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Abstract—We describe a new method for determining com-
ponent values and transistor dimensions for CMOS operational
amplifiers (op-amps). We observe that a wide variety of design
objectives and constraints have a special form, i.e., they areposyn-
omial functions of the design variables. As a result, the amplifier
design problem can be expressed as a special form of optimization
problem called geometric programming, for which very efficient
global optimizationmethods have been developed. As a consequence
we can efficiently determine globally optimal amplifier designs
or globally optimal tradeoffs among competing performance
measures such as power, open-loop gain, and bandwidth. Our
method, therefore, yields completely automated sizing of (globally)
optimal CMOS amplifiers, directly from specifications.

In this paper, we apply this method to a specific widely used op-
erational amplifier architecture, showing in detail how to formu-
late the design problem as a geometric program. We compute glob-
ally optimal tradeoff curves relating performance measures such as
power dissipation, unity-gain bandwidth, and open-loop gain. We
show how the method can be used to sizerobust designs, i.e., de-
signs guaranteed to meet the specifications for a variety of process
conditions and parameters.

Index Terms—Circuit optimization, CMOS analog integrated
circuits, design automation, geometric programming, mixed
analog–digital integrated circuits, operational amplifiers.

I. INTRODUCTION

A S THE demand for mixed-mode integrated circuits in-
creases, the design of analog circuits such as operational

amplifiers (op-amps) in CMOS technology becomes more crit-
ical. Many authors have noted the disproportionately large de-
sign time devoted to the analog circuitry in mixed-mode inte-
grated circuits. In this paper, we introduce a new method for de-
termining the component values and transistor dimensions for
CMOS op-amps. The method handles a very wide variety of
specifications and constraints, isextremely fast, and results in
globally optimaldesigns.

The performance of an op-amp is characterized by a number
of performance measures such as open-loop voltage gain,
quiescent power, input-referred noise, output voltage swing,
unity-gain bandwidth, input offset voltage, common-mode
rejection ratio, slew rate, die area, and so on. These perfor-
mance measures are determined by the design parameters,
e.g., transistor dimensions, bias currents, and other component
values. The CMOS amplifier design problem we consider in
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this paper is to determine values of the design parameters that
optimize an objective measure while satisfying specifications
or constraints on the other performance measures. This design
problem can be approached in several ways, e.g., by hand or
a variety of computer-aided-design methods, e.g., classical
optimization methods, knowledge-based methods or simulated
annealing. (These methods are described more fully below.)

In this paper, we introduce a new method that has a number
of important advantages over current methods. We formulate the
CMOS op-amp design problem as a very special type of opti-
mization problem called ageometric program. The most im-
portant feature of geometric programs is that they can be refor-
mulated asconvex optimization problemsand, therefore,glob-
ally optimal solutions can be computed withgreat efficiency,
even for problems with hundreds of variables and thousands of
constraints, using recently developed interior-point algorithms.
Thus, even challenging amplifier design problems with many
variables and constraints can be (globally) solved.

The fact that geometric programs (and, hence, CMOS op-amp
design problems cast as geometric programs) can be globally
solved has a number of important practical consequences. The
first is that sets of infeasible specifications are unambiguously
recognized: the algorithms either produce a feasible point or
a proof that the set of specifications is infeasible. Indeed, the
choice of initial design for the optimization procedure is com-
pletely irrelevant (and can even be infeasible); it has no effect on
the final design obtained. Since the global optimum is found, the
op-amps obtained are not just the best our method can design, but
in fact the bestanymethod can design (with the same specifica-
tions). In particular, our method computes theabsolute limit of
performancefor a given amplifier and technology parameters.

The fact that geometric programs can be solved very effi-
ciently has a number of practical consequences. For example,
the method can be used to simultaneously optimize the design
of a large number of op-amps in a single large mixed-mode inte-
grated circuit. In this case, the designs of the individual op-amps
are coupled by constraints on total power and area, and by var-
ious parameters that affect the amplifier coupling such as input
capacitance, output resistance, etc. Another application is to use
the efficiency to obtainrobust designs, i.e., designs that are guar-
anteed to meet a set of specifications over a variety of processes
or technology parameter values. This is done by simply repli-
cating the specifications with a (possibly large) number of rep-
resentative process parameters, which is practical only because
geometric programs with thousands of constraints are readily
solved.

All the advantages mentioned (convergence to a global so-
lution, unambiguous detection of infeasibility, sensitivity anal-
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Fig. 1. Two-stage op-amp considered herein.

ysis, …) are due to the formulation of the design problem as a
convexoptimization problem. Geometric programming (when
reformulated as described in Section II-A) is just a special type
of convex optimization problem. Although general convex prob-
lems can be solved efficiently, the special structure of geometric
programming can be exploited to obtain an even more efficient
solution algorithm.

The method we present can be applied to a wide variety of
amplifier architectures, but in this paper, we apply the method
to a specific two-stage CMOS op-amp. The authors show how
the method extends to other architectures in [49] and [50]. A
longer version of this paper, which includes more detail about
the models, some of the derivations, and SPICE simulation
parameters, is available at the authors’ web site [51]. Related
work has been reported in several conference publications, e.g.,
[48]–[50].

A. The Two-Stage Amplifier

The specific two-stage CMOS op-amp we consider is shown
in Fig. 1. The circuit consists of an input differential stage with
active load followed by a common-source stage also with ac-
tive load. An output buffer is not used; this amplifier is as-
sumed to be part of a very large scale integration (VLSI) system
and is only required to drive a fixed on-chip capacitive load of
a few picofarads. This op-amp architecture has many advan-
tages: high open-loop voltage gain, rail-to-rail output swing,
large common-mode input range, only one frequency compen-
sation capacitor, and a small number of transistors. Its main
drawback is the nondominant pole formed by the load capac-
itance and the output impedance of the second stage, which
reduces the achievable bandwidth. Another potential disadvan-
tage is the right half-plane zero that arises from the feedforward
signal path through the compensating capacitor. Fortunately, the
zero is easily removed by a suitable choice for the compensation
resistor (see [2]).

This op-amp is a widely used general purpose op-amp [88];
it finds applications, for example, in switched capacitor filters
[23], analog-to-digital converters [60], [72], and sensing circuits
[85].

There are 18 design parameters for the two-stage op-amp:

• The widths and lengths of all transistors, i.e.,
and .

• The bias current .
• The value of the compensation capacitor.

The compensation resistor is chosen in a specific way that is
dependent on the design parameters listed above (and described
in Section V). There are also a number of parameters that we
consider fixed, e.g., the supply voltages and , the ca-
pacitive load , and the various process and technology pa-
rameters associated with the MOS models. To simplify some of
the equations we assume (without any loss of generality) that

.

B. Other Approaches

There is a huge literature, which goes back more than 20
years, on computer-aided design (CAD) of analog circuits. A
good survey of early research can be found in the survey [11];
more recent papers on analog-circuit CAD tools include [4],
[12], [13]. The problem we consider in this paper, i.e., selection
of component values and transistor dimensions, is only a part of
a complete analog-circuit CAD tool. Other parts, which we do
not consider here, include topology selection (see [66]) and ac-
tual circuit layout (see, e.g., ILAC [27], KOAN/ANAGRAM II
[15]). The part of the CAD process that we consider lies between
these two tasks; the remainder of the discussion is restricted to
methods dealing with component and transistor sizing.

1) Classical Optimization Methods:General-purpose clas-
sical optimization methods, such as steepest descent, sequen-
tial quadratic programming, and Lagrange multiplier methods,
have been widely used in analog-circuit CAD. These methods
can be traced back to the survey paper [11]. The widely used
general-purpose optimization codes NPSOL [39] and MINOS
[71] are used in [25], [64], and [67]. LANCELOT [16], an-
other general-purpose optimizer, is used in [22]. Other CAD
approaches based on classical optimization methods, and exten-
sions such as a minimax formulation, include the one described
in [47], [61], and [63], OAC [78], OPASYN [56], CADICS [54],
WATOPT [31], and STAIC [45]. The classical methods can be
used with more complicated circuit models, including even full
SPICE simulations in each iteration, as in DELIGHT.SPICE
[75] (which uses the general-purpose optimizer DELIGHT [76])
and ECSTASY [86].

The main advantage of these methods is the wide variety of
problems they can handle; the only requirement is that the per-
formance measures, along with one or more derivatives, can be
computed. The main disadvantage of the classical optimization
methods is they only findlocally optimaldesigns. This means
that the design is at least as good as neighboring designs, i.e.,
small variations of any of the design parameters results in a
worse (or infeasible) design. Unfortunately this does not mean
the design is the best that can be achieved, i.e., globally optimal;
it is possible (and often happens) that some other set of design
parameters, far away from the one found, is better. The same
problem arises in determining feasibility: a classical (local) op-
timization method can fail to find a feasible design, even though
one exists. Roughly speaking, classical methods can get stuck at
local minima. This shortcoming is so well known that it is often
not even mentioned in papers; it is taken as understood.

The problem of nonglobal solutions from classical optimiza-
tion methods can be treated in several ways. The usual approach
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is to start the minimization method from many different ini-
tial designs, and to take the best final design found. Of course,
there are no guarantees that the globally optimal design has been
found; this method merely increases the likelihood of finding the
globally optimal design. This method also destroys one of the
advantages of classical methods, i.e., speed, since the computa-
tion effort is multiplied by the number of different initials de-
signs that are tried. This method also requires human interven-
tion (to give “good” initial designs), which makes the method
less automated.

The classical methods become slow if complex models are
used, as in DELIGHT.SPICE, which requires more than a com-
plete SPICE run at each iteration (“more than” since, at the least,
gradients must also be computed).

2) Knowledge-Based Methods:Knowledge-based and
expert-systems methods have also been widely used in analog
circuit CAD. Examples include genetic algorithms or evolution
systems like SEAS [74], DARWIN [58], [100]; systems based
on fuzzy logic like FASY [46] and [92]; special heuristics-based
systems like IDAC [29], [30], OASYS [44], BLADES [21],
and KANSYS [43].

One advantage of these methods is that there are few limita-
tions on the types of problems, specifications, and performance
measures that can be considered. Indeed, there are even fewer
limitations than for classical optimization methods since many
of these methods do not require the computation of derivatives.

These methods have several disadvantages. They find a lo-
cally optimal design (or, even just a “good” or “reasonable” de-
sign) instead of a globally optimal design. The final design de-
pends on the initial design chosen and the algorithm parameters.
As with classical optimization methods, infeasibility is not un-
ambiguously detected; the method simply fails to find a feasible
design (even when one may exist). These methods require sub-
stantial human intervention either during the design process, or
during the training process.

3) Global Optimization Methods:Optimization methods
that are guaranteed to find the globally optimal design have also
been used in analog-circuit design. The most widely known
global optimization methods are branch and bound [103] and
simulated annealing [94], [101].

A branch and bound method is used, e.g., in [66]. Branch
and bound methods unambiguously determine the globally op-
timal design: at each iteration they maintain a suboptimal fea-
sible design and also a lower bound on the achievable perfor-
mance. This enables the algorithm to terminate nonheuristically,
i.e., with complete confidence that the global design has been
found within a given tolerance. The disadvantage of branch and
bound methods is that they are extremely slow, with computa-
tion growing exponentially with problem size. Even problems
with 10 variables can be extremely challenging.

Simulated annealing (SA) is another very popular method
that can avoid becoming trapped in a locally optimal design.
In principle it can compute the globally optimal solution, but
in implementations there is no guarantee at all, since, for ex-
ample, the cooling schedules called for in the theoretical treat-
ments are not used in practice. Moreover, no real-time lower
bound is available, so termination is heuristic. Like classical
and knowledge-based methods, SA allows a very wide variety

of performance measures and objectives to be handled. Indeed,
SA is extremely effective for problems involving continuous
variables and discrete variables, as in, e.g., simultaneous am-
plifier topology and sizing problems. SA has been used in sev-
eral tools such as ASTR/OBLX [77], OPTIMAN [38], FRIDGE
[68], SAMM [105], and [14].

The main advantages of SA are that it handles discrete vari-
ables well, and greatly reduces the chances of finding a nonglob-
ally optimal design. (Practical implementations do not reduce
the chance to zero, however.) The main disadvantage is that it
can be very slow, and cannot (in practice) guarantee a globally
optimal solution.

4) Convex Optimization and Geometric Programming
Methods: In this section, we describe the general optimization
method we employ in this paper: convex optimization. These
are special optimization problems in which the objective and
constraint functions are all convex.

While the theoretical properties of convex optimization prob-
lems have been appreciated for many years, the advantages in
practice are only beginning to be appreciated now. The main
reason is the development of extremely powerful interior-point
methods for general convex optimization problems in the last
five years (e.g., [73] and [102]). These methods can solve large
problems, with thousands of variables and tens of thousands of
constraints, very efficiently (in minutes on a small workstation).
Problems involving tens of variables and hundreds of constraints
(such as the ones we encounter in this paper) are considered
small, and can be solved on a small current workstation in less
than one second. The extreme efficiency of these methods is one
of their great advantages.

The other main advantage is that the methods are truly
global, i.e., the global solution isalways found, regardless
of the starting point (which, indeed, need not be feasible).
Infeasibility is unambiguously detected, i.e., if the methods
do not produce a feasible point they produce a certificate that
proves the problem is infeasible. Also, the stopping criteria are
completely nonheuristic: at each iteration a lower bound on the
achievable performance is given.

One of the disadvantages is that the types of problems, perfor-
mance specifications, and objectives that can be handled are far
more restricted than any of the methods described above. This
is the price that is paid for the advantages of extreme efficiency
and global solutions. (For more on convex optimization, and the
implications for engineering design, see [10].)

The contribution of this paper is to show how to formulate
the analog amplifier design problem as a certain type of convex
problem called geometric programming. The advantages, com-
pared to the approaches described above, are extreme efficiency
and global optimality. The disadvantage is less flexibility in
the types of constraints we can handle, and the types of circuit
models we can employ.

Aside from work we describe below, the only other appli-
cation of geometric programming to circuit design is in tran-
sistor and wire sizing for Elmore delay minimization in digital
circuits, as in TILOS [36] and other programs [81], [82], [87].
Their use of geometric programming can be distinguished from
ours in several ways. First of all, the geometric programs that
arise in Elmore delay minimization are very specialized (the
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only exponents that arise are 0 and). Second, the problems
they encounter in practice are extremely large, involving up to
hundreds of thousands of variables. Third, their representation
of the problem as a geometric program is quite an approxima-
tion, since the actual circuits are nonlinear, and the threshold
delay, not Elmore delay, is the true objective.

Convex optimization is mentioned in several papers on
analog-circuit CAD. The advantages of convex optimization
are mentioned in [65] and [66]. In [25] and [26], the authors use
a supporting hyperplane method, which they point out provides
the global optimum if the feasible set is convex. In [89], the
authors optimize a few design variables in an op-amp using a
Lagrange multiplier method, which yields the global optimum
since the small subproblems considered are convex. In [95] and
[96], convex optimization is used to optimize area, power, and
dominant time constant in digital circuit wire and transistor
sizing.

During the review process for this paper, the authors were
informed of similar work that had been submitted to IEEE
TRANSACTIONS ONCOMPUTER-AIDED DESIGN OFINTEGRATED

CIRCUITS AND SYSTEMS by Mandal and Visvanathan [24].
Mandal and Visvanathan show how geometric programming
can be used to size another simple op-amp, and describe a
simple method for iteratively refining monomial device models.

C. Outline of Paper

In Section II, we briefly describe geometric programming, the
special type of optimization problem at the heart of the method,
and show how it can be cast as a convex optimization problem.
In Sections III–VI we describe a variety of constraints and per-
formance measures, and show that they have the special form
required for geometric programming. In Section VII we give
numerical examples of the design method, showing globally
optimal tradeoff curves among various performance measures
such as bandwidth, power, and area. We also verify some of our
designs using high fidelity SPICE models, and briefly discuss
how our method can be extended to handle short-channel ef-
fects. In Section IX, we discuss robust design, i.e., how to use
the methods to ensure proper circuit operation under various
processing conditions. In Section X, we give our concluding re-
marks.

II. GEOMETRIC PROGRAMMING

Let be real, positive variables. We will denote
the vector of these variables as. A function is
called aposynomialfunction of if it has the form

where and . Note that the coefficients must
be nonnegative, but the exponents can be any real num-
bers, including negative or fractional. When there is exactly one
nonzero term in the sum, i.e., and , we call a
monomialfunction. (This terminology is not consistent with the
standard definition of a monomial in algebra, but it should not
cause any confusion.) Thus, for example, is

posynomial (but not monomial); is a monomial
(and, therefore, also a posynomial); while is nei-
ther. Note that posynomials are closed under addition, multipli-
cation, and nonnegative scaling. Monomials are closed under
multiplication and division.

A geometric programis an optimization problem of the form

minimize

subject to

(1)

where are posynomial functions and are
monomial functions.

Several extensions are readily handled. Ifis a posynomial
and is a monomial, then the constraint can
be handled by expressing it as (since is
posynomial). For example, we can handle constraints of the
form , where is posynomial and . In a sim-
ilar way if and are both monomial functions, then we can
handle the equality constraint by expressing it
as (since is monomial).

We will also encounter functions whose reciprocals are
posynomials. We say is inverse posynomialif is a
posynomial. If is an inverse posynomial and is a posyn-
omial, then geometric programming can handle the constraint

by writing it as . As another
example, if is an inverse posynomial, then we can maximize
it, by minimizing (the posynomial) .

Geometric programming has been known and used since the
late 1960s, in various fields. There were two early books on
geometric programming, by Duffinet al. [18] and Zener [106],
which include the basic theory, some electrical engineering
applications (e.g., optimal transformer design), but not much
on numerical solution methods. Another book appeared in
1976 [9]. The 1980 survey paper by Ecker [19] has many
references on applications and methods, including numerical
solution methods used at that time. Geometric programming
is briefly described in some surveys of optimization, e.g., [20,
pp. 326–328] or [99, Ch. 4]. While geometric programming is
certainly known, it is nowhere near as widely known as, say,
linear programming. In addition, advances in general-purpose
nonlinear constrained optimization algorithms and codes (such
as the ones described above) have contributed to decreased use
(and knowledge) of geometric programming in recent years.

A. Geometric Programming in Convex Form

A geometric program can be reformulated as aconvex
optimization problem, i.e., the problem of minimizing a convex
function subject to convex inequality constraints and linear
equality constraints. This is the key to our ability to globally and
efficiently solve geometric programs. We define new variables

, and take the logarithm of a posynomialto get
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where and . It can be shown that
is aconvexfunction of the new variable: for all

and we have

Note that if the posynomial is a monomial, then the trans-
formed function is affine, i.e., a linear function plus a constant.

We can convert the standard geometric program (1) into a
convex program by expressing it as

minimize

subject to

(2)

This is the so-calledconvex formof the geometric program (1).
Convexity of the convex form geometric program (2) has sev-
eral important implications: we can use efficient interior-point
methods to solve them, and there is a complete and useful du-
ality, or sensitivity theory for them; see, e.g., [10].

B. Solving Geometric Programs

Since Ecker’s survey paper, there have been several impor-
tant developments, related to solving geometric programming
in the convex form. A huge improvement in computational ef-
ficiency was achieved in 1994, when Nesterov and Nemirovsky
developed efficient interior-point algorithms to solve a variety
of nonlinear optimization problems, including geometric pro-
grams [73]. Recently, Kortaneket al.have shown how the most
sophisticated primal-dual interior-point methods used in linear
programming can be extended to geometric programming, re-
sulting in an algorithm approaching the efficiency of current
interior-point linear programming solvers [57]. The algorithm
they describe has the desirable feature of exploitingsparsityin
the problem, i.e., efficiently handling problems in which each
variable appears in only a few constraints. Other methods de-
veloped specifically for geometric programs include those de-
scribed by Avrielet al.[7] and Rajpogal and Bricker [80], which
require solving a sequence of linear programs (for which very
efficient algorithms are known).

The algorithms described above are specially tailored for
the geometric program (in convex form). It is also possible to
solve the convex form problem using general purpose opti-
mization codes that handle smooth objectives and constraint
functions, e.g., LANCELOT [16], MINOS [71], LOQO [97], or
LINGO-NL [83]. These codes will (in principle) find a globally
optimal solution, since the convex form problem is convex.
They will also determine the optimal dual variables (sensitivi-
ties) as a by-product of solving the problem. In an unpublished
report [104], Xu compares the performance of the sophisticated
primal-dual interior-point method developed by Kortaneket
al.(XGP, [57]) with two general-purpose optimizers, MINOS
and LINGO-NL, on a suite of standard geometric programming
problems (in convex form). The general-purpose codes fail to
solve some of the problems, and in all cases take substantially
longer to obtain the solution.

For our purposes, the most important feature of geometric
programs is that they can beglobally solved withgreat effi-

ciency. Problems with hundreds of variables and thousands of
constraints are readily handled, on a small workstation, in min-
utes; the problems we encounter in this paper, which have on
the order of ten variables and 100 constraints, are easily solved
in under one second.

To carry out the designs in this paper, we implemented, in
MATLAB, a simple and crude primal barrier method for solving
the convex form problem. Roughly speaking, this method con-
sists of applying a modified Newton’s method to minimizing the
smooth convex function

subject to the affine (linear equality) constraints
, , for an increasing

sequence of values of, starting from the optimal found for
the last value of . It can be shown that when , the
optimal solution of this problem is no more thansuboptimal
for the original convex form geometric program (GP). The
computational complexity of this simple method is ,
where is the number of variables, andis the total number
of terms in monomials and posynomials in the objective and
constraints. For much more detail, see [10] and [35].

Despite the simplicity of the algorithm (i.e., primal only, with
no sparsity exploited) and the overhead of an interpreted lan-
guage, the geometric programs arising in this paper were all
solved in approximately 1 or 2 s on an ULTRA SPARC1 running
at 170 MHz. Since our simple interior-point method is already
extremely fast on the relatively small problems we encounter
in this paper, we feel that the choice of algorithm is not critical.
When the method is applied to large-scale problems, such as the
ones obtained for a robust design problem (see Section IX), the
choice may well become critical.

C. Sensitivity Analysis

Suppose we modify the right-hand sides of the constraints in
the geometric program (1) as follows:

minimize

subject to

(3)

If all of the and are zero, this modified geometric pro-
gram coincides with the original one. If , then the con-
straint represents atightenedversion of the orig-
inal th constraint ; conversely if , it repre-
sents alooseningof the constraint. Note that gives a loga-
rithmic or fractional measure of the change in the specification:

means that theth constraint is loosened 10%,
whereas means that theth constraint is tight-
ened 10%.

Let denote the optimal objective value of the mod-
ified geometric program (3), as a function of the parameters

and , so the original ob-
jective value is . In sensitivity analysis, we study the
variation of as a function of and , for small and . To
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express the change in optimal objective function in a fractional
form, we use thelogarithmic sensitivities

(4)

evaluated at , . These sensitivity numbers are
dimensionless, since they express fractional changes per frac-
tional change.

For simplicity we are assuming here that the original geo-
metric program is feasible, and remains so for small changes
in the right-hand sides of the constraints, and also that the op-
timal objective value is differentiable as a function ofand .
More complete descriptions of sensitivity analysis in other cases
can be found in the references cited above, or in a general con-
text in [10]. The surprising part is that the sensitivity numbers

and come for free, when the problem
is solved using an interior-point or Lagrangian-based method
(from the solution of the dual problem; see [10]).

We start with some simple observations. If at the optimal so-
lution of the original problem, theth inequality constraint
is not active, i.e., is strictly less than one, then
(since we can slightly tighten or loosen theth constraint with
no effect). We always have since increasing slightly
loosens the constraints, and hence lowers the optimal objective
value. The sign of tells us whether increasing the right-hand
side side of the equality constraint increases or decreases
the optimal objective value.

The sensitivity numbers are extremely useful in practice, and
give tremendous insight to the designer. Suppose, for example,
that the objective is power dissipation, repre-
sents the constraint that the bandwidth is at least 30 MHz, and

represents the constraint that the open-loop gain is
V V. Then , say, tells us that a small fractional

increase in required bandwidth will translate into a three times
larger fractional increase in power dissipation. tells
us that a small fractional increase in required open-loop gain
will translate into a fractional increase in power dissipation only
one-tenth as big. Although both constraints are active, the sensi-
tivities tell us that the design is, roughly speaking, more tightly
constrained by the bandwidth constraint than the open-loop gain
constraint. The sensitivity information from the example above
might lead the designer to reduce the required bandwidth (to re-
duce power), or perhaps increase the open-loop gain (since it
would not cost much). We give an example of sensitivity anal-
ysis in Section VII-D.

III. D IMENSION CONSTRAINTS

We start by considering some very basic constraints involving
the device dimensions, e.g., symmetry, matching, minimum or
maximum dimensions, and area limits.

A. Symmetry and Matching

For the intended operation of the input differential pair, tran-
sistors and must be identical and transistors and
must also be identical. These conditions translate into the four
equality constraints

(5)

The biasing transistors , , and must match, i.e., have
the same length

(6)

The six equality constraints in (5) and (6) have monomial
expressions on the left- and right-hand sides and hence, are
readily handled in geometric programming (by expressing
them as monomial equality constraints such as ).

Note that (5) and (6) effectively reduce the number of vari-
ables from 18 to 12. We can, for example, eliminate the variables

and by substituting wherever they appear. For clarity,
we will continue to use the variables and in our discus-
sion; for computational purposes, however, they can be replaced
by . (In any case, the number of variables and constraints is
so small for a geometric program that there is almost no com-
putational penalty in keeping the extra variables and equality
constraints.)

B. Limits on Device Sizes

Lithography limitations and layout rules impose minimum
(and possibly maximum) sizes on the transistors

(7)

These 32 constraints can be expressed as posynomial constraints
such as , etc. Since and are variables
(hence, monomials), we can also fix certain devices sizes, i.e.,
impose equality constraints.

We should note that a constraint limiting device dimensions
to a finite number of allowed values, or to an integer multiple of
some fixed small value,cannotbe (directly) handled by geo-
metric programming. Such constraints can be approximately
handled by simple rounding to an allowed value, or using more
sophisticated mixed convex-integer programming methods.

C. Area

The op-amp die area can be approximated as a constant
plus the sum of transistor and capacitor area as

(8)

Here gives the fixed area, is the ratio of capacitor
area to capacitance, and the constant (if it is not one)
can take into account wiring in the drain and source area. This
expression for the area is a posynomial function of the design
parameters, so we can impose an upper bound on the area, i.e.,

, or use the area as the objective to be minimized.
This simple expresion does not take routing area into account;
more accurate posynomial formulas for the amplifier die area
could be developed, if needed.

D. Systematic Input Offset Voltage

To reduce input offset voltage, the drain voltages of and
must be equal, ensuring that the currentis split equally
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between transistors and . This happens when the current
densities of , , and are equal, i.e.,

(9)

These two conditions are equality constraints between mono-
mials, and are therefore readily handled by geometric program-
ming.

IV. BIAS, CONDITIONS, SIGNAL SWING, AND POWER

CONSTRAINTS

In this section, we consider constraints involving bias condi-
tions, including the effects of common-mode input voltage and
output signal swing. We also consider the quiescent power of the
op-amp (which is determined, of course, by the bias conditions).
In deriving these constraints, we assume that the symmetry and
matching conditions (5) and (6) hold. To derive the equations,
we use a standard long-channel square-law model for the MOS
transistors, which is described in detail in the Appendix. We
refer to this model as the GP0 model; the same analysis also
applies to the more accurate GP1 model, also described in the
Appendix.

In order to simplify the equations, it is convenient to define
the bias currents , , and through transistors , , and

, respectively. Transistors and form a current mirror
with transistor . Their currents are given by

(10)

Thus and are monomials in the design variables. The cur-
rent through transistor is split equally between transistor
and . Thus, we have

(11)

which is another monomial.
Since these bias currents are monomials, we can include

lower or upper bounds on them, or even equality constraints, if
we wish. We will use , , and in order to express other
constraints, remembering that these bias currents can simply
be eliminated (i.e., expressed directly in terms of the design
variables) using (10) and (11).

A. Bias Conditions

The setup for deriving the bias conditions is as follows. The
input terminals are at the same dc potential, the common-mode
input voltage . We assume that the common-mode input
voltage is allowed to range between a minimum value
and a maximum value , which are given. Similarly,
we assume that the output voltage is allowed to swing between
a minimum value and a maximum value
(which takes into account large signal swings in the output).

The bias conditions are that each transistor
should remain in saturation for all possible values of the input
common-mode voltage and the output voltage. The derivation
of the bias constraints given below can be found in the longer
report [51]. The important point here is that the constraints

are each posynomial inequalities on the design variables and,
hence, can be handled by geometric programming.

• Transistor . The lowest common-mode input voltage
imposes the toughest constraint on transistor

remaining in saturation. The condition is

(12)

Note that if the right-hand side of (12) were negative, i.e.,
if , then the design is imme-
diately known to be infeasible (since the left-hand side is,
of course, positive).

• Transistor . The systematic offset condition (9) makes
the drain voltage of equal to the drain voltage of .
Therefore, the condition for being saturated is the
same as the condition for being saturated, i.e., (12).
Note that the minimum allowable value of is de-
termined by and entering the linear region.

• Transistor . Since transistor is always
in saturation and no additional constraint is necessary.

• Transistor . The systematic offset condition also im-
plies that the drain voltage of is equal to the drain
voltage of . Thus, will be saturated as well.

• Transistor . The highest common-mode input voltage
, imposes the tightest constraint on transistor

being in saturation. The condition is

(13)

Thus, the maximum allowable value of is de-
termined by entering the linear region. As explained
above, if the right-hand side of (13) is negative, i.e.,

, then the design is obviously
infeasible.

• Transistor . The most stringent condition occurs when
the output voltage is at its minimum value

(14)

In this case the right-hand side of (14) will not be negative
if we assume the minimum output voltage is above the
negative supply voltage.

• Transistor . For , the most stringent condition oc-
curs when the output voltage is at its maximum value

(15)

Here too, the right hand-side of (15) will be positive as-
suming the maximum output voltage is below the positive
supply voltage.

• Transistor . Since , transistor is always
in saturation; no additional constraint is necessary.
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In summary, the requirement that all transistors remain in
saturation for all values of common-mode input voltage be-
tween and , and all values of output voltage
between and , is given by the four inequalities
(12)–(15). These are complicated, butposynomialconstraints on
the design parameters.

B. Gate Overdrive

It is sometimes desirable to operate the transistors with a
minimum gate overdrive voltage. This ensures that they operate
away from the subthreshold region, and also improves matching
between transistors. For any given transistor this constraint can
be expressed as

(16)

The expression on the left is a monomial, so we can also impose
an upper bound on it, or an equality constraint, if we wish. (We
will see in Section IX that robustness to process variations can
be dealt with in a more direct way.)

C. Quiescent Power

The quiescent power of the op-amp is given by

(17)

which is a posynomial function of the design parameters. Hence,
we can impose an upper bound onor use it as the objective
to be minimized.

V. SMALL –SIGNAL TRANSFERFUNCTION CONSTRAINTS

A. Small-Signal Transfer Function

We now assume that the symmetry, matching, and bias con-
straints are satisfied, and consider the (small-signal) transfer
function from a differential input source to the output. To
derive the transfer function , we use a standard small-signal
model for the transistors, which is described in the Appendix,
Section B. The standard value of the compensation resistor is
used, i.e.,

(18)

(see [2]).
The transfer function can be well approximated by a four-pole

form

(19)
Here, is the open-loop voltage gain, is the dominant
pole, is the output pole, is the mirror pole, and is
the pole arising from the compensation circuit. In order to sim-
plify the discussion in the sequel, we will refer to ,
which are positive, as the poles (whereas precisely speaking, the
poles are ).

We now give the expressions for the gain and poles. The
two-stage op-amp has been previously analyzed by many au-

thors [32], [53], [88]. The compensation scheme has also been
analyzed previously, e.g., in [2].

• The open-loop voltage gain is

(20)

which is monomial function of the design parameters.
• The dominant pole is accurately given by

(21)

Since and are monomials, and is a design vari-
able, is a monomial function of the design variables.

• The output pole is given by

(22)

where , the capacitance at the gate of , can be ex-
pressed as

(23)

and , the total capacitance at the output node, can be
expressed as

(24)

The meanings of these parameters, and their dependence
on the design variables, is given in the Appendix, Sec-
tion B. The important point here is that is an inverse
posynomial function of the design parameters (i.e.,
is a posynomial).

• The mirror pole is given by

(25)

where , the capacitance at the gate of , can be ex-
pressed as

(26)

Thus, is also an inverse posynomial.
• The compensation pole is

(27)

which is also inverse posynomial.
In summary: the open-loop gain and the dominant pole
are monomial, and the parasitic poles, , and are all

inverse posynomials. Now we turn to various design constraints
and specifications that involve the transfer function.

B. Open-Loop Gain Constraints

Since the open-loop gain is a monomial, we can constrain
it to equal some desired value . We could also impose upper
or lower bounds on the gain, as in

(28)
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where and are given lower and upper limits on ac-
ceptable open-loop gain.

C. Minimum Gain at a Frequency

The magnitude squared of the transfer function at a frequency
is given by

Since are all inverse posynomial, the expressions are
posynomial. Hence, the whole denominator is posynomial. The
numerator is monomial, thus we conclude that the squared mag-
nitude of the transfer function, , is inverse posyno-
mial. (Indeed, it is inverse posynomial in the design variables
and as well.) We can, therefore, impose any constraint of the
form

using geometric programming [by expressing it as
].

The transfer function magnitude decreases as in-
creases (since it has only poles), so is equivalent
to

for (29)

We will see below that this allows us to specify a minimum
bandwidth or crossover frequency.

D. 3-dB Bandwidth

The 3-dB bandwidth is the frequency at which the gain
drops 3 dB below the dc open-loop gain, i.e.,

. To specify that the 3-dB bandwidth is at least some
minimum value , i.e., , is equivalent
to specifying that . This is turn can be
expressed as

(30)

which is a posynomial inequality.
In almost all designs will be the dominant pole, (see below)

so the 3-dB bandwidth is very accurately given by

(31)

which is a monomial. Using this (extremely accurate) approx-
imation, we can constrain the 3-dB bandwidth to equal some
required value. Using the constraint (30), which is exact but in-
verse posynomial, we can constrain the 3-dB bandwidth to ex-
ceed a given minimum value.

E. Dominant Pole Conditions

The amplifier is intended to operate with as the dominant
pole, i.e., much smaller than , , and . These conditions
can be expressed as

(32)

where we (arbitrarily) use one decade, i.e., a factor of ten in
frequency, as the condition for dominance. These dominant
pole conditions are readily handled by geometric program-
ming, since is monomial and , , and are all inverse
posynomial. In fact these dominant pole conditions usually
do not need to be included explicitly since the phase margin
conditions described below are generally more strict, and
describe the real design constraint. Nevertheless, it is common
practice to impose a minimum ratio between the dominant and
nondominant poles; see, e.g., [42].

F. Unity-Gain Bandwidth and Phase Margin

We define the unity-gain bandwidth as the frequency at
which . The phase margin is defined in terms of
the phase of the transfer function at the unity-gain bandwidth

PM

A phase margin constraint specifies a lower bound on the phase
margin, typically between – .

The unity-gain bandwidth and phase margin are related to
the closed-loop bandwidth and stability of the amplifier with
unity-gain feedback, i.e., when its output is connected to the
inverting input. If the op-amp is to be used in some other
specific closed-loop configuration, then a different frequency
will be of more interest, but the analysis is the same. For ex-
ample, if the op-amp is to be used in a feedback configuration
with closed-loop gain dB, then the critical frequency is
the 20-dB crossover point, i.e., the frequency at which the
open-loop gain drops to 20 dB, and the phase margin is defined
at that frequency. All of the analysis below is readily adapted
with minimal changes to such a situation. For simplicity, we
continue the discussion for the unity-gain bandwidth.

We start by considering a constraint that the unity-gain band-
width should exceed a given minimum frequency, i.e.,

(33)

This constraint is just a minimum gain constraint at the fre-
quency [as in (29)], and, thus, can be handled exactly
by geometric programming as a posynomial inequality.

Here too we can develop an approximate expression for the
unity-gain bandwidth which is monomial. If we assume the par-
asitic poles , , and are at least a bit (say, an octave) above
the unity-gain bandwidth, then the unity-gain bandwidth can be
approximated as the open-loop gain times the 3-dB bandwidth,
i.e.,

(34)

which is a monomial. If we use this approximate expression for
the unity-gain bandwidth, we can fix the unity-gain bandwidth
at a desired value. The approximation (34) ignores the decrease
in gain due to the parasitic poles and, consequently, overesti-
mates the actual unity-gain bandwidth (i.e., the gain drops to
0 dB at a frequency slightly less than ).

We now turn to the phase margin constraint, for which we can
give a very accurate posynomial approximation. Assuming the



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 1, JANUARY 2001

open-loop gain exceeds ten or so, the phase contributed by the
dominant pole at the unity-gain bandwidth, i.e., ,
will be very nearly . Therefore, the phase margin constraint
can be expressed as

PM (35)

i.e., the nondominant poles cannot contribute more than
PM total phase shift.

The phase margin constraint (35) cannot be exactly handled
by geometric programming, so we use two reasonable approxi-
mations to form a posynomial approximation. The first is an ap-
proximate unity-gain bandwidth [from (34)] instead
of the exact unity-gain bandwidth as the frequency at which
we will constrain the phase of . As mentioned above, we have

, thus, our specification is a bit stronger than the
exact phase margin specification (since we are constraining the
phase at a frequency slightly above the actual unity gain band-
width). We will also approximate as a monomial.
A simple approximation is given by , which is
quite accurate for less than . Thus, assuming that
each of the parasitic poles contributes no more than about
of phase shift, we can approximate the phase margin constraint
accurately as

PM (36)

which is a posynomial inequality in the design variables (since
is monomial). The approximation error involved here

is almost always very small for the following reasons. The con-
straint (36) makes sure none of the nondominant poles is too
near . This, in turn, validates our approximation

. It also ensures that our approximation that the phase con-
tributed by the nondominant poles is is good.

Finally, we note that it is possible to obtain a more accurate
monomial approximation of that has less error over
a wider range, e.g., . For example the approxi-
mation gives a fit around for angles
between 0– , as shown in Fig. 2.

VI. OTHER CONSTRAINTS

In this section, we collect several other important constraints.

A. Slew Rate

The slew rate can be expressed [79] as

SR

In order to ensure a minimum slew-rate SRwe can impose
the two constraints

SR SR
(37)

These two constraints are posynomial.

Fig. 2. Approximations ofarctan(x).

B. Common-Mode Rejection Ratio

The common-mode rejection ratio (CMRR) can be approxi-
mated as

CMRR

C
(38)

which is a monomial. In particular, we can specify a minimum
acceptable value of CMRR.

C. Power-Supply Rejection Ratio

1) Negative Power-Supply Rejection Ratio:The negative
power-supply rejection ratio (PSRR) is given by [52], [59]

(39)

Thus, the low-frequency negative PSRR is given by the inverse
posynomial expression

(40)

which, therefore, can be lower bounded.
The high-frequency PSRR characteristics are generally more

critical than the low-frequency PSRR characteristics since noise
in mixed-mode chips (clock noise, switching regulator noise,
etc.) is typically high frequency. One can see that the expression
for the magnitude squared of the negative PSRR at a frequency

has the form

PSRR

where , , and are given by inverse posynomial expres-
sions. As in Section V-C, we can impose a lower bound on the
negative PSRR at frequencies smaller than the unity-gain band-
width by imposing posynomial constraints of the form

PSRR (41)
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2) Positive Power-Supply Rejection Ratio:The low-fre-
quency positive PSRR is given by

PSRR (42)

which is neither posynomial nor inverse-posynomial, thus, it
follows that constraints on the positive power supply rejection
cannot be handled by geometric programming. However, this
op-amp suffers from much worse negative PSRR characteris-
tics than positive PSRR characteristics, both at low and high
frequencies [40], [42]. Therefore, not constraining the positive
PSRR is not critical.

We must at the least check the positive PSRR of any design
carried out by the method described in this paper. (It is more
than adequate in every design we have carried out.) However,
if the positive PSRR specification becomes critical, it can be
approximated (conservatively) by a posynomial inequality, e.g.,
using Duffin linearization [7], [17].

D. Noise Performance

The equivalent input-referred noise power spectral density
(in V /Hz, at frequency assumed smaller than the

3-dB bandwidth), can be expressed as

where is the input-referred noise power spectral density of
transistor . These spectral densities consist of the input-re-
ferred thermal noise and a noise

Thus, the input-referred noise spectral density can be expressed
as

where

Note that and are (complicated) posynomial functions of
the design parameters.

We can, therefore, impose spot noise constraints, i.e., require
that

(43)

for a certain , as a posynomial inequality. (We can impose mul-
tiple spot noise constraints, at different frequencies, as multiple
posynomial inequalities.)

TABLE I
DESIGNCONSTRAINTS ANDSPECIFICATIONS FOR THETWO-STAGE OP-AMP

The total rms noise level over a frequency band
(where is below the equivalent noise bandwidth of the circuit)
can be found by integrating the noise spectral density:

Therefore, imposing a maximum total rms noise voltage over
the band is the posynomial constraint

(44)

(since and are fixed, and and are posynomials in the
design variables).

VII. OPTIMAL DESIGN PROBLEMS AND EXAMPLES

A. Summary of Constraints and Specifications

The many performance specifications and constraints de-
scribed in the previous sections are summarized in Table I.
Note that with only one exception (the positive supply rejection
ratio), the specifications and constraints can be handled via
geometric programming.

Since all the op-amp performance measures and constraints
shown above can be expressed as posynomial functions and
posynomial constraints, we can solve a wide variety of op-amp
design problems via geometric programming. We can, for ex-
ample, maximize the bandwidth subject to given (upper) limits
on op-amp power, area, and input offset voltage, and given
(lower) limits on transistor lengths and widths, and voltage
gain, CMRR, slew rate, phase margin, and output voltage
swing. The resulting optimization problem is a geometric
programming problem. The problem may appear to be very
complex, involving many complicated inequality and equality
constraints, but in fact is readily solved.
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TABLE II
SPECIFICATIONS ANDCONSTRAINTS FORDESIGN EXAMPLE

TABLE III
OPTIMAL DESIGN FORDESIGN EXAMPLE

B. Example

In this section, we describe a simple design example. A 0.8
m CMOS technology was used; see the longer report [51] for

more details and the technology parameters. The positive supply
voltage was set at 5 V and the negative supply voltage was set
at 0 V. The load capacitance was 3 pF.

The objective is to maximize unity-gain bandwidth subject to
the requirements shown in Table II. The resulting geometric pro-
gram has 18 variables, seven (monomial) equality constraints,
and 28 (posynomial) inequality constraints. The total number of
monomial terms appearing in the objective and all constraints is
68. Our simple MATLAB program solves this problem in under
one second real-time. The optimal design obtained is shown in
Table III.

The performance achieved by this design, as predicted by the
program, is summarized in Table IV. The design achieves an
86-MHz unity-gain bandwidth. Note that some constraints are
tight (minimum device length, minimum device width, max-
imum output voltage, quiescent power, phase margin and input-
referred spot noise) while some constraints are not tight (area,
minimum output voltage open-loop gain, common-mode rejec-
tion ratio, and slew rate).

TABLE IV
PERFORMANCE OFOPTIMAL DESIGN FORDESIGN EXAMPLE

C. Tradeoff Analyses

By repeatedly solving optimal design problems as we sweep
over values of some of the constraint limits, we can sweep out
globally optimal tradeoff curves for the op-amp. For example,
we can fix all other constraints, and repeatedly minimize power
as we vary a minimum required unity-gain bandwidth. The
resulting curve shows the globally optimal tradeoff between
unity-gain bandwidth and power (for the values of the other
limits).

In this section, we show several optimal tradeoff curves for
the operational amplifier. We do this by fixing all the specifica-
tions at the default values shown in Table II, except two that we
vary to see the effect on a circuit performance measure. When
the optimization objective is not bandwidth we use a default
value of minimum unity-gain bandwidth of 30 MHz.

We first obtain the globally optimal tradeoff curve of
unity-gain bandwidth versus power for different supply volt-
ages. The results can be seen in Fig. 3. Obviously the more
power we allocate to the amplifier, the larger the bandwidth
obtained; the plots, however, show exactly how much more
bandwidth we can obtain with different power budgets. We can
see, for example, that the benefits of allocating more power
to the op-amp disappear above 5 mW for a supply voltage
of 2.5 V, whereas for a 5 V supply the bandwidth continues
to increase with increasing power. Note also that each of the
supply voltages gives the largest unity-gain bandwidth over
some range of powers.

In Fig. 4, we plot the globally optimal tradeoff curve of
open-loop gain versus unity-gain frequency for different phase
margins. Note that for a large unity-gain bandwidth requirement
only small gains are achievable. Also, we can see that for a
tighter phase margin constraint the gain bandwidth product is
lower.

Fig. 5 shows the minimum input-referred spectral density
at 1 kHz versus power, for different unity-gain frequency re-
quirements. Note that when the power specification is tight, in-
creasing the power greatly helps to decrease the input-referred
noise spectral density.

In Fig. 6 we show the optimal tradeoff curve of unity-gain
bandwidth versus area for different different power budgets.
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Fig. 3. Maximum unity-gain bandwidth versus power for different supply
voltages.

Fig. 4. Maximum open-loop gain versus unity-gain bandwidth for different
phase margins.

We can see that when the area constraint is tight, increasing
the available area translates into a greater unity bandwidth.
After some point, other constraints become more stringent and
increasing the available area does not improve the maximum
achievable unity-gain bandwidth.

Several other optimal tradeoff curves are given in the longer
report [51].

D. Sensitivity Analysis Example

In this section, we analyze the information provided by the
sensitivity analysis of the first design problem in Section VII-B
(maximize the unity-gain bandwidth when the rest of specifica-
tions/constraints are set to the values shown in Table II). The
results of this sensitivity analysis are shown in Table V. The
column labeled “Sensitivity” (numerical) is obtained by tight-
ening and loosening the constraint in question by 5% and re-
solving the problem. (The average from the two is taken.) The
column labeled “Sensitivity” comes (essentially for free) from
solving the original problem. Note that it gives an excellent pre-
diction of the numerically obtained sensitivities.

Fig. 5. Minimum noise density at 1 kHz versus power for different unity-gain
bandwidths.

Fig. 6. Maximum unity-gain bandwidth versus area for different power
budgets.

There are six active constraints: minimum device length, min-
imum device width, maximum output voltage, quiescent power,
phase margin, and input-referred spot noise at 1 kHz. All of
these constraints limit the maximum unity-gain bandwidth. The
sensitivities indicate which of these constraints are more crit-
ical (more limiting). For example, a 10% increase in the allow-
able input-referred noise at 1 kHz will produce a design with
(approximately) 2.4% improvement in unity-gain bandwidth.
However, a 10% decrease in the maximum phase margin at
the unity-gain bandwidth will produce a design with (approxi-
mately) 17.6% improvement in unity-gain bandwidth. It is very
interesting to analyze the sensitivity to the minimum device
width constraint. A 10% decrease in the minimum device width
produces a design with only a 0.05% improvement in unity-gain
bandwidth. This can be interpreted as follows: even though the
minimum device width constraint is binding, it can be consid-
ered not binding in a practical sense since tightening (or loos-
ening) it will barely change the objective.

The program classifies the given constraints in order of im-
portance from most limiting to least limiting. For this design
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TABLE V
SENSITIVITY ANALYSIS FOR THEDESIGN EXAMPLE

the order is: phase margin, quiescent power, maximum output
voltage, minimum device length, input-referred noise at 1 kHz,
and minimum device width. The program also tells the designer
which constraints arenot critical (the ones whose sensitivities
are zero or small). A small relaxation of these constraints will
not improve the objective function, so any effort to loosen them
will not be rewarded.

VIII. D ESIGN VERIFICATION

Our optimization method is based on GP0 models, which are
the simple square-law device models described in the Appendix,
Section A. Our model does not include several potentially im-
portant factors such as body effect, channel length modulation
in the bias equations, and the dependence of junction capac-
itances on junction voltages. Moreover we make several ap-
proximations in the circuit analysis used to formulate the con-
straints. For example, we approximate the transfer function with
the four-pole form (19); the actual transfer function, even based
on the simple model, is more complicated. As another example,
we approximate in our simple version of the
phase margin constraint.

While all of these approximations are reasonable (at least
when channel lengths are not too short), it is important toverify
the designs obtained using a higher fidelity (presumably non-
posynomial) model.

A. HSPICE Level-1 Verification with GP0 Models

We first verify the designs generated by our geometric
programming method (using GP0 or long-channel models)
with HSPICE using a long-channel model (HSPICE level–1
model). We take the design found by the geometric program-
ming method, and then use the HSPICE level-1 model to
check the various performance measures. The level-1 HSPICE
model is substantially more accurate (and complicated) than
our simple posynomial models. It includes, for example, body
effect, channel-length modulation, junction capacitance that
depends on bias conditions, and a far more complex transfer
function that includes many other parasitic capacitances. The
unity gain bandwidth and phase margin are computed by
solving the complete small-signal model of the op-amp. The
results of such verification always show excellent agreement
between our posynomial models and the more complex (and

TABLE VI
DESIGN VERIFICATION WITH HSPICE LEVEL-1. THE PERFORMANCE

MEASURESOBTAINED BY THE PROGRAM ARE COMPARED WITH THOSE

FOUND BY HSPICE LEVEL 1 SIMULATION

nonposynomial) HSPICE level-1 model. As an example,
Table VI summarizes the results for the standard problem
described above in Section VII-D. Note that the values of
the performance specifications from the posynomial model
(in the column labeled “Program”) and the values according
to HSPICE level 1 (in the right-hand side column) are in
close agreement. Moreover, the deviations between the two
are readily understood. The unity-gain frequency is slightly
overestimated and the phase margin is slightly underestimated
because we use the approximate expression (34), which ignores
the effect of the parasitic poles on the crossover frequency.
The noise is overestimated 7% because the open-loop gain has
decreased 7% already at 1 kHz; this gain reduction translates
into a reduction in the input-referred noise.

We have verified the geometric program results with the
HSPICE level-1 model simulations for a wide variety of
designs (with a wide variety of power, bandwidth, gain, etc.).
The results are always in close agreement. Thus, our simple
posynomial models are reasonably good approximations of the
HSPICE level-1 models.

B. HSPICE BSIM Model Verification with GP1 Models

In this section, we show how the geometric programming
method performs well even for short-channel devices, when
more sophisticated GP1 transistor models are used, by verifying
designs against sophisticated HSPICE level-39 (BSIM3v1)
simulations. The GP1 model is described in the Appendix,
Section B; the only difference is that we use an empirically
found monomial expression for the output conductance of a
MOS transistor instead of the standard long channel formula.
Using these GP1 models, all of the constraints described above
are still compatible with geometric programming.

Table VII shows the comparison between the results of geo-
metric programming design, using GP1 models, and HSPICE
level-39 simulation, for the standard problem described in Sec-
tion VII-D. The predicted values are very close to the simulated
values. The agreement holds for a wide variety of designs.

IX. DESIGN FORPROCESSROBUSTNESS

Thus far, we have assumed that parameters such as transistor
threshold voltages, mobilities, oxide parameters, channel mod-
ulation parameters, supply voltages, and load capacitance are
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TABLE VII
DESIGNVERIFICATIONS WITH HSPICE LEVEL-39. GEOMETRICPROGRAMMING

IS USED TO SOLVE THE STANDARD PROBLEM, USING THE MORE

SOPHISTICATEDGP1 MODELS. THE RESULTSARE COMPARED WITH HSPICE
LEVEL-39 SIMULATION

all known and fixed. In this section, we show to how to use the
methods of this paper to develop designs that arerobustwith re-
spect to variations in these parameters, i.e., designs that meet a
set of specifications for a set of values of these parameters. Such
designs can dramatically increase yield.

There are many approaches to the problem of robustness and
yield optimization (see [5], [28]). The robust design problem
can be formulated as a so-called semi-infinite programming
problem, in which the constraints must hold for all values
of some parameter that ranges over an interval, as in [75],
which used DELIGHT.SPICE to do robust designs, or more
recently, Mukherjeeet al. [69], who use ASTRX/OBLX. These
methods often involve very considerable run times, ranging
from minutes to hours.

We also formulate the problem as a sampled version of a
semi-infinite program. The method is practical only because
geometric programming can readily handle problems with many
hundreds, or even thousands, or constraints; the computational
effort grows approximately linearly with the number of con-
straints.

The basic idea in our approach is to list a set of possible pa-
rameters, and to replicate the design constraints for all possible
parameter values. Let denote a vector of parameters that
may vary. Then the objective and constraint functions can be ex-
pressed as functions of(the design parameters) and(which
we will call theprocess parameters, even if some components,
e.g., the load capacitance, are not really process parameters):

The functions are all posynomial functions of, for each ,
and the functions are all monomial functions of, for each .
Let be a (finite) set of possible parameter
values. Our goal is to determine a design (i.e.,) that works well
for all possible parameter values (i.e., ).

First we describe several ways the setmight be constructed.
As a simple example, suppose there are six parameters, which
vary independently over intervals . We might
sample each interval with three values (e.g., the midpoint and
extreme values), and then form every possible combination of
parameter values, which results in .

We do not have to give every possible combination of param-
eter values, but only the ones likely to actually occur. For ex-
ample, if it is unlikely that the oxide capacitance parameter is at
its maximum value while the-threshold voltage is maximum,
then we delete these combinations from our set. In this way,
we can model interdependencies among the parameter values.

We can also construct in a straightforward way. Suppose
we require a design that works, without modification, on several
processes, or several variations of processes.is then simply a
list of the process parameters for each of the processes.

The robust design is achieved by solving the problem

minimize

subject to for all

for all

(45)

This problem can be reformulated as a geometric program with
times the number of constraints, and an additional scalar vari-

able [22]:

minimize

subject to

(46)

The solution of (45) [which is the same as the solution of (46)]
satisfies the specifications for all possible values of the process
parameters. The optimal objective value gives the (globally)
optimal minimax design. (It is also possible to take an average
value of the objective over process parameters, instead of a
worst-case value.)

Equality constraints have to be handled carefully. Provided
the transistor lengths and widths are not subject to variation,
equality constraints among them (e.g., matching and symmetry)
are likely not to depend on the process parameter. Other
equality constraints, however, can depend on. When we
enforce an equality constraint for each value of, the result
is (usually) an infeasible problem. For example suppose we
specify that the open-loop gain equal exactly 80 dB. Process
variation will change the open-loop gain, making it impossible
to achieve a design that has an open-loop gain ofexactly80 dB
for more than a few process parameter values. The solution to
this problem is to convert such specifications into inequalities.
We might, for example, change our specification to require that
the open-loop gain exceed 80 dB, or require it to be between
80 and 85 dB. Either way the robust problem now has at least a
chance of being feasible.

It is important to contrast a robust design for a set of process
parameters with the optimal designs for
each process parameter. The objective value for the robust de-
sign is worse (or no better) than the optimal design for each
parameter value. This disadvantage is offset by the advantage
that the design works for all the process parameter values. As
a simple example, suppose we seek a design that can be run on
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two processes ( and ). We can compare the robust design to
the two optimal designs. If the objective achieved by the robust
design is not much worse than the two optimal designs, then we
have the advantage of a single design that works on two pro-
cesses. On the other hand if the robust design is much worse (or
even infeasible) we may elect to have two versions of the am-
plifier design, each one optimized for the particular process.

Thus far, we have considered the case in which the setis
finite. However, in most real cases it is infinite; e.g., individual
parameters lie in ranges. We have already indicated above that
such situations can be modeled or approximated by sampling
the interval. While we believe this will always work in practice,
it gives no guarantee, in general, that the design works forall
values of the parameter in the given range; it only guarantees
performance for the sampled values of the parameters.

There are many cases, however, when wecanguarantee the
performance for a parameter value in an interval. Suppose that
the function is posynomial not just in , but in and

as well, and that lies in the interval . (We take
scalar here for simplicity.) It then suffices to impose the con-

straint at the endpoints of the interval, i.e.,

for all

This is easily proved using convexity of the in the trans-
formed variables.

The reader can verify that the constraints described above are
posynomial in the parameters , , , , , and the par-
asitic capacitances. Thus, for these parameters at least, we can
handle ranges with no approximation or sampling, by specifying
the constraints only at the endpoints.

The requirement of robustness is a real practical constraint,
and is currently dealt with by many methods. For example, a
minimum gate overdrive constraint is sometimes imposed be-
cause designs with small gate overdrive tend to be nonrobust.
The point of this section is that robustness can be achieved in a
more methodical way, which takes into account a more detailed
description of the possible uncertainties or parameter variations.
The result will be a better design than anad hocmethod for
achieving robustness.

Finally, we demonstrate the method with a simple example.
In Table VIII we show how a robust design compares to a nonro-
bust design. We take three process parameters: the bias current
error factor, the positive power supply error factor, and oxide ca-
pacitance. The bias current error factor is the ratio of the actual
bias current to our design value, so when it is one, the true bias
current is what we specify it to be, and when it is 1.1, the true
bias current is 10% larger than we specify it to be. Similarly,
the positive power supply error factor is the ratio of the actual
bias current to our design value. The bias current error factor
varies between 0.9–1.1, the positive power supply error factor
varies between 0.9–1.1, and the oxide capacitance varies
around its nominal value. The three parameters are assumed in-
dependent, and we sample each with three values (midpoint and
extreme values) so all together we have , i.e., 27 dif-
ferent process parameter vectors. In the third column, we show

TABLE VIII
ROBUST DESIGN

the performance of the robust design. For each specification, we
determine the worst performance over all 27 process parame-
ters. In the fourth column we show the performance of the non-
robust design. Again, only the worst-case performance over all
27 process parameters is indicated for each specification. The
resulting geometric program involves 18 variables, seven mono-
mial equality constraints (i.e., symmetry and matching) and 756
posynomial inequality constraints.

The new design obtains a unity-gain bandwidth of 72 MHz.
The design in Section VII-B obtains a worst-case unity gain
bandwidth of 77 MHz, but since it was specified only for nom-
inal conditions, it fails to meet some constraints when tested
over all conditions. For example, the power consumption in-
creases by 15%, the open-loop gain decreases by 20%, the input-
referred spot noise at 1 kHz increases by 5% and the phase
margin decreases by . The robust design, on the other hand,
meetsall specifications for all 27 sets of process parameters.

X. DISCUSSION ANDCONCLUSION

We have shown how geometric programming can be used to
design and optimize a common CMOS amplifier. The method
yields globally optimal designs, is extremely efficient, and han-
dles a very wide variety of practical constraints.

Since no human intervention is required (e.g., to provide an
initial “good” design or to interactively guide the optimization
process), the method yields completely automated sizing of
(globally) optimal CMOS amplifiers, directly from specifica-
tions. This implies that the circuit designer can spend more time
doing real design, i.e., carefully analyzing the optimal tradeoffs
between competing objectives, and less time doing parameter
tuning, or wondering whether a certain set of specifications
can be achieved. The method could be used, for example, to do
full custom design for each op-amp in a complex mixed-signal
integrated circuit; each amplifier is optimized for its load
capacitance, required bandwidth, closed-loop gain, etc.

In fact, the method can handle problems with constraints or
coupling between the different op-amps in an integrated cir-
cuit. As simple examples, suppose we have 100 op-amps, each
with a set of specifications. We can minimize thetotal area or
power by solving a (large) geometric program. In this case, we
are solving (exactly) the power/area allocation problem for the
100 op-amps on the integrated circuit. We can also handle direct
coupling between the op-amps, i.e., when component values in
one op-amp (e.g., input transistor widths) affect another (e.g.,
as load capacitance). The resulting geometric program will have
perhaps hundreds of variables, thousands of constraints, and be
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quite sparse, so it is well within the capabilities of current inte-
rior-point methods.

For example, switched capacitor filters [42] are complex sys-
tems where the performance (maximum clock frequency, area,
power, etc.) is influenced by both the op-amp and the capaci-
tors. Current CAD tools for switched capacitor filters size the
capacitors, but use the same op-amp for all integrators (see,
e.g., FIDES [6], [8], [93]). In contrast, we can custom design
each op-amp in the switched capacitor filter. Designing optimal
op-amps for filters in oversampled converters has also been ad-
dressed in [98], but little work has been done to fully automate
the design. Limiting amplifiers for FM communication systems
[55] require the design of multiple amplifiers in cascade. Typi-
cally the same amplifier is used in all stages because it takes too
long and it is too difficult to design each stage separately.

Our ability to handle much larger problems than arise from
a single op-amp design can be used to develop robust designs.
This could increase yield, or result in designs with a longer life-
time (since they work with several different processes).

The method unambiguously determines feasibility of a set of
specifications: it either produces a design that meets the speci-
fications or it provides a proof that the specifications cannot be
achieved. In either case it also provides, at essentially no ad-
ditional cost, the sensitivities with respect to every constraint.
This gives a very useful quantitative measure of how tight each
constraint is, or how much it affects the objective.

In this paper, we have considered only one op-amp circuit,
but the general method is applicable to many other circuits, as
has been reported in [49] and [50]. For the op-amp considered
here, the analytical expressions for the constraints and specifi-
cations were derived by hand, but in a more general setting, this
step could be partially automated by the use of symbolic circuit
simulators like ISAAC [37], SYNAP [84], and ASAP [33]. A
CAD tool for optimization of analog op-amps could be devel-
oped. It would consist of a symbolic analyzer [34], a GP solver,
and a user interface. It could be linked to an automatic layout
program, such as ILAC [27] or KOAN/ANAGRAM [15], thus
the resulting tool could generate mask designs directly from am-
plifier specifications.

The main disadvantage of the method we have described is
that it handles only certain types of constraints and specifica-
tions, i.e., monomial equality constraints and posynomial in-
equality constraints. The main contribution of this paper is to
point out that despite this restriction, we can handle a very wide
variety of practical amplifier specifications. Another disadvan-
tage of our method, as compared to a more general method, is
that the task of formulating the optimization problem for a given
circuit topology and set of specifications, requires some user ex-
pertise (in circuit design and optimization) and effort. On the
other hand, once the formulation is done, particular instances
of the design can be carried out automatically and extremely
rapidly, by users with no knowledge of the underlying method.

The method we propose can be effectively combined with a
(local) optimization method that uses nonposynomial, but more
accurate model equations or even circuit simulation. Thus, the
geometric programming method we propose is used to get close
to the (presumably global) optimum, and the final design is
tuned using the more accurate (but nonposynomial) model or

direct circuit simulation. By iterating between GP-based sizing
and parasitic extraction and simulation, we can also address the
issue of layout-dependent parasitics by updating the GP models
using the extracted parameters. In the many thousands of de-
signs we have carried out, verification with an accurate simu-
lator has shown that our posynomial models are very accurate,
thus, presumably, tuning our designs with a more accurate (e.g.,
simulation-based) method would require only an iteration or two
to converge.

We close our discussion on the topic of circuit models. This
paper has introduced a new quality of a circuit model, i.e.,
whether it results in posynomial specifications. The traditional
tradeoff in circuit modeling is between fidelity and complexity,
e.g., simple, but not too accurate models for hand analysis
and design, versus complex high fidelity models for design
verification. Evidently, we have a third quality for a model:
whether or not it results in posynomial specifications. Thus,
we have a tradeoff between monomial/posynomial models (for
design via GP) and fidelity or accuracy. Note that complexity
does not matter: a very complex, but posynomial model is
readily handled by GP. Developing accurate, but posynomial
circuit models is a new area for research.

APPENDIX

A. GP0 MOSFET Models

Here we describe the MOSFET large- and small-signal
models used in our method. The model, which we refer to as
GP0, is essentially the standard long-channel square law model
described in, [3] and [41]. This model can be inadequate for
short-channel transistors [70], [91] in which case better models
can be developed that still allow optimization via geometric
programming (see the Appendix, Section B).

1) Large-Signal Models:Correct operation of the op-amp
requires all transistors to be in saturation. For an NMOS tran-
sistor this means

(47)

When the NMOS transistor is saturated, i.e., (47) holds, the
drain current can be expressed as

C

where
transistor channel length;
transistor width;
electron mobility;

C oxide capacitance per unit area;
NMOS threshold voltage;
channel-length modulation parameter.

In developing our bias constraints, we use the simplified
large-signal equation

C (48)

i.e., we ignore channel-length modulation. This introduces only
a small error.
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Fig. 7. Transistor symbols.

Fig. 8. Small signal model for a MOSFET.

For a PMOS transistor, the saturation condition is

(49)

The drain current is then given by

C

where
hole mobility;
PMOS threshold voltage;
channel-length modulation parameter.

Here too, we ignore the channel modulation effects and use the
simplified expression

C (50)

2) Small-Signal Models:Fig. 8 shows the small-signal
model around the operating point for a MOSFET transistor in
saturation. The derivation of this model can also be found in
[41]. The values of the various elements and parameters are
described below.

The transconductance is given by

C (51)

(where we ignore, with only small error, channel-length modu-
lation effects). The output conductanceis given by

(52)

Note that we ignore channel-length modulation in our transcon-
ductance expression, but must include it in the output conduc-
tance expression (which would otherwise be zero).

The gate-to-source capacitance is given by the sum of the gate
oxide capacitance and the overlap capacitance

C C (53)

where is the source/drain lateral diffusion length.
The source to bulk capacitance is a junction capacitance and

can be expressed as

(54)

where

(55)

is the junction built-in potential, and is the source diffu-
sion length.

The drain-to-bulk capacitance is also a junction capacitance
given by

(56)

where for equal source and drain diffusions.
The gate-to-drain capacitance is due to the overlap capaci-

tance and is given by

C (57)

Equations (53), (55), and (57) are posynomial in the design
variables and, therefore, are readily handled. The expressions
for the junction capacitances (54) and (56) are not posynomial,
except in the special case where and do not depend
on the design variables. We can take two approaches to ap-
proximating these capacitances. One simple method is to take
a worst-case analysis, and use the maximum values (which de-
creases bandwidth, slew rate, phase margin, etc.) This corre-
sponds to the approximation or . It is also
possible to estimate the various junction voltages as constant,
so (54) and (56) are constant.

In our op-amp circuit, the only junction capacitances that ap-
pear in the design equations (see Section V) are the drain-to-bulk
capacitances of , , , , , and . We have es-
timated the drain-to-bulk voltages of transistors, , ,

, , and , and use these estimated voltages for calcu-
lating the junction capacitances.

The bulk terminal of the PMOS transistors is connected to
the positive supply and that of the NMOS transistors is
connected to the negative supply . The drain voltages
of , , , and are the same as the gate voltage of,
namely, . In most designs, is a few hundred millivolts
above (recalling that we assume ). Thus, we can
write as

(58)
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where we use a typical overdrive voltage of mV.
The drain-to-bulk capacitances of , and are
then given by the expressions

The drain voltage of and is the output voltage of the
amplifier. The quiescent output voltage is at mid-supply for an
op-amp with small offset. Then, we can write as

and we obtain constant expressions for and

These approximations can be validated in several ways. First,
we have observed that changing these typical voltages has very
little effect on the final designs. And second, SPICE simulation
(which includes the junction capacitances) reveals that we incur
only small errors.

B. GP1 Models

The GP0 models described above are essentially the same
as the standard long channel device models. It is also possible
to derive device models that are more accurate than the long
channel models, but at the same time are compatible with geo-
metric programming based design.

Analysis of the errors incurred by the GP0 model shows that
most of the modeling error comes from the expressions for
transconductance and output conductance. By fitting monomial
expressions to empirical data, or data obtained from a high-fi-
delity SPICE simulation, we obtain transistor models that are
still compatible with geometric programming-based design.
We refer to these models as GP1.

We found that the following simple models work very well.
For NMOS devices, we use the monomial expression

where the output conductance is given in millisiemens, the bias
current is in milliamps, and the width and length are in mi-
crometers. This simple model provides a very good fit over a
wide range of transistor width, length, and bias current. For
PMOS devices, we find it useful to use two models, one model
( ) for devices operating at low drain-to-source voltage
( and ) and another one ( ) for devices operating
at high drain-to-source voltage ( , , and )

where again the output conductance is given in millisiemens,
the bias current is in milliamps, and the width and length are in
micrometers.

For all other circuit parameters, we used the GP0 model
described above (although we could easily have improved the
models using empirical fits to monomials and posynomials).
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