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Optimal Design of a CMOS Op-Amp via Geometric
Programming

Maria del Mar Hershenson, Stephen P. Boyellow, IEEE and Thomas H. Lee

Abstract—We describe a new method for determining com- this paper is to determine values of the design parameters that
ponent values and transistor dimensions for CMOS operational optimize an objective measure while satisfying specifications
amplifiers (op-amps). We observe that a wide variety of design o congstraints on the other performance measures. This design

objectives and constraints have a special form, i.e., they aposyn- bl b hed i | by hand
omial functions of the design variables. As a result, the amplifier PFOD'€M can be approached in several ways, €.g., by hand or

design problem can be expressed as a special form of optimization@ variety of computer-aided-design methods, e.g., classical
problem called geometric programmingfor which very efficient —optimization methods, knowledge-based methods or simulated
global optimizatiormethods have been developed. As a consequenceinnealing. (These methods are described more fully below.)
we can eff|C|en_tIy determine globally optimal a_mpllfler designs In this paper, we introduce a new method that has a number
or globally optimal tradeoffs among competing performance .
measures such as power, open-loop gain, and bandwidth. Our oﬂmportantadvantgges over current methods.We formulate the
method, therefore, yields completely automated sizing of (globally) CMOS op-amp design problem as a very special type of opti-
optimal CMOS amplifiers, directly from specifications. mization problem called geometric programThe most im-

In this paper, we apply this method to a specific widely used op- portant feature of geometric programs is that they can be refor-

erational ampllfler architecture, shovylng in detail how to formu- mulated asonvex optimization problemad, thereforeglob-
late the design problem as a geometric program. We compute glob-

ally optimal tradeoff curves relating performance measures such as &/l optimal solutions can be computed wigreat efficiency
power dissipation, unity-gain bandwidth, and open-loop gain. We even for problems with hundreds of variables and thousands of

show how the method can be used to siz@bust designsi.e., de- constraints, using recently developed interior-point algorithms.
signs guaranteed to meet the specifications for a variety of process Thys, even challenging amplifier design problems with many
conditions and parameters. variables and constraints can be (globally) solved.
_ Indtex Lerms—Circtuit otptimization, ?'_V'OS analog _integra;edd The fact that geometric programs (and, hence, CMOS op-amp
CIrculits esign automation eometric rogrammin mixe : .
analog,—digitalgintegrated circﬂitg, operationgl a?nplifiers.g’ design problems cast as. geometric pro.grams) can be globally
solved has a number of important practical consequences. The
first is that sets of infeasible specifications are unambiguously
|. INTRODUCTION recognized: the algorithms either produce a feasible point or
S THE demand for mixed-mode integrated circuits ir® pr_oof th_at_ 'Fhe set of specificatk_)ng is_infeasible. Ind_eed, the
creases, the design of analog circuits such as operatiofiapice of initial design for the optimization procedure is com-
amplifiers (op-amps) in CMOS technology becomes more Crmetgly |rreleyant (an.d can even be |nfea5|ble)_; it has_ no effect on
ical. Many authors have noted the disproportionately large dB€ final design obtained. Since the global optimum s found, the
sign time devoted to the analog circuitry in mixed-mode inté2P-2MPps obtained are notjust the best our method can design, but
grated circuits. In this paper, we introduce a new method for d8-fact the besanymethod can design (with the same specifica-
termining the component values and transistor dimensions f§nS)- In particular, our method computes #igsolute limit of
CMOS op-amps. The method handles a very wide variety gerformancdor a given ampllflerandtechnology parameters. .
specifications and constraints, éstremely fastand results in ~_ 1he fact that geometric programs can be solved very effi-
globally optimaldesigns. ciently has a number of prac.tlcal consequences. For example,
The performance of an op-amp is characterized by a numpee method can be used to S|.multa.1neously optllmlze the d§3|gn
of performance measures such as open-loop voltage g&h@large number of op-amps inasingle large mixed-mode inte-
quiescent power, input-referred noise, output voltage swir@',ated circuit. In this cage,the designs of the individual op-amps
unity-gain bandwidth, input offset voltage, common-mod@re coupled by constraints on total power and_area, and by var-
rejection ratio, slew rate, die area, and so on. These perflj{s parameters that affect the amplifier coupling such as input
mance measures are determined by the design paramefg@Bacitance, output resistance, etc. Anothgr application is to use
e.g., transistor dimensions, bias currents, and other comporigftefficiency to obtaimbust designs.e., designs that are guar-
values. The CMOS amplifier design problem we consider gnteed to meet a set of specmcatlons_ oyeravarlety _ofprocess_,es
or technology parameter values. This is done by simply repli-
Manuscript received November 10, 1997; revised March 9, 2000. This pa Cartmg th-e specifications with a (pOSSIbl)./ Iarge).number of rep-
was recommended by Associate Editor K. Mayalam. ’ ' #esentative process parameters, which is practical only because
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* The bias currenfy,;,..

» The value of the compensation capacif@r
The compensation resisté. is chosen in a specific way that is
dependent on the design parameters listed above (and described
in Section V). There are also a number of parameters that we
consider fixed, e.g., the supply voltag€sp andVss, the ca-
pacitive loadCy,, and the various process and technology pa-
rameters associated with the MOS models. To simplify some of
the equations we assume (without any loss of generality) that
VSS = 0

B. Other Approaches

J— —

Vs There is a huge literature, which goes back more than 20
years, on computer-aided design (CAD) of analog circuits. A
good survey of early research can be found in the survey [11];

more recent papers on analog-circuit CAD tools include [4],

ysis, ...) are due to thetf)?rmulgtlon of the design pr_oblemha 2], [13]. The problem we consider in this paper, i.e., selection
convexoptimization problem. Geometric programming (whe f component values and transistor dimensions, is only a part of

reformulated as described in Section II-A) is just a special ty%ecomplete analog-circuit CAD tool. Other parts, which we do

of convex optimization problem. Although general convex prot?]—Ot consider here, include topology selection (see [66]) and ac-

lems can be solved efficiently, the special structure of geometc, o it layout (see, e.g., ILAC [27], KOAN/ANAGRAM I

programming can be exploited to obtain an even more eﬂ'c'eﬂ%]). The part of the CAD process that we consider lies between
solution algorithm.

. . . thfese two tasks; the remainder of the discussion is restricted to
The method we present can be applied to a wide variety

lf hi but in thi v th h ethods dealing with component and transistor sizing.
amplifier architectures, but in this paper, we apply the metho 1) Classical Optimization MethodsGeneral-purpose clas-

tﬁ a speﬁif:jc two—s(tjage CI\;I]OS OPr']‘?mp- The-auzhgors Sgoévoh%‘ﬂéal optimization methods, such as steepest descent, sequen-
the metho .exten S to other arc |t§ctures in [49] an _[ ]'lIAéﬂ guadratic programming, and Lagrange multiplier methods,
longer version of this paper, which includes more detail aboH&ve been widely used in analog-circuit CAD. These methods

parameters, is available at the authors’ web site [51]. Rela% nebrglf:)atjcr?)gsk:aaglp();?nitzhaetierir\c/:?(;ep; Klegs[éld'[;g]e avxl;j?\jl)lll\:gesd
work has been reported in several conference publications, e[.gl,] are used in [25], [64], and [67]. LANCELOT [16], an-
[48]-{50]- other general-purpose optimizer, is used in [22]. Other CAD
approaches based on classical optimization methods, and exten-
sions such as a minimax formulation, include the one described
The specific two-stage CMOS op-amp we consider is showf[47], [61], and [63], OAC [78], OPASYN [56], CADICS [54],
in Fig. 1. The circuit consists of an input differential stage WitjyaATOPT [31], and STAIC [45]. The classical methods can be
active load followed by a common-source stage also with agsed with more complicated circuit models, including even full
tive load. An output buffer is not used; this amplifier is assp|CE simulations in each iteration, as in DELIGHT.SPICE
sumed to be part of a very large scale integration (VLSI) systems] (which uses the general-purpose optimizer DELIGHT [76])
and is only required to drive a fixed on-chip capacitive load ¢fnd ECSTASY [86].
a few picofarads. This op-amp architecture has many advanThe main advantage of these methods is the wide variety of
tages: high open-loop voltage gain, rail-to-rail output swingyroblems they can handle; the only requirement is that the per-
large common-mode input range, only one frequency compgBrmance measures, along with one or more derivatives, can be
sation capacitor, and a small number of transistors. Its maigmputed. The main disadvantage of the classical optimization
drawback is the nondominant pole formed by the load capagethods is they only findbcally optimaldesigns. This means
itance and the output impedance of the second stage, whight the design is at least as good as neighboring designs, i.e.,
reduces the achievable bandwidth. Another potential disadv&fnall variations of any of the design parameters results in a
tage is the right half-plane zero that arises from the feedforwaf@rse (or infeasible) design. Unfortunately this does not mean
signal path through the compensating capacitor. Fortunately, the design is the best that can be achieved, i.e., globally optimal;
zero is easily removed by a suitable choice for the compensatipis possible (and often happens) that some other set of design
resistori. (see [2]). parameters, far away from the one found, is better. The same
This op-amp is a widely used general purpose op-amp [88Foblem arises in determining feasibility: a classical (local) op-
it finds applications, for example, in switched capacitor filter§mization method can fail to find a feasible design, even though
[23], analog-to-digital converters [60], [72], and sensing circuine exists. Roughly speaking, classical methods can get stuck at

Fig. 1. Two-stage op-amp considered herein.

A. The Two-Stage Amplifier

[85]. _ local minima. This shortcoming is so well known that it is often
There are 18 design parameters for the two-stage op-amphot even mentioned in papers; it is taken as understood.
» The widths and lengths of all transistors, i}, ..., Wg The problem of nonglobal solutions from classical optimiza-

andLq, ..., Lg. tion methods can be treated in several ways. The usual approach
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is to start the minimization method from many different iniof performance measures and objectives to be handled. Indeed,
tial designs, and to take the best final design found. Of cour&A is extremely effective for problems involving continuous
there are no guarantees that the globally optimal design has beamables and discrete variables, as in, e.g., simultaneous am-
found; this method merely increases the likelihood of finding thaifier topology and sizing problems. SA has been used in sev-
globally optimal design. This method also destroys one of tleeal tools such as ASTR/OBLX [77], OPTIMAN [38], FRIDGE
advantages of classical methods, i.e., speed, since the compi@l, SAMM [105], and [14].
tion effort is multiplied by the number of different initials de- The main advantages of SA are that it handles discrete vari-
signs that are tried. This method also requires human interveiles well, and greatly reduces the chances of finding a nonglob-
tion (to give “good” initial designs), which makes the methodlly optimal design. (Practical implementations do not reduce
less automated. the chance to zero, however.) The main disadvantage is that it
The classical methods become slow if complex models azan be very slow, and cannot (in practice) guarantee a globally
used, as in DELIGHT.SPICE, which requires more than a coraptimal solution.
plete SPICE run at each iteration (“more than” since, at the least4) Convex Optimization and Geometric Programming
gradients must also be computed). Methods: In this section, we describe the general optimization
2) Knowledge-Based Method&nowledge-based and method we employ in this paper: convex optimization. These
expert-systems methods have also been widely used in anaog special optimization problems in which the objective and
circuit CAD. Examples include genetic algorithms or evolutiononstraint functions are all convex.
systems like SEAS [74], DARWIN [58], [100]; systems based While the theoretical properties of convex optimization prob-
on fuzzy logic like FASY [46] and [92]; special heuristics-basettms have been appreciated for many years, the advantages in
systems like IDAC [29], [30], OASYS [44], BLADES [21], practice are only beginning to be appreciated now. The main
and KANSYS [43]. reason is the development of extremely powerful interior-point
One advantage of these methods is that there are few limitaethods for general convex optimization problems in the last
tions on the types of problems, specifications, and performarfoee years (e.g., [73] and [102]). These methods can solve large
measures that can be considered. Indeed, there are even f@ranlems, with thousands of variables and tens of thousands of
limitations than for classical optimization methods since mampnstraints, very efficiently (in minutes on a small workstation).
of these methods do not require the computation of derivativ€soblems involving tens of variables and hundreds of constraints
These methods have several disadvantages. They find a(Buch as the ones we encounter in this paper) are considered
cally optimal design (or, even just a “good” or “reasonable” desmall, and can be solved on a small current workstation in less
sign) instead of a globally optimal design. The final design déhan one second. The extreme efficiency of these methods is one
pends on the initial design chosen and the algorithm parametefstheir great advantages.
As with classical optimization methods, infeasibility is not un- The other main advantage is that the methods are truly
ambiguously detected; the method simply fails to find a feasibdgobal, i.e., the global solution ialways found, regardless
design (even when one may exist). These methods require soibthe starting point (which, indeed, need not be feasible).
stantial human intervention either during the design process,Iofeasibility is unambiguously detected, i.e., if the methods
during the training process. do not produce a feasible point they produce a certificate that
3) Global Optimization MethodsOptimization methods proves the problem is infeasible. Also, the stopping criteria are
that are guaranteed to find the globally optimal design have alsompletely nonheuristic: at each iteration a lower bound on the
been used in analog-circuit design. The most widely knovwathievable performance is given.
global optimization methods are branch and bound [103] andOne of the disadvantages is that the types of problems, perfor-
simulated annealing [94], [101]. mance specifications, and objectives that can be handled are far
A branch and bound method is used, e.g., in [66]. Branchore restricted than any of the methods described above. This
and bound methods unambiguously determine the globally apthe price that is paid for the advantages of extreme efficiency
timal design: at each iteration they maintain a suboptimal feand global solutions. (For more on convex optimization, and the
sible design and also a lower bound on the achievable perfomplications for engineering design, see [10].)
mance. This enables the algorithm to terminate nonheuristically,The contribution of this paper is to show how to formulate
i.e., with complete confidence that the global design has beiye analog amplifier design problem as a certain type of convex
found within a given tolerance. The disadvantage of branch apmbblem called geometric programming. The advantages, com-
bound methods is that they are extremely slow, with computaared to the approaches described above, are extreme efficiency
tion growing exponentially with problem size. Even problemand global optimality. The disadvantage is less flexibility in
with 10 variables can be extremely challenging. the types of constraints we can handle, and the types of circuit
Simulated annealing (SA) is another very popular methadodels we can employ.
that can avoid becoming trapped in a locally optimal design. Aside from work we describe below, the only other appli-
In principle it can compute the globally optimal solution, butcation of geometric programming to circuit design is in tran-
in implementations there is no guarantee at all, since, for esistor and wire sizing for ElImore delay minimization in digital
ample, the cooling schedules called for in the theoretical treatrcuits, as in TILOS [36] and other programs [81], [82], [87].
ments are not used in practice. Moreover, no real-time low&heir use of geometric programming can be distinguished from
bound is available, so termination is heuristic. Like classicalrs in several ways. First of all, the geometric programs that
and knowledge-based methods, SA allows a very wide variedyise in EImore delay minimization are very specialized (the
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only exponents that arise are 0 atid). Second, the problems posynomial (but not monomial®.3(x; /z2)-> is @ monomial
they encounter in practice are extremely large, involving up tand, therefore, also a posynomial); wiile, /x3 — x9-2 is nei-
hundreds of thousands of variables. Third, their representatitver. Note that posynomials are closed under addition, multipli-
of the problem as a geometric program is quite an approxineation, and nonnegative scaling. Monomials are closed under
tion, since the actual circuits are nonlinear, and the threshaldiltiplication and division.

delay, not EImore delay, is the true objective. A geometric progranis an optimization problem of the form
Convex optimization is mentioned in several papers on
analog-circuit CAD. The advantages of convex optimization minimize  fo(x)

are mentioned in [65] and [66]. In [25] and [26], the authors use

a supporting hyperplane method, which they point out provides subjectto fi(x) <1, t=1

the global optimum if the feasible set is convex. In [89], the gi(x) =1, i=1...,p

authors optimize a few design variables in an op-amp using a z; > 0, i=1,...,n (1)
Lagrange multiplier method, which yields the global optimum

since the small subproblems considered are convex. In [95] amderefo, ..., f,, are posynomial functions angd, ..., g, are

[96], convex optimization is used to optimize area, power, amdonomial functions.

dominant time constant in digital circuit wire and transistor Several extensions are readily handledf is a posynomial

sizing. and g is a monomial, then the constraifitz) < g(z) can
During the review process for this paper, the authors wepe handled by expressing it &$z)/g(x) < 1 (sincef/g is

informed of similar work that had been submitted to IEEPosynomial). For example, we can handle constraints of the

TRANSACTIONS ONCOMPUTERAIDED DESIGN OFINTEGRATED  form f(z) < «a, wheref is posynomial and: > 0. In a sim-

CIRCUITS AND SYSTEMS by Mandal and Visvanathan [24].ilar way if g; andg, are both monomial functions, then we can

Mandal and Visvanathan show how geometric programmitgndle the equality constraigt(xz) = g»(x) by expressing it

can be used to size another simple op-amp, and describasg; (x)/g2(z) = 1 (sinceg; /g2 is monomial).

simple method for iteratively refining monomial device models. We will also encounter functions whose reciprocals are

posynomials. We say: is inverse posynomiaif 1/k is a
C. Outline of Paper posynomial. Ifh is an inverse posynomial anflis a posyn-

In Section II, we briefly describe geometric programming, th@Mial, then geometric programming can handle the constraint
special type of optimization problem at the heart of the metholi{*) < /(x) by writing it as f(x)(1/h(x)) < 1. As another
and show how it can be cast as a convex optimization problef¥@mPple, iffu is an inverse posynomial, then we can maximize
In Sections Ill-VI we describe a variety of constraints and pefl: PY minimizing (the posynomial) /. _
formance measures, and show that they have the special forfP€0metric programming has been known and used since the
required for geometric programming. In Section VIl we givé?t€ 1960s, in various fields. There were two early books on
numerical examples of the design method, showing globaf{FOmetric programming, by Duffiet al. [18] and Zener [106],
optimal tradeoff curves among various performance measufch include the basic theory, some electrical engineering
such as bandwidth, power, and area. We also verify some of @lﬁxrpllcatlor)s (e.g., Qp'umal transformer design), but not mugh
designs using high fidelity SPICE models, and briefly discus¥! nhumerical solution methods. Another book appeared in
how our method can be extended to handle short-channel £¢/6 [8]- The 1980 survey paper by Ecker [19] has many
fects. In Section IX, we discuss robust design, i.e., how to uéerences on applications and methods, including numerical

the methods to ensure proper circuit operation under varicg@ution methods used at that time. Geometric programming
s briefly described in some surveys of optimization, e.g., [20,

processing conditions. In Section X, we give our concluding r& X X ol
marks. pp. 326—328] or [99, Ch. 4]. While geometric programming is
certainly known, it is nowhere near as widely known as, say,
linear programming. In addition, advances in general-purpose
nonlinear constrained optimization algorithms and codes (such
Letw, ..., z, ben real, positive variables. We will denoteas the ones described above) have contributed to decreased use

the vector(zy, ..., x,,) of these variables as A function f is  (and knowledge) of geometric programming in recent years.
called aposynomiafunction ofz if it has the form

Il. GEOMETRIC PROGRAMMING

. A. Geometric Programming in Convex Form

flee, .oy 2n) = chxfl’“x;“ o gpink A geometric program can be reformulated asc@nvex
k=1 optimization problemi.e., the problem of minimizing a convex
. function subject to convex inequality constraints and linear
wherec; > 0 anda;; € R. Note that the coefficients, must o4 5jity constraints. This is the key to our ability to globally and

be nonnegative, but the exponents can be any real nUM- giciently solve geometric programs. We define new variables
bers, including negative or fractional. When there is exactly one
T

: ; 1, = log z;, and take the logarithm of a posynomjato get
nonzero term in the sum, i.e.,= 1 ande¢; > 0, we call f a
monomiaffunction. (This terminology is not consistent with the '
standard definition of a monomial in algebra, but it should not 1,y = 1og( f(c¥*, ..., e¥)) = log <Z ea,?y+bk>

cause any confusion.) Thus, for exampl&,+ 2z, /z2 + 292 is Pt
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Wherea,f = a1 - - - api] @ndby, = log ¢4, It can be shown that ciency. Problems with hundreds of variables and thousands of
v is aconvexfunction of the new variablg: for all 4, = € R* constraints are readily handled, on a small workstation, in min-

and0 < A < 1 we have utes; the problems we encounter in this paper, which have on
the order of ten variables and 100 constraints, are easily solved
h(Ay + (1= N)z) < A(y) + (1 = A)h(z). in under one second.

_ o ) To carry out the designs in this paper, we implemented, in

Note that if the posynomiaf is a monomial, then the trans-\aT|AB, a simple and crude primal barrier method for solving
formed functiom: is affine, i.e., alinear function plus a constanty,e convex form problem. Roughly speaking, this method con-
We can convert the standard geometric program (1) intosts of applying a modified Newton’s method to minimizing the

convex program by expressing it as smooth convex function
minimize log fo(e¥', ..., e¥*) , , . , ,
. , , t log e, .., e+ log(—1log f;(e¥t, ..., ¥
subjectto log fi(e¥', ..., e¥) <0, i=1,...,m g fo(c™, ooy ™) ; g(=log (e .., ™))
log gi(e¥t, ..., e¥")=0, i=1,....,p. (2)

subject to the affine (linear equality) constrainieg

This is the so-calledonvex formof the geometric program (1). 9i(¢*> .-+, ¢#") = 0,4 = 1,..., p, for an increasing
Convexity of the convex form geometric program (2) has segeduence of values of starting from the optimay found for
eral important implications: we can use efficient interior-poirff€ 1ast value of. It can be shown that wheh > m/e, the
methods to solve them, and there is a complete and useful @gtimal solution of this problem is no more thaisuboptimal

ality, or sensitivity theory for them:; see, e.g., [10]. for the original convex.form g(_aometric program (GP). The
computational complexity of this simple method G¥pn?),
B. Solving Geometric Programs wheren is the number of variables, andis the total number

. , . of terms in monomials and posynomials in the objective and
Since Ecker's survey paper, there have been several 'MP&straints. For much more detail, see [10] and [35].

tant developments, related to solving geometric programmngeSpite the simplicity of the algorithm (i.e., primal only, with

'f.nc.t:rfccon;?;:;r.?'eg hnu%gs;;npr?}\éin&zrgt;?ocogﬁu&aéznﬂ 2 10 sparsity exploited) and the overhead of an interpreted lan-
iclency w eved| W v rov age, the geometric programs arising in this paper were all

developed efﬁcu.ant. mtgnor-pomt angnthm; to solve a yarlet olved in approximately 1 or 2 s on an ULTRA SPARC1 running
of nonlinear optimization problems, including geometric pro-

at 170 MHz. Since our simple interior-point method is already
grams [.73]' Recgntly, KO”?‘”“‘? a'-h?"e shown how the_ m(.)Stextremer fast on the relatively small problems we encounter
sophisticated primal-dual interior-point methods used in line

they describe has the desirable feature of explogiparsityin
the_problem, ie., _efficiently handling problems in which eacp Sensitivity Analysis

variable appears in only a few constraints. Other methods de- ) . ) o
veloped specifically for geometric programs include those de-SUPPOSe we modify the right-hand sides of the constraints in
scribed by Avriekt al.[7] and Rajpogal and Bricker [80], which the geometric program (1) as follows:

require solving a sequence of linear programs (for which very

iy . minimize
efficient algorithms are known). fo(@)

The algorithms described above are specially tailored for subjectto fi(z) < e*, i=1...,m
the geometric program (in convex form). It is also possible to gi(x) = e, i=1,...,p
solve the convex form problem using general purpose opti- z; >0, i=1,...,n. 3)

mization codes that handle smooth objectives and constraint
functions, e.g., LANCELOT [16], MINOS [71], LOQO [97], or If all of the , andv; are zero, this modified geometric pro-
LINGO-NL [83]. These codes will (in principle) find a globally gram coincides with the original one.4f < 0, then the con-
optimal solution, since the convex form problem is convestraint f;(z) < ¢! represents sightenedversion of the orig-
They will also determine the optimal dual variables (sensitivinal ith constraintf;(xz) < 1; conversely ifu; > 0, it repre-
ties) as a by-product of solving the problem. In an unpublisheénts dooseningof the constraint. Note that; gives a loga-
report [104], Xu compares the performance of the sophisticatethmic or fractional measure of the change in the specification:
primal-dual interior-point method developed by Kortanek «;, = 0.0953 means that théth constraint is loosened 10%,
al.(XGP, [57]) with two general-purpose optimizers, MINOSvhereas:; = —0.0953 means that théth constraint is tight-
and LINGO-NL, on a suite of standard geometric programmirgned 10%.
problems (in convex form). The general-purpose codes fail toLet f;(u, v) denote the optimal objective value of the mod-
solve some of the problems, and in all cases take substantidigd geometric program (3), as a function of the parameters
longer to obtain the solution. u = (u1, ..., up) andv = (vq, ..., v,), so the original ob-
For our purposes, the most important feature of geometjective value isf;(0, 0). In sensitivity analysiswe study the
programs is that they can tgobally solved withgreat effi-  variation of f; as a function ot andv, for small« andv. To
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express the change in optimal objective function in a fraction@he biasing transistor&/;, M7, andMg must match, i.e., have

form, we use thdogarithmic sensitivities the same length
dlog 3 alog f3
S, = 9 log fo T = 9 log fg 4) Ly =L, = Lg. (6)
8ui avi

evaluated at: = 0, v = 0. These sensitivity numbers areThe six equality constraints in (5) and (6) have monomial
dimensionless, since they express fractional changes per fréxpressions on the left- and right-hand sides and hence, are
tional change. readily handled in geometric programming (by expressing
For simplicity we are assuming here that the original gehem as monomial equality constraints suctiag v, = 1).
metric program is feasible, and remains so for small changed\ote that (5) and (6) effectively reduce the number of vari-
in the right-hand sides of the constraints, and also that the gples from 18to 12. We can, for example, eliminate the variables
timal objective value is differentiable as a functiongfandv;. L7 andLg by substitutingl; wherever they appear. For clarity,
More complete descriptions of sensitivity analysis in other case¢ will continue to use the variablds; and Ls in our discus-
can be found in the references cited above, or in a general c6ien; for computational purposes, however, they can be replaced
text in [10]. The surprising part is that the sensitivity numbemy L;. (In any case, the number of variables and constraints is
S, ..., Sy andTy, ..., T, come for free, when the problemso small for a geometric program that there is almost no com-
is solved using an interior-point or Lagrangian-based methgdtational penalty in keeping the extra variables and equality
(from the solution of the dual problem; see [10]). constraints.)
We start with some simple observations. If at the optimal so-
lution z* of the original problem, théth inequality constraint B. Limits on Device Sizes

is not active, i.e.fi(z") is strictly less than one, thefy = 0 | jthography limitations and layout rules impose minimum
(since we can slightly tighten or loosen tita constraint with  (gnd possibly maximum) sizes on the transistors
no effect). We always havg; < 0 since increasing; slightly

loosens the constraints, and hence lowers the optimal objective Loin € L; € Lipax
value. The sign off; tells us whether increasing the right-hand

. . . . . Wmin S Wz S WmaX7
side side of the equality constraijt= 1 increases or decreases

the optimal objective value. _ _ These 32 constraints can be expressed as posynomial constraints
The sensitivity numbers are extremely useful in practice, aggch asLuin/L1 < 1, etc. SinceL; and W; are variables
nmin —_ H . T ?

give tremendous insight to the designer. Suppose, for examplgance monomials), we can also fix certain devices sizes, i.e.,
that the objectivefy is power dissipationf;(z) < 1 repre- j50se equality constraints.

sents the constraint that the bandwidth is at least 30 MHz, an e should note that a constraint limiting device dimensions

g1 (Sa:) = 1 represents the constraint that the open-loop gaini$  finite number of allowed values, or to an integer multiple of
10> V/V. ThenS, = —3, say, tells us that a small fractionalgme fixed small valuezannotbe (directly) handled by geo-
increase in required bandwidth will translate into a three times.iyic programming. Such constraints can be approximately
larger fractional increase in power dissipatidi. = 0.1 tells handled by simple rounding to an allowed value, or using more

us that a small fractional increase in required open-loop gainisticated mixed convex-integer programming methods.
will translate into a fractional increase in power dissipation only

one-tenth as big. Although both constraints are active, the sensi-
tivities tell us that the design is, roughly speaking, more tightly . .

constrained by the bandwidth constraint than the open-loop gain' '€ 0P-amp die ared can be approximated as a constant
constraint. The sensitivity information from the example aboUS the sum of transistor and capacitor area as

might lead the designer to reduce the required bandwidth (to re- s

duce power), or perhaps increase the open-loop gain (since it A=ag+ 10, + ay Z WiL;. 8)
would not cost much). We give an example of sensitivity anal-
ysis in Section VII-D.

i=1,...,8 @)

Area

=1

Here«y > 0 gives the fixed areay; is the ratio of capacitor
I1l. DIMENSION CONSTRAINTS area to capacitance, and the constant> 1 (if it is not one)
can take into account wiring in the drain and source area. This
pression for the area is a posynomial function of the design
Bérameters, SO we can impose an upper bound on the area, i.e.,
A < An.x, Or use the area as the objective to be minimized.
This simple expresion does not take routing area into account;

. . . . . . more accurate posynomial formulas for the amplifier die area
For the intended operation of the input differential pair, transyu1d be developed, if needed.

sistorsiM; andM> must be identical and transistavé; andid,
must also be identical. These conditions translate into the fqyr
equality constraints

We start by considering some very basic constraints involvi
the device dimensions, e.g., symmetry, matching, minimum
maximum dimensions, and area limits.

A. Symmetry and Matching

Systematic Input Offset Voltage

To reduce input offset voltage, the drain voltagesifyf and
Wi=W, Li=Ly Wy3=W, Ls=Ly4. (5) M, must be equal, ensuring that the currénts split equally
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between transistor®/; andMs. This happens when the currentare each posynomial inequalities on the design variables and,
densities ofM3, My, andMg are equal, i.e., hence, can be handled by geometric programming.

Ws/Ls  Wi/Ly 1 Ws/Ls

We/Le We/Ls 2 Wy/L7' 9)

These two conditions are equality constraints between mono-
mials, and are therefore readily handled by geometric program-
ming.

IV. BIAS, CONDITIONS, SGNAL SWING, AND POWER
CONSTRAINTS

In this section, we consider constraints involving bias condi-
tions, including the effects of common-mode input voltage and ,
output signal swing. We also consider the quiescent power of the
op-amp (which is determined, of course, by the bias conditions).
In deriving these constraints, we assume that the symmetry and
matching conditions (5) and (6) hold. To derive the equations,
we use a standard long-channel square-law model for the MOS
transistors, which is described in detail in the Appendix. We ,
refer to this model as the GPO model; the same analysis also
applies to the more accurate GP1 model, also described in the,
Appendix.

In order to simplify the equations, it is convenient to define
the bias currentsy, I, andi; through transistorg/, , M5, and .
M-, respectively. Transistor®; andM; form a current mirror
with transistorig. Their currents are given by

_ WsLs _ WiLs
T LWy T LWy

ThusI; andI; are monomials in the design variables. The cur-
rent through transista¥/; is split equally between transistdf;
andA/,. Thus, we have

I WsLg

L=2=25 1 11
L=y T oL (11)

I; Thias  Ir

Ibias . (10)

which is another monomial.

Since these bias currents are monomials, we can include,
lower or upper bounds on them, or even equality constraints, if
we wish. We will usely, I;, and; in order to express other
constraints, remembering that these bias currents can simply
be eliminated (i.e., expressed directly in terms of the design
variables) using (10) and (11).

A. Bias Conditions

The setup for deriving the bias conditions is as follows. The
input terminals are at the same dc potential, the common-modee«
input voltageV,,,. We assume that the common-mode input
voltage is allowed to range between a minimum valug min
and a maximum valu&.., max, Which are given. Similarly,
we assume that the output voltage is allowed to swing between
a minimum valueVoy min and a maximum value’, ¢ max
(which takes into account large signal swings in the output).

The bias conditions are that each transistdy, - - -, Mg
should remain in saturation for all possible values of the input
common-mode voltage and the output voltage. The derivation
of the bias constraints given below can be found in the longer
report [51]. The important point here is that the constraints

Transistor M;. The lowest common-mode input voltage
Vem, min IMposes the toughest constraint on transigter
remaining in saturation. The condition is

/ L Ls
— = =< V::m min — Vvss -V - V. 12
unCOX/ZWES - ’ w ™ ( )

Note that if the right-hand side of (12) were negative, i.e.,
if Vem, min < Ves + Vrp + Vo, then the design is imme-
diately known to be infeasible (since the left-hand side is,
of course, positive).

Transistor M. The systematic offset condition (9) makes
the drain voltage of\/; equal to the drain voltage dff,.
Therefore, the condition folM, being saturated is the
same as the condition fav/; being saturated, i.e., (12).
Note that the minimum allowable value B, i, iS de-
termined byA4; andA> entering the linear region.
Transistor M. SinceVyq, 3 = 0 transistorM; is always

in saturation and no additional constraint is necessary.
Transistor M. The systematic offset condition also im-
plies that the drain voltage af/, is equal to the drain
voltage ofAd3. Thus,M, will be saturated as well.
Transistor Mj;. The highest common-mode input voltage
Vem, max, IMPOses the tightest constraint on transisihy
being in saturation. The condition is

IlLl I()LE)
+
Hp COX/2W1 Hp COX/2W5

S Vdd - ‘/cm, max T VTP- (13)

Thus, the maximum allowable value &f., i, is de-
termined byM; entering the linear region. As explained
above, if the right-hand side of (13) is negative, i.e.,
Vem, max 2 Vaa + Vp, then the design is obviously
infeasible.

Transistor Mg. The most stringent condition occurs when

the output voltage is at its minimum valdgy; min

[ LLg
— > < Vvou min — Vvss~ 14
I’LIICOX/ZWG - v ( )

In this case the right-hand side of (14) will not be negative
if we assume the minimum output voltage is above the
negative supply voltage.

Transistor M. For M, the most stringent condition oc-
curs when the output voltage is at its maximum value

V;ut, max

| I.L,
— < V - ‘/ou max- 15
N})COX/2W7 = rdd E ( )

Here too, the right hand-side of (15) will be positive as-
suming the maximum output voltage is below the positive
supply voltage.

Transistor Mg. SinceV,q s = 0, transistorMs is always

in saturation; no additional constraint is necessary.
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In summary, the requirement that all transistors remain thors [32], [53], [88]. The compensation scheme has also been
saturation for all values of common-mode input voltage benalyzed previously, e.g., in [2].
tween Ve, min @Nd Vo, max, and all values of output voltage  « The open-loop voltage gain is
between,yt, min aNAVout, max, iS given by the four inequalities

(12)—(15). These are complicated, posynomiatonstraints on A, = < Im?2 ) < Imé )
the design parameters. o2 + Gos go6 + go7
20, WaWe
: = 2o ) W2le 20
B. Gate Overdrive Out A2V L Loh s (20)

It is sometimes desirable to operate the transistors with a
minimum gate overdrive voltage. This ensures that they operate
away from the subthreshold region, and also improves matching
between transistors. For any given transistor this constraint can
be expressed as

IpL
Vs — V = _— > ‘/over rive, min- 16
g T puCox/2W — dbve, (10) *

The expression on the left is a monomial, so we can also impose
an upper bound on it, or an equality constraint, if we wish. (We
will see in Section IX that robustness to process variations can
be dealt with in a more direct way.)

which is monomial function of the design parameters.
» The dominant pole is accurately given by

pL = gm1
YT AC

SinceA, andg,,; are monomials, an@’. is a design vari-
able,p; is a monomial function of the design variables.
The output pole, is given by

(21)

_ gmGCc
C1C. + C1Cpr, + C.Crpr,

whereC1, the capacitance at the gate &, can be ex-
pressed as

D2 (22)

C. Quiescent Power C1 = Cys6 + Canz2 + Capa + Cgaz + Cgaa (23)

The quiescent power of the op-amp is given by and (7, the total capacitance at the output node, can be

expressed as

P = (Vaa — Vis)Ubias + 15 + I7) (17)

Crr = Cp + Cape + Canr + Ceas + Car- (24)

which is a posynomial function of the design parameters. Hence,
we can impose an upper bound £nor use it as the objective
to be minimized.

The meanings of these parameters, and their dependence
on the design variables, is given in the Appendix, Sec-
tion B. The important point here is that is an inverse
posynomial function of the design parameters (il¢n.

is a posynomial).

_ ) » The mirror poleps is given by
We now assume that the symmetry, matching, and bias con-

straints are satisfied, and consider the (small-signal) transfer

V. SMALL —SGNAL TRANSFERFUNCTION CONSTRAINTS
A. Small-Signal Transfer Function

_ 9m3

p3 (25)

function H from a differential input source to the output. To
derive the transfer functiof/, we use a standard small-signal
model for the transistors, which is described in the Appendix,

&

whereCs, the capacitance at the gate Mdf;, can be ex-
pressed as

Section B. The standard value of the compensation resistor is

used, i.e., Cy = Ogs3 + Ogs4 + Cap1 + Caps + C(gdl- (26)
. Thus,ps is also an inverse posynomial.
Re = 1/gums (18) « The compensation pole is
(see [2]). Py = Jme 27)
The transfer function can be well approximated by a four-pole Cy
form which is also inverse posynomial.
H(s)= A 1 In summary: the open-loop gait,, and the dominant pole

Y (14 s/p1)(1 4+ 5/p2)(1 +5/p3)(1 4 5/ps)’ p1 are monomial, and the parasitic pojes ps, andp, are all
inverse posynomials. Now we turn to various design constraints

Here, A, is the open-loop voltage gair;p; is the dominant and specifications that involve the transfer function.
pole,—p- is the output poles-p3 is the mirror pole, and-p. is

the pole arising from the compensation circuit. In order to sinB. Open-Loop Gain Constraints

plify the discussion in the sequel, we will refergg, ..., p, Since the open-loop gais,, is a monomial, we can constrain
which are positive, as the poles (whereas precisely speaking, jihg equal some desired valuk... We could also impose upper

poles are-py, ..., —ps). _ _ or lower bounds on the gain, as in
We now give the expressions for the gain and poles. The

two-stage op-amp has been previously analyzed by many au- Apin € Ay < Anax (28)
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whereA,,;, and A,,., are given lower and upper limits on ac-where we (arbitrarily) use one decade, i.e., a factor of ten in
ceptable open-loop gain. frequency, as the condition for dominance. These dominant
o ] pole conditions are readily handled by geometric program-
C. Minimum Gain at a Frequency ming, sincep; is monomial andy,, ps, andp, are all inverse
The magnitude squared of the transfer function at a frequerggsynomial. In fact these dominant pole conditions usually
wo is given by do not need to be included explicitly since the phase margin
conditions described below are generally more strict, and
|H(jwo)|* = —————. describe the real design constraint. Nevertheless, it is common
0 o practice to impose a minimum ratio between the dominant and
1_[1(1 +wo/p;) nondominant poles; see, e.g., [42].
=
Sincep; are all inverse posynomial, the expressiaggp? are F Unity-Gain Bandwidth and Phase Margin

posynomial. Hence, the whole denominator is posynomial. Thewe define the unity-gain bandwidth, as the frequency at
numerator is monomial, thus we conclude that the squared maghich | H (jw.)| = 1. The phase margin is defined in terms of

nitude of the transfer functionH (jwo)|?, is inverse posyno- the phase of the transfer function at the unity-gain bandwidth
mial. (Indeed, it is inverse posynomial in the design variables

. . 4
andwy as well.) We can, therefore, impose any constraint of the ) A
f o ) P y PM=7n—-/H(jw.) =7n — Z arctan | -2
orm — D;
|H(jwo)| 2 a A phase margin constraint specifies a lower bound on the phase

a@argin, typically betweeB0°—60°.

The unity-gain bandwidth and phase margin are related to
the closed-loop bandwidth and stability of the amplifier with
unity-gain feedback, i.e., when its output is connected to the
inverting input. If the op-amp is to be used in some other
specific closed-loop configuration, then a different frequency

|H(jw)| > a for w < wp. (29) will be of more interest, but the analysis is the same. For ex-
ample, if the op-amp is to be used in a feedback configuration
We will see below that this allows us to specify a minimunyjith closed-loop gaint+20 dB, then the critical frequency is
bandwidth or crossover frequency. the 20-dB crossover point, i.e., the frequency at which the
. open-loop gain drops to 20 dB, and the phase margin is defined
D. 3-dB Bandwidth at that frequency. All of the analysis below is readily adapted
The 3-dB bandwidtlus 45 is the frequency at which the gainwith minimal changes to such a situation. For simplicity, we
drops 3 dB below the dc open-loop gain, i (jwsas)| = continue the discussion for the unity-gain bandwidth.
A,/V/2. To specify that the 3-dB bandwidth is at least some We start by considering a constraint that the unity-gain band-
MIiNiMUM valu@us 4B, min, I-€.,w3 dB > W3 dB, min, IS €QuUivalent width should exceed a given minimum frequency, i.e.,
to specifying thatH (w3 aB, min)| > A,U/\/i. Thisis turn can be

using geometric programming [by expressing it
a®/|H (jwo)> < 1],

The transfer function magnitudé/ (jw)| decreases as in-
creases (since it has only poles),|&(jwo )| > a is equivalent
to

expressed as We 2 We, min- (33)
A,/ |H(wsap, min)|* < 2 (30) This constraint is just a minimum gain constraint at the fre-
guencyw. min [as in (29)], and, thus, can be handled exactly
which is a posynomial inequality. by geometric programming as a posynomial inequality.
Inalmostall designg, will be the dominant pole, (see below) Here too we can develop an approximate expression for the
so the 3-dB bandwidth is very accurately given by unity-gain bandwidth which is monomial. If we assume the par-

asitic polews, ps, andp, are at least a bit (say, an octave) above
the unity-gain bandwidth, then the unity-gain bandwidth can be

which is a monomial. Using this (extremely accurate) appm?pproxmated as the open-loop gain times the 3-dB bandwidth,

imation, we can constrain the 3-dB bandwidth to equal sonmie”
required value. Using the constraint (30), which is exact but in-
verse posynomial, we can constrain the 3-dB bandwidth to ex-
ceed a given minimum value.

waap =p1 = 4 (31)

gml
wc, approx — 7 (34)
c

which is a monomial. If we use this approximate expression for

the unity-gain bandwidth, we can fix the unity-gain bandwidth

at a desired value. The approximation (34) ignores the decrease
The amplifier is intended to operate with as the dominant in gain due to the parasitic poles and, consequently, overesti-

pole, i.e.p1 much smaller thap,, ps, andp,. These conditions mates the actual unity-gain bandwidth (i.e., the gain drops to

can be expressed as 0 dB at a frequency slightly less than . pprox)-

p1 p1 We now turn to the phase margin constraint, for which we can

P1
p_2 <01 D3 <0.1 p_4 <01 (32) give a very accurate posynomial approximation. Assuming the

E. Dominant Pole Conditions
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open-loop gain exceeds ten or so, the phase contributed by t 100 ! ‘ ' ' ' T
dominant pole at the unity-gain bandwidth, ii@¢tan(w./p1 ), gof |TTT Eew [T
will be very nearly90°. Therefore, the phase margin constraint . . : o
can be expressed as 8oF T T ,’, s
70k RN : - o ”" : o
4 : : : P -
Z arctan(&) S g—PM (35) - B0F e E ’,f” JU L _....—..."4.-
=2 Y43 :c; 50t . : :’,.’.... ’.",- : R
w PR ’\_w : : :
i.e., the nondominant poles cannot contribute more t&n- 401 : L7 ‘,}-""' v i ]
PM total phase shift. ok i
The phase margin constraint (35) cannot be exactly handle 1 P i :
by geometric programming, so we use two reasonable approx 207 7 R SR
mations to form a posynomial approximation. The firstisanap 1ot ,;,;';'_ e 5 S S TP P
proximate unity-gain bandwidtl. .pprox [from (34)] instead 0,~" . ; ; ] , , . .
of the exact unity-gain bandwidth. as the frequency at which 0 02 04 06 08 1 12 14 16
we will constrain the phase @f. As mentioned above, we have X

exact phase margin specification (since we are constraining the

phase ata frgquency slightly above the actual unity gain_ bangl- common-Mode Rejection Ratio
width). We will also approximaterctan(z) as a monomial. o ) )
A simple approximation is given byrctan(z) & z, which is The common-mode rejection ratio (CMRR) can be approxi-

quite accurate fosirctan(z) less thar2s®. Thus, assuming that Mated as

We, approx < We, thus, our specification is a bit stronger than thgig. 2. Approximations ofirctan(z).

each of the parasitic poles contributes no more than abisut 29m19m3
. : . . CMRR= —————
of phase shift, we can approximate the phase margin constraint (go3 + Go1)Gos
accurately as
urately _ 2C, W, W3 38)
. ; T Ot A | P LI
§ —APPIOR S o PMmin (36) . . . . . L.
P pi 2 which is a monomial. In particular, we can specify a minimum

acceptable value of CMRR.
which is a posynomial inequality in the design variables (since
We, approx 1S MONomial). The approximation error involved her€. Power-Supply Rejection Ratio

is almost always very small for the following reasons. The con- 1) Negative Power-Supply Rejection Ratifhe negative

straint (36) makes sure none of the nondominant poles is tgQwer-supply rejection ratio (PSRR) is given by [52], [59]
nearw,. This, in turn, validates our approximation approx ~

w.. It also ensures that our approximation that the phase con- 9Im29mé 1 ) (39)
tributed by the nondominant poles¥s;_, w./p; is good. (9o2 + goa)9o6 (1 + s/p1)(1 + s/p2)

Fmall_y, we note thafc itis possible to obtain a more accuraﬁ%us’ the low-frequency negative PSRR is given by the inverse
monomial approximation ofrctan(z) that has less error over : -

. - posynomial expression

a wider range, e.garctan(z) < 60°. For example the approxi-
mationarctan(z) ~ 0.75z°7 gives a fit aroundt3° for angles Im29m6 (40)
between 060°, as shown in Fig. 2. (9o2 + Goa)gos

which, therefore, can be lower bounded.
VI. OTHER CONSTRAINTS The high-frequency PSRR characteristics are generally more
In this section, we collect several other important constrainfitical than the low-frequency PSRR characteristics since noise
in mixed-mode chips (clock noise, switching regulator noise,
A. Slew Rate etc.) is typically high frequency. One can see that the expression
for the magnitude squared of the negative PSRR at a frequency

The slew rate can be expressed [79] as wo has the form

SR=min{2I,/C., I;/(C. + Cr1.)}. , A2
(B0/Cor 1/ (Co Cm)} PSRRjwo)l’ = it
. i (1 +wi/pi)(1 + w5 /p3)
In order to ensure a minimum slew-rate , gRwe can impose ) ) )
the two constraints whereA,, p;, andp, are given by inverse posynomial expres-
sions. As in Section V-C, we can impose a lower bound on the
Ce 1 C.+ Crr, < 1 37) negative PSRR at frequencies smaller than the unity-gain band-

— < .
2-[1 - SRmin’ -[7 - SRmin

These two constraints are posynomial. [PSRRjwo)| > a. (41)

width by imposing posynomial constraints of the form
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2) Positive Power-Supply Rejection Ratidhe low-fre- TABLE |
quency positive PSRR is given by DESIGN CONSTRAINTS AND SPECIFICATIONS FOR THETWO-STAGE OP-AMP
Specification/constraint Type Equation(s)
PSRR= 20m2Gm3Jm6 (42) Symmetry and matching Mono. 56
(.902 + .904) (2.91113.907 - .91116.905) Device sizes Mono. 7
Area Posy. 8
which is neither posynomial nor inverse-posynomial, thus, it | Systematic offset voltage Mono. 9
follows that constraints on the positive power supply rejection | Bias conditions
cannot be handled by geometric programming. However, this Common-mode input range | Posy. 12,13
op-amp suffers from much worse negative PSRR characteris-| _ Output voltage swing Posy. 14,15
tics than positive PSRR characteristics, both at low and high | Gate overdrive Mono. 16
. . . Quiescent power Posy. 17
frequencies [40], [42]. Therefore, not constraining the positive Oven 1 - Mono. 0
. . pen loop gain ono
PSRR is not critical. Dominant pole conditions Posy. 32
We must at the least check the positive PSRR of any design | 3dB bandwidth Mono. 31
carried out by the method described in this paper. (It is more | Unity-gain bandwidth Mono. 34
than adequate in every design we have carried out.) However, | Phase margin Posy. 36
if the positive PSRR specification becomes critical, it can be | Slew rate Posy. 37
approximated (conservatively) by a posynomial inequality, e.g., | CMRR Mono. 38
using Duffin linearization [7], [17]. gsg PITSSRR;{ g‘;t}iisy ig’ 41
Input-referred spot noise Posy. 43
D. Noise Performance Input-referred total noise Posy. 44

The equivalent input-referred noise power spectral density
Sin(f)? (in V2/Hz, at frequencyf assumed smaller than the

3-dB bandwidth), can be expressed as The total rms noise levéf,.;s. over a frequency bardy, f1]

(wheref; is below the equivalent noise bandwidth of the circuit)
can be found by integrating the noise spectral density:

2
=T+ 57+ (22) (534 59) f
gmi1 1
Viise = Sin(f)? df = alog(f1/fo) + B(f1 — fo).
whereS? is the input-referred noise power spectral density of Jo
transistorMy. These spectral densities consist of the input-r

. . q:herefore, imposing a maximum total rms noise voltage over
ferred thermal noise andly f noise Posing g

the band fo, f1]is the posynomial constraint

2) 4kT K;

7= (3) ot i @081/ o) + BN~ o) S Vawe (@)

Thus, the input-referred noise spectral density can be expres§igce/1 and fo are fixed, andv and/3 are posynomials in the
as design variables).

Su(H)P=a/f+7 VIl. OPTIMAL DESIGN PROBLEMS AND EXAMPLES

h A. Summary of Constraints and Specifications
where
The many performance specifications and constraints de-

2K, K pnL? scribed in the previous sections are summarized in Table I.
= Co WL, < m) Note that with only one exception (the positive supply rejection
ratio), the specifications and constraints can be handled via
5= 16KT pa(W/L)s | geometric programming.
3v/2upCox(W/L). I, pp(W/L), Since all the op-amp performance measures and constraints
shown above can be expressed as posynomial functions and
Note thate and are (complicated) posynomial functions ofposynomial constraints, we can solve a wide variety of op-amp

«

the design parameters. design problems via geometric programming. We can, for ex-
We can, therefore, impose spot noise constraints, i.e., requaraple, maximize the bandwidth subject to given (upper) limits
that on op-amp power, area, and input offset voltage, and given

(lower) limits on transistor lengths and widths, and voltage
(43) gain, CMRR, slew rate, phase margin, and output voltage

swing. The resulting optimization problem is a geometric
for a certainf, as a posynomial inequality. (We can impose muprogramming problem. The problem may appear to be very
tiple spot noise constraints, at different frequencies, as multiglemplex, involving many complicated inequality and equality
posynomial inequalities.) constraints, but in fact is readily solved.

Sm(f)? < S2

max
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TABLE 1l TABLE IV

SPECIFICATIONS AND CONSTRAINTS FORDESIGN EXAMPLE PERFORMANCE OFOPTIMAL DESIGN FORDESIGN EXAMPLE

l Constraint Specification | Specification/Constraint Performance
Device length > 0.8um Minimum device length 0.84m
Device width > 2pm Minimum device width 2um
Area < 10000pm? Area 8200um?
Common-mode input voltage fixed at Vpp/2 Output voltage range [0.03, 0.9]Vop
Output voltage range [0.1,0.9]Vpp Minimum gate overdrive 130mV
Quiescent power < 5mW Quiescent power 5mW
Open-loop gain > 80dB Open-loop gain 89.2dB
Unity-gain bandwidth Maximize Unity-gain bandwidth 86MHz
Phase margin > 60° Phase margin 60°
Slew rate > 10V/us Slew rate 88V /us
Common-mode rejection ratio > 60dB Common-mode rejection ratio 92.5dB
Neg. power supply rejection ratio | > 80dB Negative power supply rejection ratio 98.4dB
Pos. power supply rejection ratio | > 80dB Positive power supply rejection ratio 116dB
Input-referred spot noise, 1kHz 300nV/ vHz Maximum input-referred spot noise, 1kHz | 300nV/v/Hz

TABLE Il

OPTIMAL DESIGN FORDESIGN EXAMPLE

B. Example

C. Tradeoff Analyses
By repeatedly solving optimal design problems as we sweep

Variable | Value | over values of some of the constraint limits, we can sweep out
W, = Ws | 232.8um globally optimal tradeoff curves for the op-amp. For example,
Wi = W, | 143.6um we can fix all other constraints, and repeatedly minimize power
Ws 64.6pm as we vary a minimum required unity-gain bandwidth. The
W 588.8pm resulting curve shows the globally optimal tradeoff between
Wy 132.6pm unity-gain bandwidth and power (for the values of the other
Ws 2.0pm .

limits).
L] = L2 OSMIII . . .
Ls=L; |08um In this section, we show several optimal tradeoff curves for
Ly 0.8um the operational amplifier. We do this by fixing all the specifica-
Lg 0.8um tions at the default values shown in Table I, except two that we
L, 0.8um vary to see the effect on a circuit performance measure. When
Ls 0.8um the optimization objective is not bandwidth we use a default
Ce 3.5pF value of minimum unity-gain bandwidth of 30 MHz.
Toias 104A We first obtain the globally optimal tradeoff curve of

unity-gain bandwidth versus power for different supply volt-
ages. The results can be seen in Fig. 3. Obviously the more
power we allocate to the amplifier, the larger the bandwidth

In this section, we describe a simple design example. A (oBtained; the plots, however, show exactly how much more

wm CMOS technology was used; see the longer report [51] foandwidth we can obtain with different power budgets. We can
more details and the technology parameters. The positive supphe, for example, that the benefits of allocating more power
voltage was set at 5 V and the negative supply voltage was tetthe op-amp disappear above 5 mW for a supply voltage
at 0 V. The load capacitance was 3 pF. of 2.5 V, whereas for a 5 V supply the bandwidth continues
The objective is to maximize unity-gain bandwidth subject tto increase with increasing power. Note also that each of the
the requirements shown in Table Il. The resulting geometric predpply voltages gives the largest unity-gain bandwidth over
gram has 18 variables, seven (monomial) equality constrairgeme range of powers.
and 28 (posynomial) inequality constraints. The total number ofIn Fig. 4, we plot the globally optimal tradeoff curve of
monomial terms appearing in the objective and all constraintsdpen-loop gain versus unity-gain frequency for different phase
68. Our simple MATLAB program solves this problem in undemargins. Note that for a large unity-gain bandwidth requirement
one second real-time. The optimal design obtained is shownanly small gains are achievable. Also, we can see that for a
Table 111 tighter phase margin constraint the gain bandwidth product is
The performance achieved by this design, as predicted by theer.
program, is summarized in Table V. The design achieves anFig. 5 shows the minimum input-referred spectral density
86-MHz unity-gain bandwidth. Note that some constraints ae¢ 1 kHz versus power, for different unity-gain frequency re-
tight (minimum device length, minimum device width, maxguirements. Note that when the power specification is tight, in-
imum output voltage, quiescent power, phase margin and inpateasing the power greatly helps to decrease the input-referred
referred spot noise) while some constraints are not tight (areajse spectral density.
minimum output voltage open-loop gain, common-mode rejec-In Fig. 6 we show the optimal tradeoff curve of unity-gain
tion ratio, and slew rate). bandwidth versus area for different different power budgets.
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Maximum unity-gain bandwidth versus area for different power
phase margins. budgets.

We can see that when the area constraint is tight, increasinghere are six active constraints: minimum device length, min-
the available area translates into a greater unity bandwidifum device width, maximum output voltage, quiescent power,
After some point, other constraints become more stringent agillase margin, and input-referred spot noise at 1 kHz. All of
increasing the available area does not improve the maximghese constraints limit the maximum unity-gain bandwidth. The
achievable unity-gain bandwidth. sensitivities indicate which of these constraints are more crit-
Several other optimal tradeoff curves are given in the longeial (more limiting). For example, a 10% increase in the allow-
report [51]. able input-referred noise at 1 kHz will produce a design with
(approximately) 2.4% improvement in unity-gain bandwidth.
However, a 10% decrease in the maximum phase margin at
In this section, we analyze the information provided by thilne unity-gain bandwidth will produce a design with (approxi-
sensitivity analysis of the first design problem in Section VII-Bnately) 17.6% improvement in unity-gain bandwidth. It is very
(maximize the unity-gain bandwidth when the rest of specificéateresting to analyze the sensitivity to the minimum device
tions/constraints are set to the values shown in Table II). Thedth constraint. A 10% decrease in the minimum device width
results of this sensitivity analysis are shown in Table V. Theroduces a design with only a 0.05% improvement in unity-gain
column labeled “Sensitivity” (numerical) is obtained by tightbandwidth. This can be interpreted as follows: even though the
ening and loosening the constraint in question by 5% and minimum device width constraint is binding, it can be consid-
solving the problem. (The average from the two is taken.) Tle@ed not binding in a practical sense since tightening (or loos-
column labeled “Sensitivity” comes (essentially for free) fronening) it will barely change the objective.
solving the original problem. Note that it gives an excellent pre- The program classifies the given constraints in order of im-
diction of the numerically obtained sensitivities. portance from most limiting to least limiting. For this design

D. Sensitivity Analysis Example
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TABLE V TABLE VI
SENSITIVITY ANALYSIS FOR THE DESIGN EXAMPLE DESIGN VERIFICATION WITH HSPICE LEVEL-1. THE PERFORMANCE
MEASURESOBTAINED BY THE PROGRAM ARE COMPARED WITH THOSE
Constraint Spec. Program Sensitivity | Sensitivity FOUND BY HSPICE LEVEL 1 SMULATION
(numerical)

Min. device length | > 0.8pm Bum 0.299 0.309 Constraint Spec. Program HSPICE 1
Min. device width > 2pm 2.0pm 0.0049 0.0048 Max. output voltage > 4.5V 45V 45V
Area < 10000pm® | 8200um® 0 0 Min. output voltage <05V 0.13V 0.13V
Max. output voltage | 4.5V 4.5VV —0.365 (;0.349 Quiescent power < 5mW 4.99mW 4.95mW
Min. output voltage | 0.5V 0.13 0 T =
Quiescent power < 5mW 4.99mW —0.482 —0.483 Opfxn—loqp gam . Z Squ 89.2dB 89.4dB
Open-loop gain > 80dB 89.2dB 0 —To Unity-gain l?andw1dth maximize 86MHz 81MHz
Phase margin > 60° 60° —1.758 —1.757 Phase margin > 60° 60° 64°
Slew rate > 10V/us 88V /us 0 0 Slew rate > 10V /us 88V/us 92.5V/us
CMRR > 60dB 92.5dB 0 0 CMRR > 60dB 92.5dB 94dB
Neg. PSRR > 80dB 98.4dB 0 0 Neg. PSRR > 80dB 98.4dB 98.1dB
Pos. PSRR 2 80dB 116dB 0 0 Pos. PSRR. > 80dB 116dB 114dB
Spot noise, 1kHz < 300nV/vHz | 300nV/vHz | 0.24 0.241 Spot noise, 1kHz < 300nV/\/m 300nV/\/m 280nV/\/m

the order is: phase margin, quiescent power, maximum outpignposynomial) HSPICE level-1 model. As an example,
voltage, minimum device length, input-referred noise at 1 kHZable VI summarizes the results for the standard problem
and minimum device width. The program also tells the designgéscribed above in Section VII-D. Note that the values of
which constraints araot critical (the ones whose SenSitiVitieSthe performance Specifica’[ions from the posynomia| model
are zero or small). A small relaxation of these constraints willh the column labeled “Program”) and the values according
not improve the objective function, so any effort to loosen thegg HSPICE level 1 (in the right-hand side column) are in

will not be rewarded. close agreement. Moreover, the deviations between the two
are readily understood. The unity-gain frequency is slightly
VIII. D ESIGN VERIFICATION overestimated and the phase margin is slightly underestimated

Our optimization method is based on GP0O models, which akggcause we use the appr_oximate expression (34), which ignores
the simple square-law device models described in the Appencm'(‘,e effgct ,Of the parasitic poles on the crossover frequgncy.
Section A. Our model does not include several potentially inzl—-he noise is overestimated 7% becguse _the open_—loop gain has
portant factors such as body effect, channel length modulati%Creased 7_% "’,‘Iready at 1 kHz; this gain reduction transates
in the bias equations, and the dependence of junction capl? @ reduction in the input-referred noise.

itances on junction voltages. Moreover we make several ap-~ve have verified the geometric program results with the

proximations in the circuit analysis used to formulate the cohtSP!CE level-1 model simulations for a wide variety of

straints. For example, we approximate the transfer function wiSi9nS (vath a w:de var_|ety| of power, bandW|drt]h, gan, e.tc.).l
the four-pole form (19); the actual transfer function, even basgae resu_ts are always in close agreement. T us, our simple
on the simple model, is more complicated. As another exampR2Synomial models are reasonably good approximations of the

we approximaterrctan(a) ~ a in our simple version of the HSPICE level-1 models.

phase margin constraint. B, HSPICE BSIM Model Verification with GP1 Models
While all of these approximations are reasonable (at least

when channel lengths are not too short), it is importanetafly ~ In this section, we show how the geometric programming
the designs obtained using a higher fidelity (presumably nomethod performs well even for short-channel devices, when
posynomial) model. more sophisticated GP1 transistor models are used, by verifying
designs against sophisticated HSPICE level-39 (BSIM3v1)
A. HSPICE Level-1 Verification with GP0O Models simulations. The GP1 model is described in the Appendix,

We first verify the designs generated by our eometrSection B; the only difference is that we use an empirically
gns g y g f3und monomial expression for the output conductance of a

programming method (using GPO or long-channel mOdel§OS transistor instead of the standard long channel formula.

with HSPICE using a Iong-channel model (HSPIC.:E level sing these GP1 models, all of the constraints described above
model). We take the design found by the geometric program-

ming method, and then use the HSPICE level-1 model &e still compatible with geomgtnc programming.
| able VII shows the comparison between the results of geo-
check the various performance measures. The level-1 HSPICE . . ) :
: : : metric programming design, using GP1 models, and HSPICE
model is substantially more accurate (and complicated) than . : . ;
. . ) evel-39 simulation, for the standard problem described in Sec-
our simple posynomial models. It includes, for example, bo : .
on VII-D. The predicted values are very close to the simulated

effect, channel-length modulation, junction capacitance th . ; .
. . alues. The agreement holds for a wide variety of designs.
depends on bias conditions, and a far more complex transYer

function that includes many other parasitic capacitances. The
unity gain bandwidth and phase margin are computed by
solving the complete small-signal model of the op-amp. The Thus far, we have assumed that parameters such as transistor
results of such verification always show excellent agreemehteshold voltages, mobilities, oxide parameters, channel mod-

between our posynomial models and the more complex (anidtion parameters, supply voltages, and load capacitance are

IX. DESIGN FORPROCESSROBUSTNESS
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TABLE VII We do not have to give every possible combination of param-

DESIGN VERIFICATIONS WITH HSPICE LEVEL-39. GEOMETRIC PROGRAMMING eter values, but only the ones Iikely to actually occur. For ex-
IS USED TO SOLVE THE STANDARD PROBLEM, USING THE MORE

SOPHISTICATED GP1 MoDELS. THE RESULTSARE Comparep witH HSPICE — @mple, if itis unlikely that the oxide capacitance parameter is at
LEVEL-39 SMULATION its maximum value while the-threshold voltage is maximum,

then we delete these combinations from our.4etn this way,

Constraint Spec. Program HSPICE 39 . .
we can model interdependencies among the parameter values.
Max. output voltage | > 4.5V 4.55V 4.4V . .
Min. output voltage | < 0.5V 240mV 200mV We can also c_onstruoﬁ ina str_alghtforwa_rq way. Suppose
Quiescent power < 5mW 4.99mW 5.2mW we require a design that works, without modification, on several
Open-loop gain | > 80dB 80dB 83dB processes, or several variations of procesdds.then simply a
gﬁ“y'gam bandwidth rﬁaégin e 2334 e ggi\/mz list of the process parameters for each of the processes.
ase margin b . . . .
Slow tate > 10V /s 97V /s 95V /s The robust design is achieved by solving the problem
CMRR > 60dB 86dB 88dB
Neg. PSRR > 80dB 84dB 86dB minimize max fo(z, o)
Pos. PSRR > 80dB 93dB 92dB . acA
Spot noise, 1kHz < 300nV/vHz | 300nV/vHz | 285nV/vHz subjectto f;(z, @) <1, i=1,...,m forallae A
gi(z, o) = 1, i1=1,...,p forallae A
x; >0, i=1,...,n. (45)

all known and fixed. In this section, we show to how to use the
methods of this paper to develop designs thatabastwith re- . . .
spect to variations in these parameters, i.e., designs that me%f'g problem can be reformulgted asa geome_tpc brogram W't.h
set of specifications for a set of values of these parameters. S Bﬂmes th? number of constraints, and an additional scalar vari-
designs can dramatically increase yield. abley [22]:

There are many approaches to the problem of robustness and .
yield optimization (see [5], [28]). The robust design probler‘ﬁ'Inlmlze v

can be formulated as a so-called semi-infinite programmisgbject to fo(z, a;) < 7, j=1 ..., N
problem, in which the constraints must hold for all values filz,a)) <1,  i=1,...,m; j=1,...,N
of some parameter that ranges over an interval, as in [75], gi(w, o) = 1, i=1,....p; j=1,....,N

which used DELIGHT.SPICE to do robust designs, or more L
recently, Mukherjeet al.[69], who use ASTRX/OBLX. These zi >0, A L (46)

methods often involve very considerable run times, rangiq% . . .
from minutes to hours. e solution of (45) [which is the same as the solution of (46)]

We also formulate the problem as a sampled version Ofsgtlsﬂes the specifications for all possible values of the process

semi-infinite program. The method is practical only becau?@rametersi The opt_imal objective valge gives the (globally)
geometric programming can readily handle problems with magptimal fmlr?lma; de_5|gn. (Itis also possible to take_an avzra?e
hundreds, or even thousands, or constraints; the computatio j€ O the objective over process parameters, instead of a

effort grows approximately linearly with the number of con¥/Orst-case value.). .
straintg, PP 4 y Equality constraints have to be handled carefully. Provided

The basic idea in our approach is to list a set of possible ptg_e transistor lengths and widths are not subject to variation,

rameters, and to replicate the design constraints for all possisféu?llfylconst"f"n;s amo;g th?;n (€.9., matching agtd g{[rr?metry)
parameter values. Lete R"* denote a vector of parameters thaf' © Il'tey no to' tepehn on the progess r:jaramWhe er
may vary. Then the objective and constraint functions can be uality: constraints, nowever, can depend @nyvhen we

pressed as functions of(the design parameters) andwhich gnforce an equgllty cpnstramt for each valueaofthe result
we will call the process parametergven if some components,IS (usually) an infeasible problem. For example suppose we

e.g., the load capacitance, are not really process pr:1rameters3‘.)e_C'f,y tha} the open-loop gain equaI. exactly 80. ‘?'B- Propess
variation will change the open-loop gain, making it impossible

to achieve a design that has an open-loop gaixattly80 dB
folz, ), filz, @), agi(z, a). for more than a few process parameter values. The solution to
this problem is to convert such specifications into inequalities.
The functionsf; are all posynomial functions af, for eacha, We might, for example, change our specification to require that
and the functiong; are all monomial functions of, for eache.  the open-loop gain exceed 80 dB, or require it to be between
Let A = {aq, ..., an} be a (finite) set of possible parameteB0 and 85 dB. Either way the robust problem now has at least a
values. Our goal is to determine a design (iz¢that works well  chance of being feasible.
for all possible parameter values (i.ay, - - ., ay). It is important to contrast a robust design for a set of process
First we describe several ways the ganight be constructed. parametersd = {«;, ..., ayx} with the optimal designs for
As a simple example, suppose there are six parameters, wheelch process parameter. The objective value for the robust de-
vary independently over interval&umin, i, tmax,:]. We might sign is worse (or no better) than the optimal design for each
sample each interval with three values (e.g., the midpoint apdrameter value. This disadvantage is offset by the advantage
extreme values), and then form every possible combinationtbft the design works for all the process parameter values. As
parameter values, which resultsi = 3°. a simple example, suppose we seek a design that can be run on
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two processesy; andas). We can compare the robust design to TABLE Vi
the two optimal designs. If the objective achieved by the robust ROBUST DESIGN
design is not much worse than the two optimal designs, then \[ Constraint Spec. Rob. design | Std. design
have the advantage of a single design that works on two pI[ Quiescent power < 5mW 4.99mW 5.75mW
cesses. On the other hand if the robust design is much worse| Open-loop gain > 80dB 89dB 87dB
even infeasible) we may elect to have two versions of the ar| Unity-gain bandwidth | maximize 72MHz 77TMH:
e . .. . Phase margin > 60° 60° 55°
plifier design, each one op_tlmlzed for the p.artlcullar Process. reyrR S 60dB 9308 5045
Thus far, we have considered the case in which thedsist | Neg. PSRR > 80dB 94dB 93dB
finite. However, in most real cases it is infinite; e.g., individua| Pos. PSRR > 80dB 110dB 109dB
parameters lie in ranges. We have already indicated above t| Spot noise, 1kHz < 300nV/v/Hz | 3000V/vHz | 316nV/vHz

such situations can be modeled or approximated by sampling

the interval. While we believe this will always work in practiceth ;  the robust desian. F h ificati
it gives no guarantee, in general, that the design workslor € periormance ot tn€ robust design. For éach specilication, we

values of the parameter in the given range; it only guarantet%%terlm't?]e ';he \t/\;]orstl performarr:ce ;)r:/er aIIf 27 procesfstﬁarame-
performance for the sampled values of the parameters. ers. In the fourth column we show the performance ot the non-

There are many cases, however, whencaeguarantee the robust design. Again, only the worst-case performance over all
performance for a parameter value in an interval. Suppose tﬁgtprqcess parameters is m_dlcated for eagh specification. The
the functionf;(z, a) is posynomial not just in, but inz and re_sultlng g_eometnc program involves 18 variables, seven mono-
« as well, and thad lies in the interva[cmin, cemas]. (We take mial equality constraints (i.e., symmetry and matching) and 756

scalar here for simplicity.) It then suffices to impose the Corp_osynomial inequality c-onstrain.ts. . .
Ztraint at the endpoinpts ofyt?we interval. i.e P The new design obtains a unity-gain bandwidth of 72 MHz.

The design in Section VII-B obtains a worst-case unity gain

bandwidth of 77 MHz, but since it was specified only for nom-

1 Ji(w, omax) <1 inal conditions, it fails to meet some constraints when tested

1, for all & € [, Cumax)- over all conditions. For example, the power consumption in-

creases by 15%, the open-loop gain decreases by 20%, the input-

This is easily proved using convexity of theg f; in the trans- referr.ed spot noise at 1 kHz increasgs by 5% and the phase
! margin decreases 7. The robust design, on the other hand,

formed variables. meetsall specifications for all 27 sets of process parameters
The reader can verify that the constraints described above aré P P P '

posynomial in the parametets, tin, tip, An, Ap, @and the par-
asitic capacitances. Thus, for these parameters at least, we can
handle ranges with no approximation or sampling, by specifyingWe have shown how geometric programming can be used to
the constraints only at the endpoints. design and optimize a common CMOS amplifier. The method
The requirement of robustness is a real practical constraiyiglds globally optimal designs, is extremely efficient, and han-
and is currently dealt with by many methods. For example,ddes a very wide variety of practical constraints.
minimum gate overdrive constraint is sometimes imposed be-Since no human intervention is required (e.g., to provide an
cause designs with small gate overdrive tend to be nonrobusitial “good” design or to interactively guide the optimization
The point of this section is that robustness can be achieved ipracess), the method yields completely automated sizing of
more methodical way, which takes into account a more detail@globally) optimal CMOS amplifiers, directly from specifica-
description of the possible uncertainties or parameter variatiotiens. This implies that the circuit designer can spend more time
The result will be a better design than ad hocmethod for doing real design, i.e., carefully analyzing the optimal tradeoffs
achieving robustness. between competing objectives, and less time doing parameter
Finally, we demonstrate the method with a simple exampleining, or wondering whether a certain set of specifications
In Table VIl we show how a robust design compares to a honrcan be achieved. The method could be used, for example, to do
bust design. We take three process parameters: the bias curiihtustom design for each op-amp in a complex mixed-signal
error factor, the positive power supply error factor, and oxide categrated circuit; each amplifier is optimized for its load
pacitance. The bias current error factor is the ratio of the actwapacitance, required bandwidth, closed-loop gain, etc.
bias current to our design value, so when it is one, the true biagn fact, the method can handle problems with constraints or
current is what we specify it to be, and when it is 1.1, the trumupling between the different op-amps in an integrated cir-
bias current is 10% larger than we specify it to be. Similarlguit. As simple examples, suppose we have 100 op-amps, each
the positive power supply error factor is the ratio of the actualith a set of specifications. We can minimize tio¢al area or
bias current to our design value. The bias current error facfgower by solving a (large) geometric program. In this case, we
varies between 0.9-1.1, the positive power supply error factane solving (exactly) the power/area allocation problem for the
varies between 0.9-1.1, and the oxide capacitance v&aii@% 100 op-amps on the integrated circuit. We can also handle direct
around its nominal value. The three parameters are assumedupling between the op-amps, i.e., when component values in
dependent, and we sample each with three values (midpoint @me op-amp (e.g., input transistor widths) affect another (e.g.,
extreme values) so all together we haVe= 32, i.e., 27 dif- asload capacitance). The resulting geometric program will have
ferent process parameter vectors. In the third column, we shperhaps hundreds of variables, thousands of constraints, and be

fi (JI, amin)

<
=  filz,a) <

X. DiscussiON ANDCONCLUSION
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quite sparse, so it is well within the capabilities of current intedirect circuit simulation. By iterating between GP-based sizing
rior-point methods. and parasitic extraction and simulation, we can also address the
For example, switched capacitor filters [42] are complex syissue of layout-dependent parasitics by updating the GP models
tems where the performance (maximum clock frequency, areajng the extracted parameters. In the many thousands of de-
power, etc.) is influenced by both the op-amp and the capasigns we have carried out, verification with an accurate simu-
tors. Current CAD tools for switched capacitor filters size thiator has shown that our posynomial models are very accurate,
capacitors, but use the same op-amp for all integrators (steys, presumably, tuning our designs with a more accurate (e.g.,
e.g., FIDES [6], [8], [93]). In contrast, we can custom desigsimulation-based) method would require only an iteration or two
each op-amp in the switched capacitor filter. Designing optimtl converge.
op-amps for filters in oversampled converters has also been adwe close our discussion on the topic of circuit models. This
dressed in [98], but little work has been done to fully automageper has introduced a new quality of a circuit model, i.e.,
the design. Limiting amplifiers for FM communication systemwhether it results in posynomial specifications. The traditional
[55] require the design of multiple amplifiers in cascade. Typiradeoff in circuit modeling is between fidelity and complexity,
cally the same amplifier is used in all stages because it takes &Q9., simple, but not too accurate models for hand analysis
long and it is too difficult to design each stage separately. and design, versus complex high fidelity models for design
Our ability to handle much larger problems than arise frowerification. Evidently, we have a third quality for a model:
a single op-amp design can be used to develop robust desigvisether or not it results in posynomial specifications. Thus,
This could increase yield, or result in designs with a longer lifeve have a tradeoff between monomial/posynomial models (for
time (since they work with several different processes). design via GP) and fidelity or accuracy. Note that complexity
The method unambiguously determines feasibility of a set dpes not matter: a very complex, but posynomial model is
specifications: it either produces a design that meets the speerdily handled by GP. Developing accurate, but posynomial
fications or it provides a proof that the specifications cannot Isgcuit models is a new area for research.
achieved. In either case it also provides, at essentially no ad-

ditional cost, the sensitivities with respect to every constraint. APPENDIX
This gives a very useful quantitative measure of how tight each
constraint is, or how much it affects the objective. A. GPO MOSFET Models

In this paper, we have considered only one op-amp circuit,Here we describe the MOSFET large- and small-signal
but the general method is applicable to many other circuits, gdels used in our method. The model, which we refer to as
has been reported in [49] and [50]. For the op-amp considerggg, is essentially the standard long-channel square law model
here, the analytical expreSSionS for the constraints and Spe(&@scribed in, [3] and [41] This model can be inadequate for
cations were derived by hand, but in a more general setting, tBort-channel transistors [70], [91] in which case better models
step could be partially automated by the use of symbolic circigihn be developed that still allow optimization via geometric
simulators like ISAAC [37], SYNAP [84], and ASAP [33] A programming (see the Appendixy Section B)

CAD tool for Optimization of analog op-amps could be devel- 1) Large_Signaj Models:Correct Operation of the op-amp

oped. It would consist of a symbolic analyzer [34], a GP solvegquires all transistors to be in saturation. For an NMOS tran-
and a user interface. It could be linked to an automatic layogittor this means

program, such as ILAC [27] or KOAN/ANAGRAM [15], thus
the resulting tool could generate mask designs directly from am- Vps > Vas — Van. 47
plifier specifications.

The main disadvantage of the method we have described/{§en the NMOS transistor is saturated, i.e., (47) holds, the
that it handles only certain types of constraints and specific@ain current can be expressed as
tions, i.e., monomial equality constraints and posynomial in- 1 w
equality constraints. The main contribution of this paper is to Ip = 2 tnCox T
point out that despite this restriction, we can handle a very wide
variety of practical amplifier specifications. Another disadvarwhere
tage of our method, as compared to a more general method, i¢.  transistor channel length;
that the task of formulating the optimization problem for agiven W transistor width;
circuit topology and set of specifications, requires some user ex+#t,  €lectron mobility;
pertise (in circuit design and optimization) and effort. On the C.x  oxide capacitance per unit area,
other hand, once the formulation is done, particular instancesVry NMOS threshold voltage;
of the design can be carried out automatically and extremelyA,  channel-length modulation parameter.
rapidly, by users with no knowledge of the underlying method. In developing our bias constraints, we use the simplified

The method we propose can be effectively combined withlarge-signal equation
(local) optimization method that uses nonposynomial, but more 1 W
accurate model equations or even circuit simulation. Thus, the Ip = = pnCox —
geometric programming method we propose is used to get close 2 L
to the (presumably global) optimum, and the final design is., we ignore channel-length modulation. This introduces only
tuned using the more accurate (but nonposynomial) modelasmall error.

(Vas — Von)?(1 + X, Vos)

(Vas — Von)? (48)
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D 5 Note that we ignore channel-length modulation in our transcon-
ductance expression, but must include it in the output conduc-
4, | tance expression (which would otherwise be zero).
a ‘{ l I o “ l I The gate—t.o—source capacitance is giveq by the sum of the gate
oxide capacitance and the overlap capacitance

—T _| Cys = 2W LCox + WLp, Cox (53)

5 D whereLy, is the source/drain lateral diffusion length.
The source to bulk capacitance is a junction capacitance and

NMOS PMOS can be expressed as
Fig. 7. Transistor symbols. C
Copy= — 20 (54)
Vs ) Y
ng 1 +
o I T ° Yo
Ca l Cos i GmUgs C) 9o % Cap where
—I7 T C(st = quW + stw(2Ls + W) (55)
1), IS the junction built-in potential, and, is the source diffu-
‘ sion length.
The drain-to-bulk capacitance is also a junction capacitance
Bulk S given by
. . C
Fig. 8. Small signal model for a MOSFET. Cuy, = dbo e (56)
(1+32)
1+
For a PMOS transistor, the saturation condition is Yo
whereCyy,0 = Cs),o for equal source and drain diffusions.
Vbs < Vas — Vap. (49) The gate-to-drain capacitance is due to the overlap capaci-

. . , tance and is given by
The drain current is then given by

. - Cga = CoxWip. (57)
Ip = 9 #opCox A (Vas = Vir)*(14 ApVbs) Equations (53), (55), and (57) are posynomial in the design
variables and, therefore, are readily handled. The expressions
where 3 for the junction capacitances (54) and (56) are not posynomial,
pp  hole mobility; except in the special case whéres and Vpg do not depend
Vre PMOS threshold voltage; on the design variables. We can take two approaches to ap-
Ap  channel-length modulation parameter. proximating these capacitances. One simple method is to take
Here too, we ignore the channel modulation effects and use f1gorst-case analysis, and use the maximum values (which de-
simplified expression creases bandwidth, slew rate, phase margin, etc.) This corre-
1 W sponds to the approximatidikg = 0 or Vpg = 0. It is also
Ip = = j1,Cox — (Vas — Vrp)*. (50) possible to estimate the various junction voltages as constant,

2 L so (54) and (56) are constant.

2) Small-Signal ModelsFig. 8 shows the small-signal [nour op-amp circuit, the only junction capacitances that ap-
model around the operating point for a MOSFET transistor Rearin the design equations (see Section V) are the drain-to-bulk
saturation. The derivation of this model can also be found figPacitances abfy, Ma, M3, My, Ms, andM7. We have es-
[41]. The values of the various elements and parameters Hrgated the drain-to-bulk voltages of transistdss, M, Ms,

described below. My, Me, and M-, and use these estimated voltages for calcu-
The transconductangg, is given by lating the junction capacitances.
The bulk terminal of the PMOS transistors is connected to
alp W the positive supplypp and that of the NMOS transistors is
Im = Vas \/ 20CoxIp T (51)  connected to the negative supplis = 0. The drain voltages

of My, M>, M3, andM, are the same as the gate voltagéf,
(where we ignore, with only small error, channel-length moduramely,Vq 6. In most designsi/ ¢ is a few hundred millivolts
lation effects). The output conductangegis given by aboveVry (recalling that we assumiéss = 0). Thus, we can

write Vg ¢ as
alp
Yo = Vps AMp. (52) Ve, 6 = Von + AV, (58)
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where we use a typical overdrive voltageat/,, = 200 mV.
The drain-to-bulk capacitances &f;, M>, M3, and M, are
then given by the expressions

where again the output conductance is given in millisiemens,
the bias current is in milliamps, and the width and length are in
micrometers.

For all other circuit parameters, we used the GPO model

Cap,1 =Clapo = o, e described above (although we could easily have improved the
<1 n Vbp — Vrn — AVO> models using empirical fits to monomials and posynomials).
Yo
Ca,3 =Cuap,4 = Cbo, 3 L ACKNOWLEDGMENT
<1 + W%A%) The authors would like to thank E. Waks, who wrote the geo-
}O

metric programming solver originally used for the numerical

The drain voltage ofZg and M- is the output voltage of the experiments shown in this paper. The authors are grateful to
amplifier. The quiescent output voltage is at mid-supply for & Fowler, A. E. Gamal, A. Hajimiri, and many anonymous re-

op-amp with small offset. Then, we can wrig ¢ as

Vi
Vb6 = —];D

(1]

and we obtain constant expressions@Q,s andCyy,7
Capo Cabo [2

Cuan,6 = dbo, 6 — Cap.7 = dbo, 7 el

1 4 VoD ] 4+ Yoo
29, 2, 3
These approximations can be validated in several ways. First!‘”

we have observed that changing these typical voltages has veng)
little effect on the final designs. And second, SPICE simulation
(which includes the junction capacitances) reveals that we incur[G]
only small errors.

B. GP1 Models (7]

The GPO models described above are essentially the samiél
as the standard long channel device models. It is also possible
to derive device models that are more accurate than the longg]
channel models, but at the same time are compatible with geo-
metric programming based design. [10]

Analysis of the errors incurred by the GPO model shows that
most of the modeling error comes from the expressions fol1l
transconductance and output conductance. By fitting monomial
expressions to empirical data, or data obtained from a high-fif12]
delity SPICE simulation, we obtain transistor models that are
still compatible with geometric programming-based design.
We refer to these models as GP1. [13]

We found that the following simple models work very well. 4]
For NMOS devices, we use the monomial expression

Jd, NMOS = 3.1- 10—2W0.18L—1.14I%82 [15]
where the output conductance is given in millisiemens, the bi 6]
current is in milliamps, and the width and length are in mi-
crometers. This simple model provides a very good fit over a
wide range of transistor width, length, and bias current. FoF'’
PMOS devices, we find it useful to use two models, one modetig)
(9a1, Pmos) for devices operating at low drain-to-source voltage
(M5 andMs) and another onegyf2. pnvos) for devices operating

at high drain-to-source voltagé4;, M, and M-) [20]

gd1,pMos =4.5 - 10_1VVOL_1'58111504 [21]

Jd2. PMOS = 8.9 - 10—2w0.13L—1.97I]%.87

viewers, for very useful comments and suggestions.
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