not generally be true.

For this simple model each source is associated
with a single path. This will not generally be the
case for other typologies or system parameters. If
two or more paths associated with source s have
equal capacity costs cs,k, then all of these paths will
be selected. In many data oriented applications the
use of multiple paths may be acceptable. In voice
applications, for example, the use of multiple paths
offers little advantage. This issue can be resolved
by applying DSM a second time with all but one of
the previously selected optimal paths removed for
each source.

XI. SUMMARY

This paper address the problem of finding the
best set of routes, link rates and link powers in
an ad hoc or multi-hop network supporting differ-
ent types of traffic and subject to constraints on
network congestion and other QoS requirements.
The approach is based on Perron Frobenius matrix
theory and yields a Pareto optimal operating point.
The DSM algorithm is iterative and adaptive.
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