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Abstract

In Kernel Fisher discriminant analysis
(KFDA), we carry out Fisher linear discrimi-
nant analysis in a high dimensional feature
space defined implicitly by a kernel. The
performance of KFDA depends on the choice
of the kernel; in this paper, we consider the
problem of finding the optimal kernel, over
a given convex set of kernels. We show that
this optimal kernel selection problem can be
reformulated as a tractable convex optimiza-
tion problem which interior-point methods
can solve globally and efficiently. The kernel
selection method is demonstrated with some
UCI machine learning benchmark examples.

1. Introduction

Recently, KFDA has received a lot of interest in the lit-
erature (Mika et al., 2001; Yang et al., 1989). A main
advantage of KFDA over other kernel-based methods
is that it is computationally simple: it requires the fac-
torization of the Gram matrix computed with given
training examples, unlike other methods which solve
dense (convex) optimization problems. The classifica-
tion performance of KFDA is comparable to that of
support vector machines (SVMs) (Mika et al., 2003),
which are regarded as the state-of-the-art kernel meth-
ods.

KFDA finds the direction in a feature space, defined
implicitly by a kernel, onto which the projections of
positive and negative classes are well separated in
terms of Fisher discriminant ratio (FDR). Like other
kernel-based classification methods, its classification
performance depends very much on the choice of the
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kernel. Typically, a parameterized family of kernels,
e.g., the Gaussian or polynomial kernel family, is cho-
sen and the kernel parameters are tuned via cross-
validation or generalized cross-validation (Hastie et al.,
2001).

In this paper, we consider the problem of finding the
kernel, over a given convex set of kernels, that is opti-
mal in terms of maximum achievable FDR. The main
contribution of this paper is to show that this kernel
selection problem can be reformulated as a tractable
convex optimization problem, and hence the globally
optimal kernel can be found with efficiency. In particu-
lar when the convex kernel set consists of affine combi-
nations of a finite number of given kernels, the optimal
kernel selection problem can be cast as a semidefinite
program (SDP) which interior-point methods can solve
with great efficiency.

The kernel selection problem has been studied by Fung
et al. (2004). The authors formulate an optimal ker-
nel selection problem, based on the quadratic program-
ming formulation of Fisher linear discriminant analysis
given in Mika et al. (2001). This optimal kernel selec-
tion problem is not jointly convex in the variables (the
feature weights and Gram matrix). They develop an
iterative method that alternates between optimizing
the weight vector and the Gram matrix, without ex-
ploiting the fact that the problem can be reformulated
as a convex problem.

Recently, Micchelli and Pontil (2005) have shown that,
for a general class of kernel-based classification meth-
ods, the associated optimal kernel selection problems
are in fact convex problems. The optimal kernel selec-
tion problem in KFDA does not fall into the class, so
our convex formulation of the problem does not follow
from the general result.
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1.1. Outline

In the remainder of this section, we introduce some
notation and definitions. We review KFDA in §2. We
describe the optimal kernel selection problem in KFDA
and give its convex formulation in §3. The kernel selec-
tion method is demonstrated with some UCI machine
learning benchmark examples in §4. We review related
work on optimal kernel selection in kernel-based meth-
ods in §5 including the general result in Micchelli and
Pontil (2005). We give our conclusions in §6.

1.2. Notation and Definitions

We use X to denote the input or instance set, which
is an arbitrary subset of R

n, and Y = {−1,+1} to
denote the output or class label set. An input-output
pair (x, y) where x ∈ X and y ∈ Y is called an ex-
ample. An example is called positive (negative) if its
class label is +1 (−1). We assume that the examples
are drawn randomly and independently from a fixed,
but unknown, probability distribution over X × Y.

A symmetric functionK : X×X → R is called a kernel
(function) if it satisfies the finitely positive semidefi-
nite property: for any x1, . . . , xm ∈ X , the Gram ma-
trix G ∈ R

m×m, defined by

Gij = K(xi, xj), (1)

is positive semidefinite. Mercer’s theorem (Shawe-
Taylor & Cristianini, 2004) tells us that any kernel
function K implicitly maps the input set X to a
high-dimensional (possibly infinite) Hilbert space H
equipped with the inner product 〈·, ·〉H through a map-
ping φ : X → H:

K(x, z) = 〈φ(x), φ(z)〉H, ∀x, z ∈ X .

We often write the inner product 〈φ(x), φ(z)〉H as
φ(x)Tφ(z), when the Hilbert space is clear from the
context. This space is called the feature space, and
the mapping is called the feature mapping. They de-
pend on the kernel function K and will be denoted
as φK and HK . The Gram matrix G ∈ R

m×m, de-
fined in (1), will be denoted GK when it is necessary
to indicate the dependence on K.

2. Kernel Fisher Discriminant Analysis

2.1. Setup

Let {x1, . . . , xm+
} ⊂ R

n denote training inputs from
the positive class and {xm++1, . . . , xm} ⊂ R

n de-
note those from the negative class. (The total num-
ber of negative inputs is m− = m − m+.) Let K
be a kernel function. The two sets {φK(xi)}m+

i=1
and

{φK(xi)}m
i=m++1 represent the positive class and the

negative class, respectively, in the feature space.

We learn a classifier h : X → {−1,+1} from the train-
ing inputs whose decision boundary between the two
classes is affine in the feature space HK :

h(x) = sgn
(

wTφK(x) + b
)

,

where w ∈ HK is the vector of feature weights, b ∈ R

is the intercept, and

sgn(u) =

{

+1 if u > 0
−1 if u < 0.

The data required to carry out KFDA are the means
and covariances of the positive and negative classes in
the feature space. In practice, we carry out KFDA
with the sample means

µ+

K =
1

m+

m+
∑

i=1

φK(xi),

µ−
K =

1

m−

m
∑

i=m++1

φK(xi),

and the sample covariances

Σ+

K =
1

m+

m+
∑

i=1

(φK(xi) − µ+

K)(φK(xi) − µ+

K)T ,

Σ−
K =

1

m−

m
∑

i=m++1

(φK(xi) − µ−
K)(φK(xi) − µ−

K)T .

2.2. Maximum Achievable FDR

The basic idea of KFDA is to find a direction in the
feature space HK onto which the projections of the two
sets {φK(xi)}m+

i=1
and {φK(xi)}m

i=m++1 are well sepa-
rated. (Once the direction is fixed, the intercept can
be chosen appropriately, taking into account misclas-
sification costs.) Specifically, the separation between
the two sets is measured by the ratio of the variance
(wTµ+

K −wTµ−
K)2 between the classes to the variance

wT (Σ+

K + Σ−
K)w within the classes. Since the covari-

ances may be singular, we add a (small) regularization
term to the variance within the classes. Thus, KFDA
maximizes the FDR

Fλ(w,K) =
(wT (µ+

K − µ−
K))2

wT (Σ+

K + Σ−
K + λI)w

, (2)

where λ is a positive regularization parameter and I
is the identity operator in HK .

Using the Cauchy-Schwartz inequality, we can show
that the weight vector

w⋆ = (Σ+

K + Σ−
K + λI)−1(µ+

K − µ−
K) (3)
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maximizes the FDR. The maximum FDR achieved
by w⋆ is given by

F ⋆
λ (K)

= max
w∈HK\{0}

Fλ(w,K)

= (µ+

K − µ−
K)T (Σ+

K + Σ−
K + λI)−1(µ+

K − µ−
K).

The maximum FDR depends on the kernel function K
through the feature mapping φK . The square root of
the maximum FDR is an empirical Mahalanobis dis-
tance between the positive and negative classes in the
feature space. It measures the distance between the
means µ+

K and µ−
K of {φK(xi) | i = 1, . . . ,m+} and

{φK(xi) | i = m+ + 1, . . . ,m}, taking into account
their distribution.

2.3. KFDA via Kernel Trick

An important result in KFDA (Mika et al., 2003) is
that the optimal weight vector, given in (3), that max-
imizes the FDR is in the span of the image of the
training inputs through the feature mapping. In other
words, there is α⋆ ∈ R

m such that

w⋆ =

m
∑

i=1

α⋆
i φK(xi) = UKα

⋆, (4)

where
UK = [φK(x1) · · · φK(xm)] .

(This result can be viewed as an extension of the rep-
resenter theorem (Shawe-Taylor & Cristianini, 2004)
for SVMs.) Moreover, this weight vector can be found
via solving a quadratic program in which the objec-
tive and constraints depend on the Gram matrix not
on the kernel function (Mika et al., 2003).

In fact, we can find a closed-form expression for α⋆

in (4):

α⋆ =
1

λ

[

I − J(λI + JGKJ)−1JGK

]

a, (5)

where

a = a+ − a−,

a+ =

[

(1/m+)1m+

0

]

,

a− =

[

0
(1/m−)1m

−

]

,

J =

[

J+ 0
0 J−

]

,

J+ =
1

√
m+

(

I − 1

m+

1m+
1T

m+

)

,

J− =
1

√
m−

(

I − 1

m−
1m

−

1T
m

−

)

.

Here, 1n denotes the vector of all ones in R
n. (When

the dimension is obvious, we will drop the subscript.)
The derivation of (5) is given in Appendix A.

We can represent the optimal decision boundary using
the kernel function. Specifically, for a given point x ∈
X , we can compute the inner product 〈w⋆, φK(x)〉HK

as

〈w⋆, φK(x)〉 =

m
∑

i=1

α⋆
i φ

T
K(xi)φK(x)

=

m
∑

i=1

α⋆
iK(xi, x).

To compute the inner product, we evaluate the kernel
function at the pairs (xi, x), i = 1, . . . ,m, not the
feature mapping, which is known as the kernel trick.

3. Optimal Kernel Selection via Convex
Optimization

3.1. Optimal Kernel Selection Problem

Let K be a convex set K of kernel functions, meaning
that for any K1,K2 ∈ K,

θK1 + (1 − θ)K2 ∈ K, ∀ θ ∈ [0, 1].

The problem of finding the optimal kernel, over K, in
terms of maximum achievable FDR can now be written
as

maximize F ⋆
λ (K)

subject to K ∈ K, (6)

where the variable is the kernel K : X × X → R (and
the problem data are the training examples).

3.2. General Convex Formulation

We show that the objective of the kernel selection
problem (6) can be expressed as a function of the Gram
matrix. Note from (3) and (4) that the objective can
be written as

F ⋆
λ (K) = (µ+

K − µ−
K)TUKα

⋆

= aTUT
KUKα

⋆.
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(Here, we use µ+

K − µ−
K = UKa.) Note that UT

KUK is
in fact the Gram matrix GK :

UT
KUK

=







φT
K(x1)φK(x1) · · · φT

K(x1)φK(xm)
...

. . .
...

φT
K(xm)φK(x1) · · · φT

K(xm)φK(xm)







=







K(x1, x1) · · · K(x1, xm)
...

. . .
...

K(xm, x1) · · · K(xm, xm)







= GK .

We can now see from (5) that

F ⋆
λ (K) =

1

λ

[

aTGKa− aTGKJ(λI + JGKJ)−1JGKa
]

.

The righ-hand side is a function of the Gram matrix.

Let G denote the set of Gram matrices consistent with
the assumption made on the kernel function:

G = {GK

∣

∣ K ∈ K}.
This set is a convex subset of S

m
+ . Here we use S

m
+

(Sm
++) to denote the set of all m ×m symmetric pos-

itive semidefinite (definite) matrices. The convexity
follows directly from convexity of K. Moreover, any
G ∈ G is positive semidefinite, since any K ∈ K satis-
fies the finitely positive semidefinite property (by the
definition of kernel functions).

It is now clear that the optimal kernel selection prob-
lem (6) is equivalent to

minimize f⋆
λ(G)

subject to G ∈ G, (7)

where the variable is G = GT ∈ R
m×m and

f⋆
λ(G) =

1

λ

[

aTGJ(λI + JGJ)−1JGa− aTGa
]

.

(The two problems are equivalent in the sense that a
solution of each problem is readily obtained from a
solution of the other.) Note that the objective and
constraints of this problem depend on a semidefinite
matrix, and not a kernel function.

We establish the convexity of the objective function
f⋆

λ(G), and therefore also the problem (7). Note that
aTGa is linear in G. Thus, it suffices to show the con-
vexity of aTGJ(λI + JGJ)−1JGa. This function can
be expressed as the composite function f(h(G), s(G)),
where

f(x,X) = xTX−1x,

h(G) = JGa,

s(G) = λI + JGJ.

The matrix fractional function f(x,X) is convex on
R

m × S
m
++. Note that, for any G ∈ G, s(G) is positive

definite (λ > 0). Since h and s are linear in G, the
convexity of f(h(G), s(G)) now follows from a basic
composition rule for convex functions: the composition
of a convex function with an affine mapping is always
convex.

3.3. Convex Combinations of Kernels

Here we focus on the special case in which K con-
sists of convex combinations of given kernel functions
K1, . . . ,Kp:

K =

{

K : X×X → R

∣

∣

∣

∣

K =

p
∑

i=1

θiKi, 1
T θ = 1, θ � 0

}

,

where θ � 0 means that its elements θi are nonneg-
ative. Here, we impose the normalization condition
on the kernels Ki that they have the same trace. See
Lanckriet et al. (2004b) for a discussion on the condi-
tion.

The set G of Gram matrices consistent with this set is
given by

G =

{

G

∣

∣

∣

∣

G =

p
∑

i=1

θiGi, 1T θ = 1, θ � 0

}

,

where Gi = GT
i ∈ R

m×m is the Gram matrix com-
puted with the kernel function Ki (and the training
inputs). Any matrix in G is positive semidefinite, since
it is a convex combination of the positive semidefinite
matrices G1, . . . , Gp.

The convex problem (7) corresponding to the convex
combinations above can be written as

minimize f⋆
λ (

∑p
i=1

θiGi)

subject to θ � 0,
1T θ = 1.

(8)

This problem is simple: it involves minimizing a con-
vex function over p nonnegative variables, with one
equality constraint.

The cost of solving the problem is not significantly
larger than that of SVMs applied to the same training
inputs. The cost of forming and summing the Gram
matrices Gi is O(m2n+ pm2), and the additional cost
of computing the gradient and Hessian of the objective
(which requires the inversion of an m ×m matrix) is
O(m3). The Cholesky factorization of the p×p Hessian
requires O(p3) flops. The total cost per Newton step of
interior-point methods (Nesterov & Nemirovsky, 1994)
applied to (8) is therefore O(p3 +m2n+pm2 +m3). In
the case of p, n≪ m, the total cost grows like O(m3),
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which is the same as that of SVMs (but with a larger
constant hidden in the O(·) notation).

We give another convex formulatino of (8). Using the
Schur complement technique (Boyd & Vandenberghe,
2004), we can write the inequality

aTGJ(λI + JGJ)−1JGa ≤ t

equivalently as the linear matrix inequality

[

λI + JGJ JGa
aTGJ t

]

� 0.

Here, for a symmetric matrix A, A � 0 means that A is
positive semidefinite. The convex problem (8) is now
equivalent to

minimize (1/λ)
(

t− ∑p
i=1

θia
TGia

)

subject to H(t, θ) � 0,
θ � 0,
1T θ = 1,

(9)

where the variables are t ∈ R and θ ∈ R
m, and

H(t, θ) ∈ R
n+1×n+1 is defined as

H(t, θ) =

[

λI +
∑p

i=1
θiJGiJ

∑p
i=1

θiJGia
∑p

i=1
θia

TGiJ t

]

.

This problem is a semidefinite program (SDP); see,
e.g., Vandenberghe and Boyd (1996).

This SDP can be solved by interior-point methods,
with the same complexity as that of (8). One advan-
tage of the SDP formulation (9) is that we can find
the optimal kernel using standard SDP solvers such as
SeDuMi (Sturm, 2001) or SDPT3 (Toh et al., 2002).

4. Numerical Results

We demonstrate the optimal kernel selection method
described above with several machine learning bench-
mark examples from the UCI repository (Newman
et al., 1998). The examples considered are shown in
Table 1.

Each data set was randomly partitioned into a training
set and a test set. We used 70% of the data points as
the training set to perform KFDA and optimal kernel
selection, and tested the generalization performance
using the remaining data points. We generated 100
random partitions of the data (for each of the bench-
mark problems) and collected the results.

Our kernel is a convex combination of 10 Gaussian
kernels:

K(x, z) =

10
∑

i=1

θie
−‖x−z‖2/σ2

i ,

Table 1. Classification results: KFDA with the optimal
kernel K⋆ versus KFDA with Kcv found via cross-
validation.

data set
(m, n)

mean TSA (K⋆) mean TSA (Kcv)

sonar
(208, 60)

84.4% 83.3%

ionosphere
(351, 34)

94.1% 92.6%

heart
(297, 13)

81.7% 82.0%

pima
(768, 8)

74.9% 75.1%

where θi are the weights of the kernels to be deter-
mined. The values of σi were chosen uniformly over
the interval [10−1, 102] on the logarithmic scale. The
regularization parameter in KFDA was fixed to 10−8.
The performance of KFDA for the benchmark exam-
ples does not appear to depend much on the regular-
ization parameter, as long as it is neither too small nor
too large.

For each of the benchmark problems, we computed the
optimal weights θ⋆

i of the 10 kernels, using SeDuMi
(Sturm, 2001). This solver is effective for the bench-
mark examples in Table 1, since their sizes are modest.
For instance, we can solve the optimal kernel selection
problem for the ionosphere data set in a few seconds.

For each of the benchmark examples, we compare the
optimal kernel

K⋆(x, z) =

10
∑

i=1

θ⋆
i e

−‖x−z‖2/σ2
i

with the kernel Kcv found via cross-validation to tune
the kernel parameter over σi given above. To do so, we
computed the mean test set accuracy (TSA) (over the
100 instances of each problem). Table 1 summarizes
the comparison results.

To better compare the generalization performances of
the optimal kernel and the kernel found via cross-
validation, we compare the receiver operating char-
acteristic (ROC) curves (Pepe, 2000) of the classifiers
combined with the kernels. The curves were found
by carrying out ROC analysis over the 100 instances
of each problem and then taking the average of the
resulting ROC curves along the x-axis. As an illus-
trative example, we plot the ROC curve comparison
results for the sonar data set in Figure 1. This figure
shows that KFDA with the optimal kernel performs
slightly better than KFDA with Kcv. While guar-
anteeing a false positive rate (the probability that a
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Figure 1. ROC curve comparison results for sonar data.
Solid line: KFDA with the optimal kernel. Dashed line:
KFDA with the kernel found via cross-validation.

negative example is misclassified) of 20%, KFDA with
the optimal kernel achieves a slightly higher true pos-
itive rate (the probability that a positive example is
classified correctly) than KFDA with Kcv. The areas
under the two ROC curves are 0.91 (optimal kernel)
and 0.90 (cross-validation). For the other benchmark
examples considered, we see similar results.

We observe from the empirical results above that the
optimal kernel selection method for KFDA has the po-
tential of replacing cross-validation to tune kernel pa-
rameters, i.e., we can carry out KFDA without cross-
validation to tune kernel parameters. This observa-
tion is in line with the conclusions of Lanckriet et al.
(2004b) and Fung et al. (2004). We expect that
the improvement in mean TSA is more significant in
heterogeneous data fusion in which we want to com-
bine several kernels for learning heterogeneous data,
as Lanckriet et al. (2004a) have demonstrated with
other kernel-based methods.

5. Related Work

Many researchers have studied optimal kernel selection
in kernel-based classification methods, which is called
kernel learning (Bach et al., 2004; Bennett et al., 2002;
Bi et al., 2004; Bousquet & Herrmann, 2003; Cristian-
ini et al., 2001; Crammer et al., 2003; Fung et al., 2004;
Lanckriet et al., 2004b; Lanckriet et al., 2004a; Ong
et al., 2005; Xiong et al., 2005). The main emphasis
is on formulating kernel learning as a tractable convex
optimization problem.

A general result on the convexity of kernel learning

has been established in Micchelli and Pontil (2005).
The authors consider a general optimal kernel selection
problem of the form

minimize inf
w∈HK

m
∑

i=1

ψ
(

yi, w
TφK(xi)

)

+ λ‖w‖2
HK

subject to K ∈ K,

where the variable is the kernel function K : X ×X →
R. Here, λ is a positive regularization parameter,
{(xi, yi)}m

i=1 is the set of given training examples, K is
a set of of kernel functions, ψ : R

2 → R+ is a loss func-
tion (e.g., the hinge loss or logistic loss). Kernel learn-
ing problems that arise in many kernel-based problems
including 1-norm soft margin and 2-norm soft margin
SVMs have this form. They show that if the loss func-
tion ψ is convex, then the problem above is in fact a
convex optimization problem.

Evidently, the FDR in (2) does not satisfy the con-
vexity condition. The convex formulation of kernel
learning in KFDA given in §3 is therefore not a direct
consequence of the general result above.

6. Conclusions

We have shown how to formulate the optimal kernel
selection problem in KFDA as a tractable convex opti-
mization. This convex formulation leads to a more ef-
ficient method than the iterative one proposed in Fung
et al. (2004) that optimizes the weight vector and the
Gram matrix alternatively. In fact, optimizing over
the Gram matrix with a fixed weight vector has the
same complexity as the convex formulation. More-
over, the convex formulation always finds the globally
optimal kernel, while there is no such guarantee in the
alternating method.

The general-purpose solvers for SDPs can solve prob-
lems of the form (9) up to a few thousand examples
and a few hundred kernels in a reasonable amount of
time on a PC. For larger problems, we need special-
purpose solvers. We are currently developing a custom
interior-point method for the original convex formula-
tion (8). In doing so, we would like to exploit the
fact that the regularization parameter appears only in
the objective. This fact allows us to incorporate the
so-called ‘warm-start’ strategy easily in the interior-
point method, which can greatly facilitate tuning the
regularization parameter.
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Mika, S., Rätsch, G., & Müller, K. (2001). A mathe-
matical programming approach to the kernel Fisher
algorithm. In Advances in Neural Information Pro-
cessing Systems, 13, pp. 591-597, MIT Press.
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A. Derivation of (5)

In what follows, we drop the subscript in H, φK , UK ,
µ+

K , Σ+

K , and so on.

Define

U+ =
[

φ(x1) · · · φ(xm+
)
]

,

U− =
[

φ(xm++1) · · · φ(xm)
]

.

We can write the samples means as

µ+ = U+a+, µ− = U−a−.

Therefore,
µ+ − µ− = Ua.

Here a, a+, and a− are defined in §2.3.

The sample covariance Σ+ can be written as

Σ+ =
1

m+

m+
∑

i=1

φ(xi)φ(xi)
T − µ+µ+T

=
1

m+

U+U
T
+ − 1

m2
+

U+1m+
1T

m+
UT

+

= U+J+J+U
T
+ .

Similarly, Σ− can be written as

Σ+ = U−J−J−U
T
− .

The sum of Σ+ and Σ− is therefore given by

Σ+ + Σ− = UJJUT .

We can now write the weight vector w⋆ given in (3) as

w⋆ =
(

UJJUT + λI
)−1

Ua.

Here, we can write the inverse of UJJUT + λI as

(

UJJUT + λI
)−1

=
1

λ

[

I − UJ
(

λI + JUTUJ
)−1

JUT
]

,

which is a straightforward extension of the matrix in-
version formula to the Hilbert space H. (Note that
both the operator UJJUT + λI from H into H and
the matrix λI + JUTUJ ∈ R

m×m are positive defi-
nite.)

Putting all pieces established above together and using
UTU = G, we can write w⋆ as

w⋆ =
1

λ

[

I − UJ
(

λI + JUTUJ
)−1

JUT
]

Ua

=
1

λ
U

[

I − J (λI + JGJ)
−1
JG

]

a.


